
Using Uncertainty as a

Model Selection and Comparison Criterion
Salvatore Alessandro Sarcia’
Univ. of Rome Tor Vergata – DISP

Via del Politecnico, 1
00133 Rome (Italy)

+39-06-7259-7942

sarcia@disp.uniroma2.it

Victor Robert Basili
Dept. of Computer Science, University

of Maryland,

College Park, MD, 20742, USA

+1-301-405-2668

basili@cs.umd.edu

Giovanni Cantone
Univ. of Rome Tor Vergata – DISP

Via del Politecnico, 1
00133 Rome (Italy)

+39-06-7259-7392

cantone@uniroma2.it

ABSTRACT

Over the last 25+ years, software estimation research has been

searching for the best model for estimating variables of interest

(e.g., cost, defects, and fault proneness). This research effort has

not lead to a common agreement. One problem is that, they have

been using accuracy as the basis for selection and comparison.

But accuracy is not invariant; it depends on the test sample, the

error measure, and the chosen error statistics (e.g., MMRE,

PRED, Mean and Standard Deviation of error samples). Ideally,

we would like an invariant criterion. In this paper, we show that

uncertainty can be used as an invariant criterion to figure out

which estimation model should be preferred over others. The

majority of this work is empirically based, applying Bayesian

prediction intervals to some COCOMO model variations with

respect to a publicly available cost estimation data set coming

from the PROMISE repository.

Categories and Subject Descriptors

D.2.9 [Cost Estimation]: Empirical study as to software cost

estimation model evaluation criterion.

General Terms

Management, Measurement, Performance, Reliability, Model

Evaluation, Model Selection, Accuracy, Uncertainty.

Keywords

Cost Estimation, Cost Model, Prediction Interval, Bayesian

Prediction Intervals, Model Selection, Model Evaluation,

Calibration.

1. INTRODUCTION
Over the last 25+ years, software estimation research has been

searching for the best models to estimate variables of interest

(e.g., cost, defects, and fault proneness). This huge research effort

did not lead to a common agreement of what is best. One of the

major issues is that, they have been using accuracy as the

selection and comparison criterion, which is not invariant, but

depends on the test sample, the error measure, and the chosen

error statistics (e.g., MMRE, PRED, Mean and Standard

Deviation of error samples [7]).

In this work we define a different criterion for comparing and

selecting estimation models. Unlike traditional comparison

approaches, the one that we propose in this paper is not based on

evaluating accuracy. Instead, it is based on calculating and

evaluating uncertainty.

The authors have defined a technology [20] based on

analyzing prediction errors from each evolving estimation model

over its history. The evolving models were obtained using an

artificial neural network as each new project is estimated and

possibly added to the model. In particular, it allows calculating

Bayesian Prediction Intervals which quantify uncertainty more

efficiently and effectively than previous methodologies. The

proposed approach allows avoiding any specific assumption on

the model and provides much smaller prediction intervals than the

ones obtained so far.

This paper is organized as follows: It begins with a brief

discussion of related work; followed by a description of

parametric estimation models and estimation model accuracy. We

then define the new comparison criterion which is invariant with

respect to the considered error measures and accuracy indicators.

The case study using the NASA 93 COCOMO data set [19] is

described and the results of applying the technology is presented,

along with the research methodology and practical hints on how

to use the proposed technology in real cases.

2. RELATED WORK
Literature on software estimation is amazingly large. However, it

mainly refers to cost estimation. As noted by Port and Korte [18],

“there exist a relatively large number of empirically based effort

estimation models”. However, the human-based estimation

literature, apart from the works from Simula Research Labs [11],

[13], [15], is relatively small.

Some authors have summarized the state of the art of this field

over the last 25+ years [21], [17], [19]. All of them argued that,

this huge research effort led to misleading results. Currently, there

is not agreement about which estimation model is best (e.g.,

regression models, machine learning, predefined models such as

COCOMO, COCOMO-II, and CART). The main point is that,

researchers and practitioners did not agree on shared criteria of

evaluation. Each organization used its own statistics (indicators),

methodologies, and procedures. The consequence is that research

 Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
 © ACM 2009 ISBN: 978-1-60558-634-2...$10.00

in this field is moving in different directions. The result is that

software engineering practitioners have neither the best estimation

model nor a shared criterion for evaluating an estimation model.

3. PARAMETRIC ESTIMATION MODELS
Estimation models (EMs) that we refer to are based on parametric

models represented by a function fR such that y = fR(x,β) + ε,

where x is a set of independent variables, y is the dependent

variable, and ββββ = (β0 … βQ) is a set of parameters defining fR. The

component ε is the aleatory part of the model (i.e. the unknown

part depending on the probability of future events) representing

our uncertainty on the relationship between independent and

dependent variables, with E(ε) = 0 and cov(ε) = σ
2I [22], where

E(ε) is the expected value of ε. Usually, fR(x,β) is assumed linear,

i.e., fR(x,β) + ε = β0+ β1x1+ β2x2+ … + βQxQ + ε. Parameters β =

(β0 … βQ) cannot be calculated because we do not know all of the

points of the population. We can only estimate β by finding a set

of estimators B = (b0 … bQ) such that they minimize an error

function, e.g., the least squares error function. Elements of B are

different from parameters β. Thus, fR fed with the input values

provides Yest = fR(X,B), not Y. Then, the difference e = Y − Yest is

a vector of errors representing ε (called residuals, with e ≠ ε).

If we want to get the Best Linear Unbiased Estimators

(BLUE) of β (Gauss-Markov theorem) and use the model for

inference, LS requires some regression assumptions:

- Errors ε are not x correlated

- The variance of the errors is constant (homoscedasticity),

cov(ε) = σ
2I

- Errors ε are not auto-correlated

- The probability density of the error is Gaussian, ε ∼ NID(0,

σ
2I), i.e. there are no outliers, skewed/kurtotic distributions,

and measurement error.

4. ESTIMATION MODEL ACCURACY
Residuals, or some related measures (e.g. relative residuals), are

used to calculate the accuracy statistics (also called accuracy

indicators). It means that, we may use an Absolute Error (AE), i.e.

AE = Actual – Estimated = e = Y – Yest. However, an absolute

error measure makes no sense when dealing with estimation

model accuracy for software engineering variables (e.g., effort,

defects). In fact, an Absolute Error would increase with the size of

what we were predicting. Therefore, an absolute measure cannot

be used for model comparison. When predicting software

engineering variables, the right choice is to consider a relative

error measure, i.e. a measure that takes into account the size of

what we are predicting [17]. For this reason, Boehm [4] defined

the performance of his software cost model (COnstructive COst

MOdel, COCOMO) in terms of Relative Error (RE), Eqn. 1.

RE = (Actual – Estimated)/Actual = (Y – Yest)/Y. (1)

Note that, currently the Boehm’s model has been enhanced into

the COCOMO-II [6], but the accuracy evaluation principles have

not changed. The evaluation procedure of the model accuracy is

shown in Figure 1.

We start by considering a data set of size N, which is split up

into two subsets, a training set and a test set. The training set size

is TR = (2/3)N and the test set size is TE = (1/3)N, thus N = TR +

TE. We choose the splitting proportion 2/3-1/3 because it is a

usual choice when dealing with hold-out methodologies [16].

Figure 1. Evaluation scheme of estimation models.

Another valid proportion is 80%-20%. Based on the training set,

we calibrate function fR. Note that, to avoid any confusion

between the training set and the test set, we use an apostrophe to

point out that the data belongs to the training set (i.e., X’ and Y’).

Once we have calculated the parameters B, we feed X into fR and

obtain the estimated values Yest. Notice that, the size of Yest is TE,

i.e. Yest = (Yest
(1)

 … Yest
(TE)). Then, accuracy is evaluated by

calculating two summary statistics over the Relative Error sample

as shown in Figure 1. In particular, Mean(RETE) = (1/TE)Σi

=1..TE(REi) is a measure of the bias of fR and STD(RETE) =

SQRT{(1/N)Σi=1..TE([REi –Mean(RETE)]2)} is a measure of the

spread of fR. Note that, a correct evaluation can be done through

both statistics at the same time. For instance, if we find out that a

model has a Mean(RETE) closer to zero with respect to another

model, we can infer that the former is more accurate than the latter

in terms of correctness. Moreover, if the former has a narrower

STD(RETE) than the latter, we can infer that the former is more

accurate in terms of reliability (stability).

Therefore, two or more parametric estimation models can be

compared by considering Mean and STD calculated over the same

test set. Note that, each estimation model has to be calibrated

based upon the same training set. The model that provides a

shorter bias and spread is assumed better than the others. Note

that, concept underlying Figure 1 can be used for evaluating

accuracy of human-based estimation, as well [11].

Using the scheme in Figure 1 implies we are evaluating the

models being selected by the model error, i.e., we evaluate both

the suitability of the model shape (e.g., linear, geometric) and the

relevance of the independent variables. However, this is not

sufficient to come up with a correct evaluation. We should check

whether regression assumptions hold for each model being

compared (Section 3). For instance, heteroscedasticity may affect

the error distribution as well, as the latter may not be Gaussian. If

regression assumptions do not hold, we should consider more

suitable indicators to evaluate the model, e.g., statistics that are

less sensitive to outliers, non-parametric statistics, using neither

STD nor Mean. The accuracy evaluation should not depend on the

indicators we use, i.e., the model selection criterion should be

invariant to it. Moreover, if we selected one of the competing

models through the scheme in Figure 1, we would not take into

account all of the information about assumption error (the one

that we may get from assuming wrong inputs) and scope error

(the error about using the model in a different context from the

one used to calibrated it).

Another important issue regarding the scheme in Figure 1 is

that the test set on which the evaluation is made may have no

relationships at all to the project being estimated. That is,

applying the scheme in Figure 1 would mean that we would make

a decision about which model is best without taking into account

what we are trying to predict. We argue that this (traditional)

approach is simply unsuitable for the goals of mature

organizations [1]. We must evaluate the estimation model just

over what we are predicting, even though the information on it

may be affected by uncertainty. In other words, we should not

select a test set independently from the project being estimated,

but we should evaluate performance over it and take into account

uncertainty. The reason is that the estimation model may behave

differently from project to project. Therefore, if we calculated

Mean and STD over an unsuitable test set, the actual estimation

model performance would be masked.

There is another major point that makes scheme in Figure 1

unsuitable for selecting estimation models, the fact that

organizations find it much more useful to have two-point

predictions instead of one-point predictions as used in Figure 1. In

fact, when dealing with real project predictions, nobody would

think that one-point predictions would be the right ones.

Everybody thinks that a range where the prediction may fall with

a stated confidence is much more useful and credible [15].

Mathematically, such an interval is called Prediction Interval

defined as the range where the next estimate may fall with a stated

confidence. For instance, <0.95, 120 PM, 180 PM> means that

the effort in PM (Person Months) for the next estimate will lie

between 120 and 180 with a confidence of 95%. Of course, the

method for estimating such a range has to take into account any

regression violations.

5. BAYESIAN PREDICTION INTERVALS
The approach we propose is an alternative to the non-parametric

bootstrap method [8] and the Bayesian approach [14]. It is an

extension of the Jørgensen and Sjøberg’s technique for calculating

empirical PIs for both regression-based models [12] and human-

based judgment techniques [11]. Although the proposed

methodology may be eventually be bootstrapped or included in a

Markov Chain Monte Carlo simulation framework, in this initial

stage, we do not consider resampling procedures or simulation

approaches so as not to complicate the methodology definition.

Moreover, one of the major aims in this technique was to try to

find an improved approach in terms of computational cost and

performance.

The proposed strategy of estimating PIs is based on removing

as many regression assumptions as possible and considering a

sample of relative errors, i.e., a training set composed of relative

errors, RETR (Figure 1). Since we do not assume that the

distribution is a Gaussian and the sample is homoscedastic, we

consider the distribution asymmetric, affected by outliers, and

with variable spread. Moreover, we assume RE to be x-correlated.

We estimate Bayesian Prediction Intervals by applying the six

steps shown below.

(1) We calculate the non-linear robust regression function of y

with respect to x, e.g. y would be RE and x would be KSLOC in a

two-dimensional space [20]. If we consider a multidimensional

space the non-linear robust regression y has to be calculated with

respect to a number of independent variables, e.g. x1, x2, …, xN.

This kind of regression function provides an x-dependent median,

minimizing the Minkowski R-distance (R = 1). It is called robust

regression because it is less sensitive to outliers and asymmetric

distributions.

(2) To deal with the heteroscedasticity issue, we estimate the

x-dependent variance empirically. The strategy is based on turning

the problem into a two-class discrimination problem. In particular,

we use the x-dependent median calculated above (y) for splitting

the sample into two classes; class A (the space above the x-

dependent median) and class B (the space below the x-dependent

median). We use observed elements of classes A and B as

representatives of the unobserved data points of each class.

(3) Then, we train a Multi-layer Feed-Forward Neural

Network for Discrimination (MLFFNND) so that its output

provides a classification decision, i.e. a new data point is

classified as belonging to A or B according to its similarity to the

data used for training. Therefore, our “a priori” information tells

us how far a point is above or below the x-dependent median

(binomial choice).

Figure 2. Posterior probability density obtained by fixing

KSLOC and letting RE vary. Dotted and dashed lines

represent posterior probability functions with an increasing

variance.

We call this MLFFNND a Bayesian Discrimination Function

(BDF) because its output can be interpreted as the posterior

probability that any input belongs to class A [3]. Any input is

classified as belonging to class A, if the BDF output is between

[0.5, 1], e.g. 0.85. It is classified as belonging to class B

otherwise, i.e. the BDF output is in [0,0.5[, e.g. 0.25, where [.,.] is

a closed interval and [.,.[is a right-open interval.

Actually, we are not interested in classifying our new

observations. Our aim is to use the BDF for inference (the inverse

problem). Making inference by the BDF in Figure 2 means

selecting the interval (MeDOWN, MeUP) on the x-axis

corresponding to the two fixed confidence limits (e.g. [0.025,

0.975]). Note that, the BDF performs a similarity analysis

between the characteristics of the project being estimated and the

observed projects upon which we built the BDF.

The defined BDF in Figure 2 is expressed by the following

relationship, fBDF(x1 = RE, x2=KSLOC) = [0,1], i.e. y = fBDF(x1,

x2) = Pr(y=1|x1, x2), where [0, 1] points out any real number in

[0,1] (e.g. the posterior probability), x1 and x2 represent the

sample information, and y=1 represents class A (y=0 represents

class B). Assume that, the BDF yields fBDF(P1) = 0.85 and fBDF(P2)

= 0.25. Then, project P1 is classified as belonging to class A,

because fBDF(P1) ≥ 0.5 and project P2 is classified as belonging to

class B because fBDF(P2) < 0.5.

Assume now that instead of fixing both values x1 = RE and

x2=KSLOC, we fix only x2 (= constant c), and let x1 vary. Then,

BDF turns into)x(y)x(f)x|1y(Pr 11cx|2x 21
=== = . Note that, in

the case of an N-dimensional space (with N > 1), we fix all

variables except x1 (the relative error RE), i.e.

)x(y)x(f)x..x|1y(Pr 11cx,...,cx|N2x 1NN121
===

−== where the

variables (x2 … xN) are the same as the independent variables of

the estimation model.

(4) Once we build the posterior probability density (solid line

in Figure 2), we can obtain a Bayesian PI by fixing a 95%

confidence level, i.e. (0.025, 0.975), and picking the

corresponding values of RE on the x-axis, i.e. (MeDOWN, MeUP).

This interval represents the expected range where the next RE will

fall. The posterior probability density in Figure 2 has an important

characteristic. Its slope gets steeper as the variance decreases; it

gets flatter as the variance increases [9]. Therefore, the increasing

variance of the relative error with respect to the independent

variables of the model has a geometric representation. It

corresponds to the flatter slope of the sigmoid curves in Figure 2,

e.g. the variance corresponding to the dotted line is lower than the

variance corresponding to the dashed line. Therefore, the

proposed strategy based on the BDF is able to evaluate the

variance (calculating the RE range) from the slope of the posterior

probability density function empirically. This approach is quite

different from estimating the variance by resampling procedures

such as bootstrap. See [9, pp. 20-24] for additional explanations.

(5) To calculate the estimation PI (e.g. the effort) for the RE

range, i.e. (MeDOWN, MeUP), we first consider the formula RE =

(Actual − Estimated)/Actual and then, we deduce Actual =

Estimated/(1 − RE).

As shown by Jørgensen et al. [11], the PI is

)]Me1/(O),Me1/(O[UP
1N

estDOWN
1N

est −− ++
, where

)b,'x(fO R
1N

est =+
, e.g. fR(x’ = 0.7,b). For instance, assuming that

the RE interval obtained from Figure 2 is [-0.9, 0.1] and

Estimated effort = 3 person months, the PI is [3/(1-(-0.9)), 3/(1-

0.1)] =[1.6, 3.4] person months.

Although the proposed prediction interval shown in Figure 2,

i.e. (MeDOWN, MeUP), has been derived empirically without

making any specific assumptions, it actually represents an

underestimate of the actual uncertainty. That is because the BDF

was derived from the principle of maximum likelihood estimate

(MLE) that considers only the most probable parameter set. We

have to consider the uncertainty over the unknown parameters of

the BDF, as well. To correct this underestimation, MacKey

proposes to apply the Bayesian framework to classification

problems. In our view, however, his approach is too

computationally cumbersome and based on too many

approximations and assumptions (e.g. normality). Another

approach to correct the underestimation can be to apply Markov

Chain Monte Carlo (MCMC) simulation, which avoids the

Gaussian approximations, but is also computationally expensive

and its reliability depends on the simulation assumptions.

(6) To avoid the problem of too high a computational cost

without any promise of getting better results, we prefer estimating

this additional uncertainty through the generalization error

provided by cross-validation (leave-one-out or K-fold). This

procedure is more convenient because the cross-validation

procedure has to be performed anyway when selecting the

classification model and it has a comparable computational cost

with respect to the bootstrap or MCMC procedures. Therefore, the

proposed procedure would be more convenient from a practical

point of view avoiding any specific assumptions.

Figure 3. Posterior probability density (solid line) obtained by

fixing KSLOC and letting RE vary with supplementary

uncertainty due to the error in calculating the model

parameters.

Since the leave-one-out cross-validation (LOOCV) score is

calculated by the SQRT(MSE), which is an unbiased estimator of

the generalization error of the BDF, we use this quantity as a

correction factor. Instead of using LOOCV, we may apply K-fold

CV, as well. However, its score would not be an unbiased

estimator of the generalization error even though it would be more

realistic than the score obtained by leaving out only one data

point. We sum and subtract the LOOCV score to the posterior

probability density function (solid line in Figure 2), obtaining the

two outer dashed lines in Figure 3. In particular, the upper dashed

line is)MSE(SQRT)x(f 1cx| 2
+= and the lower dashed line is

)MSE(SQRT)x(f 1cx| 2
−= . The band included within the two

dashed lines represents the overall uncertainty due to the variation

in the BDF parameters. The upper and lower shifts determine an

increase to the magnitude of the prediction interval (MeDOWN,

MeUP) due to the supplementary uncertainty.

The final prediction interval can be derived by fixing the 95%

confidence as above, i.e. (0.025, 0.975), and selecting the

corresponding values of RE on the x-axis. In particular, MeDOWN

is calculated by the crossing point between the 0.025-horizontal

line and the upper dashed line. The MeUP is calculated at the

crossing point between the 0.975-horizontal line and the lower

dashed line.

6. INVARIANT COMPARISON

CRITERION
In this research, we propose a model selection criterion, which

uses uncertainty instead of accuracy. The aim is to make more

informed decisions about which model is best with respect to the

project being estimated. We argue that the best model is the least

risky one. Therefore, unlike traditional approaches, we take into

account any regression model violation, assumption error, and

scope error. As explained in Section 4, the approaches applied so

far quantify uncertainty using traditional Prediction Intervals (i.e.,

based upon the frequentist paradigm). However, the authors have

recently showed that traditional approaches for calculating

prediction intervals cannot be effectively used to achieve this goal

[20] because the magnitude that they provide is too wide to be of

any utility. Moreover, traditional approaches do not take into

account either regression violations or assumption and scope

errors, while real world phenomena hardly ever satisfy regression

assumptions and estimates often display scope and assumption

errors.

The strategy consists of using Bayesian Discrimination

Functions (BDF) as explained in Section 6 for each considered

estimation model/method being compared. The BDF is actually an

“intelligent” function that is built upon the (relative) errors

coming from the use of the estimation model over a sample set of

observations. Based on the approach proposed by Jørgensen and

Sjøberg [11], once we get an Error Bayesian Prediction Interval,

we can turn it into an Estimate Bayesian Prediction Interval, as

explained in Section 5. Note that, Error Bayesian Prediction

Intervals and Estimate Bayesian Prediction Intervals are

completely interchangeable hence they can both be used for

comparison. We explain why in the following paragraph.

As specified above, for comparison purposes, we can use

either Error Prediction Intervals (i.e. [REDOWN, REUP]) or

Estimate Prediction Intervals (i.e. [ActDOWN, ActUP]) because the

magnitude of Error Prediction Intervals keeps proportionally

constant with respect to the magnitude of Estimate Prediction

Intervals, and vice versa. Usually, when dealing with numbers, we

prefer using Error Prediction Intervals because of their smaller

magnitudes. Nevertheless, because relative errors can be negative

values, when not dealing with the numbers but concepts, we

prefer to use Estimate Prediction Intervals because they seem to

be easier and quicker to grasp. Therefore, our conceptual

explanation will be given by considering Estimate Prediction

Intervals (all of the quantities are positive), while the case study

will be set up based upon a (Relative) Error Prediction Interval

(quantities can be negative as well).

Figure 4. Bayesian Prediction Interval-based comparison of

estimation models.

Based on Figure 4, if we compare only two estimation models,

EM1 and EM2 (e.g., EM1 = Machine learning and EM2 =

COCOMO II), we have to build two different BDFs, i.e. BDF1

and BDF2.

Applying the technology defined in Sarcia et al. [20] has the

benefit of using the Bayesian approach, which allows shrinking

the magnitude of the prediction intervals, making them more

attractive and useful than the traditional prediction intervals.

Through BDFs, we get Bayesian Prediction Intervals, which

have the capability of dealing with the consequences of regression

violations and displaying the scope error. A scope error is

highlighted when the BDF, fed with values of the project being

estimated, does not provide any BPI.

Once we know that an estimation model provides a scope error

on project P (i.e. observations used for calibrating the model are

so different from project P that the model may have unexpected

behaviors), we should decide whether or not to use such a model

for prediction. Nevertheless, we suggest discarding all of the

models showing a scope error and keeping the ones that provide

acceptable intervals. If none of the models provide valid intervals,

we suggest considering further models.

The comparison brought out in Figure 4 is not complete.

Before making a decision whether model EM1 is better/worse

than EM2, we have to take into account the assumption error, as

well. Assumption error is about whether we are sure about the

actual values of project P being estimated. In other words, there

are different possible values representing project P that we should

consider. For instance, we may have C possible inputs for project

P, i.e., I =)I,...,I,I(C21 each having its own probability to occur

)IPr(),...,IPr(),IPr(C21 . If we do not know those probabilities, the

uncertainty is on its maximum, i.e.,

C/1)IPr(...)IPr()IPr(C21 ==== . For instance, uncertainty may

be about the project size or the project complexity. If there is not

uncertainty about the project characteristics, there is no

assumption error and I is composed of only one set. In that case,

comparison in Figure 4 would be complete.

To explain the way of dealing with the assumption error,

consider the example in Figure 5.

Figure 5. Calculating the Ultimate Bayesian Prediction

Interval (UBPI) for project P being estimated. Project P has

three possible input sets (I1, I2, and I3) each having probability

of 0.33. Note that, magnitude of the UBPI cannot be shorter

than the magnitude of each individual BPI.

The overall uncertainty in the case of an assumption error is the

union of all of the individual Bayesian Prediction Intervals. We

call this union as Ultimate Bayesian Prediction Interval (UBPI).

The output of applying the strategy in Figure 5 is then UBPIP, i.e.

the UBPI on project P. It has to be calculated for each Estimation

Model/Bayesian Discrimination Function. For instance, if we

have only two estimation models to compare as in Figure 4, we

get two different Ultimate BPIs on project P, say UBPI1P and

UBPI2P corresponding to model 1 (EM1) and model 2 (EM2),

respectively.

Going back to Figure 4, we can now perform the comparison

between models EM1 and EM2 (Figure 6).

Figure 6. Ultimate Bayesian Prediction Interval-based

comparison of two estimation models EM1 and EM2. The

comparison is made through values of project P

The result of the comparison is that, the best model is the one that

shows the shortest Ultimate Bayesian Prediction Interval

magnitude, i.e., UBPI1P in Figure 6. Therefore, we consider the

best model to be the least risky model among those considered

(i.e., showing the least uncertainty in estimating project P). Note

that, if we had more than two models, the strategy in Figure 6

would not change.

If we used the Error Bayesian Prediction Interval instead of the

Estimate Bayesian Prediction Intervals, where negative values of

errors may occur, we should calculate the absolute value to obtain

the magnitude.

7. THE CASE STUDY
In this section, we apply the strategy presented in Section 6 to the

NASA COCOMO data set [19] by comparing different models

having different features and shapes from each other. For the

reasons stated in Section 6, the comparison is performed by an

Error Bayesian Prediction Interval instead of an Estimate

Bayesian Prediction Interval. The analysis presented in this

section aims at demonstrating the application of the proposed

approach using real data.

Consider the situation where NASA is the learning

organization [1] using measurement [2] and, from 1971 to 1987,

they developed 8 projects, e.g., Hubble Space Telescope,

involving 93 software systems. We start with our analysis at the

beginning of 1985, when NASA has already developed 77

software systems so their experience is based upon those 77

software systems, which we will use as the basis for building our

estimation models. NASA’s goal is to figure out which model is

best for estimating the effort of the 16 next software systems

(from 1985 to 1987). Since we actually know the data from these

16 software systems, we can use them as a test set for evaluating

the proposed comparison strategy over 16 cases.

The data set [19] is composed of 93 project instances. Each

instance is described by 24 attributes (Table 1). In particular,

“Size”, 15 COCOMO-I multipliers, “Effort”, and 7 attributes

describing further characteristics of the NASA software system

(project ID, project name, category of application, flight/ground

system, NASA center, “YEAR” finished, and development mode).

Note that, “Effort” is measured by calendar months of 152 hours,

including development and management hours [4].

Based upon data from the 77 software systems, our case study

consists of calibrating 4 different models and comparing them to

each other through both the traditional criterion and the one we

propose in this research (uncertainty). Conclusions enacted from

this case study offer some new insights into the projects

developed at NASA and show that using uncertainty as an

invariant model comparison criterion can be a useful approach for

making more informed decisions and increasing the prediction

capabilities of mature organizations.

Table 1: Data Set Description.

Models that we consider are the following:

- Lin: linear regression function, i.e. Effort = Lin(Size, 15

COCOMO-I Variables);

- LinMode: linear regression function with the categorical

variable Mode, i.e. Effort = LinMode(Size, 15 COCOMO-I

Variables, Mode);

- LogLin: log-linear regression function, i.e. Effort =

LogLin(Size, 15 COCOMO-I Variables);

- LogLinMode: log-linear regression function with the

categorical variable Mode, i.e. Effort = LogLinMode(Size, 15

COCOMO-I Variables, Mode).

Note that, the right way of coding categorical values is to use

dummy (dichotomous) variables. If we have C categorical values,

we create (C – 1) dichotomous variables, i.e. the variable can have

values 0 or 1. Since “Mode” has three categories

(“Semidetached”, “Embedded”, “Organic”), we included two

dummy variables (D1, D2) in both LinMode and LogLinMode and

coded the categories as follows, “Semidetached” became {D1 = 0,

D2 = 1}, “Embedded” became {D1 = 1, D2 = 0}, “Organic”

became {D1 = 0, D2 = 0}. Therefore, the categorical variable

Mode was represented by a couple of dummy variables.

We only used the attribute “YEAR” to split up projects, i.e.

the first set (before 1985) was composed of 77 software systems,

and the second set (after 1984) was composed of 16 software

systems.

To focus the goal of our study, we defined a GQM template:

Analyze the uncertainty of regression models for the purpose of

comparison with respect to the magnitude of Error Bayesian

Prediction Intervals from the point of view of the project managers

in the context of NASA’s projects.

8. RESULTS
Before presenting the results, we show that the BDF-based

technique [20] provides more useful Prediction Intervals than the

traditional approach. In particular, Error Bayesian Prediction

Intervals (ErBPIs) are much shorter than the traditional ones. Of

course, it would be the same if we used Estimate Bayesian

Prediction Intervals (EsBPIs). To this aim, we only considered

the function Lin and calibrated the BDF by applying the BDF-

based procedure [20]. Then, we fed each element in the test set

(16 data points) into the BDF and obtained 16 ErBPIs.

Consequently, we turned the ErBPIs into the EsBPIs (unfilled

rectangles in Figure 7) applying the procedure explained in

Section 6. We also calculated Prediction Intervals by the tradition

approach (filled rectangle in Figure 7). Since the traditional

approach provided negative values for the lower limit of the

rectangles in Figure 7, we decided to put the lower limit of these

rectangles to zero.

Figure 7. Comparison of magnitudes between Bayesian

Prediction Intervals (filled) and the Traditional ones (unfilled).

The y axis of the diagram in Figure 7 represents the effort and

the x-axis expresses the software system belonging to the test set.

The number shown below the x-axis in Figure 7 is the ID assigned

in the original data set from NASA [19]. An “X” stands for actual

effort and a “–” stands for estimated effort. Apart from the

projects on which function Lin provides negative effort values

(i.e., ID = 36, 39, and 37) where the analysis makes no sense, the

Bayesian approach provides shorter prediction intervals in terms

of magnitude than the traditional one for all of the cases. With

respect to project 52, however, the interval does not include the

actual RE meaning that occasionally the interval may be biased.

Based on data in Figure 8, a valuable result is that the proposed

approach is a valid alternative to the traditional methodology for

shrinking the estimate prediction intervals. It makes possible

using uncertainty for comparison purposes.

To carry out a comparison among the four considered

estimation models, we first calculated the BDF for each model.

Then, we fed the test set (remaining 16 software systems) into

each BDF and obtained 16 Error Bayesian Prediction Intervals for

each estimation model (Figures 8, 9, 10, and 11) . Unlike Figure

7, we did not turn ErBPIs into EsBPIs, but used the magnitude of

the ErBPIs for comparing the models.

With respect to Figure 8, 9, 10, and 11, the y-axis is the

relative error (RE) and in the x-axis there are the 16 software

systems belonging to the test set. ErBPIs are represented as

vertical segments. Crossed circles represent the expected

estimation relative error (median) for the test set. “EXT” refers to

the fact that, the ErBPI does not include the median of the relative

error. Therefore, as we explained in Section 6, it may signal a

possible scope error. Moreover, we used a circle at the top of each

diagram to indicate that the magnitude of the related Bayesian

Prediction Interval exceeded the value of 0.30, assumed as an

acceptable error magnitude. We used a square to indicate an error

magnitude exceeding the value of 0.30, assumed as an

unacceptable error magnitude. The limit of 0.30 plays the same

role of H in the indicator PRED(H) = X. In other words, we may

also consider the percentage of the number of circles (success)

with respect to the overall number of elements in the test set as an

overall uncertainty measure.

For instance, in Figure 8 (model Lin), the Bayesian Prediction

Interval PRED (BPI_PRED) would be BPI_PRED(0.30) = 8/16 =

50%. Of course, 50% is not a good result, showing that the linear

model does not perform very well. With respect to Figure 8, we

have projects 26 and 24 on which a scope error may occur. Note

that, as with PRED(0.25) and PRED(0.20), we can also consider a

BPI_PRED(0.25) or even a BPI_PRED(0.20), respectively.

Figure 8. Error Bayesian Prediction intervals for the model

Lin.

With respect to Figure 9 (model LinMode), we can see that

adding the categorical variable Mode did not shrink the intervals,

but they even increased in magnitude. BPI_PRED(0.30) = 6/16 =

37.5%, therefore we concluded that LinMode performed worse

than Lin in terms of uncertainty. LinMode showed 6 projects in

which a scope error may occur, as well.

Figure 9. Error Bayesian Prediction intervals for the model

LinMode.

With respect to Figure 10 (LogLin), we can see that the

logarithmic transformation definitely improved the model. In fact,

BPI_PRED(0.30) = 12/16 = 75% with only one “EXT” on project

38. Result in Figure 10 was expected somehow, because we know

that a geometric function correctly describes the relationships

between Effort and COCOMO variables.

Figure 10. Error Bayesian Prediction intervals for the model

LogLin.

With respect to Figure 11 (LogLinMode), we included the

categorical variable Mode in the logarithmic model. Unlike Figure

9, where the variable Mode made the model worse, in this case we

got an improvement in terms of uncertainty, i.e., the ErBPIs

shrank. In fact, BPI_PRED(0.30) = 16/16 = 100% without “EXT”

points.

Figure 11. Error Bayesian Prediction intervals for the model

LogLinMode.

From the accuracy point of view, however, the situation is

different. As shown in Table 2, the LogLin, model is slightly more

accurate than the LogLinMode model..

Table 2: Comparing the models with respect to accuracy.

This is a very interesting situation because, based on the proposed

analysis, we show that before selecting a model as best we should

take into account uncertainty, as well. In particular, our analysis

says that NASA should use LogLinMode if they care about

uncertainty, while NASA should use LogLin if they care about

accuracy.

The comparison criterion that we presented in Section 6 refers

to comparing the models over each project being estimated (16

data points). Therefore, we have to make a decision as to whether

or not to select a specific estimation model for prediction based

upon its uncertainty with respect to the project being estimated.

To this end, Table 3 shows the results of comparing, project by

project, the four models under study.

Table 3: Comparing, project by project, the models with

respect to uncertainty.

In particular, the filled rectangles including bold figures show the

smallest magnitude among the models. Therefore, we concluded

that, from a practical point of view, based upon the comparison

criterion defined in this work, the best model was LogLinMode on

projects 33, 30, 39, 34, 13, 37, 35, 24, 52, 21, 23, 25, 22. With

respect to projects 26 and 40 the best (least risky) model was

LogLin. With respect to project 30 the best model was either

LogLin or LogLinMode.

9. CONCLUSION
The uncertainty analysis presented in this work has an important

implication for software organizations and practitioners in terms

of model comparisons. Analyses presented in this work show that,

one estimation model can be more accurate than another, even

though the former may be more risky than the latter. Unlike

traditional approaches, the criterion presented in this paper is

invariant with respect to the error measures and indicators for

making the comparison.

Before claiming that one model is “better” than another,

however, an organization should specify the nature of the

comparison and the context in which the comparison is made. For

instance, one should say that one model is better than another in

terms of accuracy (or in terms of uncertainty/risk) and select the

one that is more appropriate with respect to organization’s goals.

Nevertheless, accuracy criteria are not invariant. In the example

shown above, an organization aiming at accuracy should select the

log-linear model without categories (LogLin). An organization

aiming at shrinking the uncertainty should select the log-linear

model with categories (LogLinMode). It is worth noting that,

some authors [15], [11], however, argue that providing one-point

estimates (i.e. aiming at accuracy) is ineffective and even

misleading. The authors believe that organizations should aim at

uncertainty, i.e., estimates should always be provided in terms of

prediction intervals (two-point estimates) because two-point

estimates are more realistic and useful for software organizations.

Based on the uncertainty analysis, before predicting a new

project, we should consider different models as stated above and

select the one that provides the least risk. Once the most accurate

and least risky model has been selected among those considered,

we can use the model to predict predicting new projects and

continue to evolve the model to find the best model repeatedly.

10. REFERENCES

[1] Basili, V. R., Caldiera, G., Rombach, H. D. 1994. The

Experience Factory. In Encyclopedia of Software

Engineering, Ed. J.J. Marciniak, John Wiley & Sons.

[2] Basili, V. R., Caldiera, G., Rombach, H. D. 1994. Goal

Question Metric Paradigm. In Encyclopedia of Software

Engineering, Ed. J.J. Marciniak, John Wiley & Sons.

[3] Bishop, C. 1995. Neural Network for Pattern Recognition.

Oxford University Press.

[4] Boehm, B.W. 1981. Software Engineering Economics.

Prentice Hall.

[5] Briand, L.C., El-Emam, K., Maxwell, K., Surmann, D., and

Wieczorek, I. 1999. An Assessment and Comparison of

Common Cost Software Project Estimation Methods. Proc.

21st Int’l Conf. Software Eng. (ICSE 21), pp. 313-322.

[6] The COCOMO II Suite. 2004. http://sunset.usc.

edu/research/cocomosuite/index.html.

[7] Conte, S.D., Dunsmore, H.E., and Shen, V.Y. 1986.

Software Engineering Metrics and Models. Benjamin-

Cummings, Menlo Park, CA.

[8] Efron, B. and Tibshirani, R.J. 1993. “An Introduction to

the Bootstrap. Chapman & Hall, NY.

[9] Husmeier, D., Dybowski, R., and Roberts, S. 2004.

Probabilistic Modeling in Bioinformatics and Medical

Informatics. Springer.

[10] Jørgensen, M. 1995. Experience With the Accuracy of

Software Maintenance Task Effort Prediction Models. IEEE

TSE, 21(8), (August 1995), pp. 674-681.

[11] Jørgensen, M. and Sjøberg, D.I.K., 2003. An Effort

Prediction Interval Approach Based on the Empirical

Distribution of Previous Estimation Accuracy. Journal of

Information Software and Technologies 45: 123-136.

[12] Jørgensen, M. 2004. Regression Models of Software

Development Effort Estimation Accuracy and Bias.

Empirical Software Engineering, Vol. 9, 297-314.

[13] Jørgensen, M., Teigen, K., and Moløkken, K. 2004. Better

sure than safe? Overconfidence in judgment based software

development effort prediction intervals. J. of Systems &

Software, 70, pp79-93.

[14] MacKey, D.J.C. 1991. Bayesian Models for Adaptive

Models. Ph.D. Thesis, California Institute of Technology,

Pasadena, CA, USA.

[15] McConnell, S. 2006. Software Estimation, Demystifying the

Black Art. Microsoft press.

[16] Menzies, T. , Port, D., Chen, Z., Hihn, J. 2005. Validation

Methods for Calibrating Software Effort Models. Proc. 27st

Int. Conf. Software Eng. (ICSE).

[17] Myrtveit, I., Stensrud, E., and Shepperd, M. 2005. Reliability

and Validity in Comparative Studies of Software Prediction

Models. IEEE Trans. Software Eng., vol. 31, no. 5, (May

2005), pp. 380-391.

[18] Port D. and Korte, M. 2008. Comparative Studies of the

Model Evaluation Criterions MMRE and PRED on Software

Cost Estimation Research. ACM, (PROMISE’08) Liepzig,

Germany, pp. 63- 70.

[19] The PROMISE Repository, Shirabad, J.S. and Menzies, T.

2005. The PROMISE Repository of Software Engineering

Databases. School of Information Technology and

Engineering, University of Ottawa, Canada.

http://promise.site.uottawa.ca /SERepository.

[20] Sarcia', S.A., Basili, V.R. and Cantone, G. 2008. An

Approach to Improving Parametric Estimation Models in the

Case of Violation of Assumptions Based on Risk Analysis.

CS-TR-4928, UMIACS-TR-2008-20 University of Maryland

(USA).

[21] Shepperd, M. 2007. Software project economics: a roadmap.

FOSE’07, IEEE.

[22] Weisberg, S. 1985. Applied Linear Regression. 2nd Ed.,

John Wiley and Sons, NY.

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

