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ABSTRACT 

Over the last 25+ years, software estimation research has been 

searching for the best model for estimating variables of interest 

(e.g., cost, defects, and fault proneness). This research effort has 

not lead to a common agreement. One problem is that, they have 

been using accuracy as the basis for selection and comparison. 

But accuracy is not invariant; it depends on the test sample, the 

error measure, and the chosen error statistics (e.g., MMRE, 

PRED, Mean and Standard Deviation of error samples). Ideally, 

we would like an invariant criterion. In this paper, we show that 

uncertainty can be used as an invariant criterion to figure out 

which estimation model should be preferred over others. The 

majority of this work is empirically based, applying Bayesian 

prediction intervals to some COCOMO model variations with 

respect to a publicly available cost estimation data set coming 

from the PROMISE repository. 

Categories and Subject Descriptors 

D.2.9 [Cost Estimation]: Empirical study as to software cost 

estimation model evaluation criterion. 

General Terms 

Management, Measurement, Performance, Reliability, Model 

Evaluation, Model Selection, Accuracy, Uncertainty. 

Keywords 

Cost Estimation, Cost Model, Prediction Interval, Bayesian 

Prediction Intervals, Model Selection, Model Evaluation, 

Calibration. 

1. INTRODUCTION 
Over the last 25+ years, software estimation research has been 

searching for the best models to estimate variables of interest 

(e.g., cost, defects, and fault proneness). This huge research effort 

did not lead to a common agreement of what is best. One of the 

major issues is that, they have been using accuracy as the 

selection and comparison criterion, which is not invariant, but 

depends on the test sample, the error measure, and the chosen 

error statistics (e.g., MMRE, PRED, Mean and Standard 

Deviation of error samples [7]). 

In this work we define a different criterion for comparing and 

selecting estimation models. Unlike traditional comparison 

approaches, the one that we propose in this paper is not based on 

evaluating accuracy. Instead, it is based on calculating and 

evaluating uncertainty. 

The authors have defined a technology [20] based on 

analyzing prediction errors from each evolving estimation model 

over its history. The evolving models were obtained using an 

artificial neural network as each new project is estimated and 

possibly added to the model. In particular, it allows calculating 

Bayesian Prediction Intervals which quantify uncertainty more 

efficiently and effectively than previous methodologies. The 

proposed approach allows avoiding any specific assumption on 

the model and provides much smaller prediction intervals than the 

ones obtained so far. 

This paper is organized as follows: It begins with a brief 

discussion of related work; followed by a description of 

parametric estimation models and estimation model accuracy. We 

then define the new comparison criterion which is invariant with 

respect to the considered error measures and accuracy indicators. 

The case study using the NASA 93 COCOMO data set [19] is 

described and the results of applying the technology is presented, 

along with the research methodology and practical hints on how 

to use the proposed technology in real cases. 

2. RELATED WORK 
Literature on software estimation is amazingly large. However, it 

mainly refers to cost estimation. As noted by Port and Korte [18], 

“there exist a relatively large number of empirically based effort 

estimation models”. However, the human-based estimation 

literature, apart from the works from Simula Research Labs [11], 

[13], [15], is relatively small. 

Some authors have summarized the state of the art of this field 

over the last 25+ years [21], [17], [19]. All of them argued that, 

this huge research effort led to misleading results. Currently, there 

is not agreement about which estimation model is best (e.g., 

regression models, machine learning, predefined models such as 

COCOMO, COCOMO-II, and CART). The main point is that, 

researchers and practitioners did not agree on shared criteria of 

evaluation. Each organization used its own statistics (indicators), 

methodologies, and procedures. The consequence is that research 
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in this field is moving in different directions. The result is that 

software engineering practitioners have neither the best estimation 

model nor a shared criterion for evaluating an estimation model. 

3. PARAMETRIC ESTIMATION MODELS 
Estimation models (EMs) that we refer to are based on parametric 

models  represented by a function fR such that y = fR(x,β) + ε, 

where x is a set of independent variables, y is the dependent 

variable, and ββββ = (β0 … βQ) is a set of parameters defining fR. The 

component ε is the aleatory part of the model (i.e. the unknown 

part depending on the probability of future events) representing 

our uncertainty on the relationship between independent and 

dependent variables, with E(ε) = 0 and cov(ε) = σ
2I [22], where 

E(ε) is the expected value of ε. Usually, fR(x,β) is assumed linear, 

i.e., fR(x,β) + ε = β0+ β1x1+ β2x2+ … + βQxQ + ε. Parameters β = 

(β0 … βQ) cannot be calculated because we do not know all of the 

points of the population. We can only estimate β by finding a set 

of estimators B = (b0 … bQ) such that they minimize an error 

function, e.g., the least squares error function. Elements of B are 

different from parameters β. Thus, fR fed with the input values 

provides Yest = fR(X,B), not Y. Then, the difference e = Y − Yest is 

a vector of errors representing ε (called residuals, with e ≠ ε). 

If we want to get the Best Linear Unbiased Estimators 

(BLUE) of β (Gauss-Markov theorem) and use the model for 

inference, LS requires some regression assumptions: 

- Errors ε are not x correlated 

- The variance of the errors is constant (homoscedasticity), 

cov(ε) = σ
2I 

- Errors ε are not auto-correlated 

- The probability density of the error is Gaussian, ε ∼ NID(0, 

σ
2I), i.e. there are no outliers, skewed/kurtotic distributions, 

and measurement error. 

4. ESTIMATION MODEL ACCURACY 
Residuals, or some related measures (e.g. relative residuals), are 

used to calculate the accuracy statistics (also called accuracy 

indicators). It means that, we may use an Absolute Error (AE), i.e. 

AE = Actual – Estimated = e = Y – Yest. However, an absolute 

error measure makes no sense when dealing with estimation 

model accuracy for software engineering variables (e.g., effort, 

defects). In fact, an Absolute Error would increase with the size of 

what we were predicting. Therefore, an absolute measure cannot 

be used for model comparison. When predicting software 

engineering variables, the right choice is to consider a relative 

error measure, i.e. a measure that takes into account the size of 

what we are predicting [17]. For this reason, Boehm [4] defined 

the performance of his software cost model (COnstructive COst 

MOdel, COCOMO) in terms of Relative Error (RE), Eqn. 1. 

 

RE = (Actual – Estimated)/Actual = (Y – Yest)/Y.  (1) 

 

Note that, currently the Boehm’s model has been enhanced into 

the COCOMO-II [6], but the accuracy evaluation principles have 

not changed. The evaluation procedure of the model accuracy is 

shown in Figure 1. 

We start by considering a data set of size N, which is split up 

into two subsets, a training set and a test set. The training set size 

is TR = (2/3)N and the test set size is TE = (1/3)N, thus N = TR + 

TE. We choose the splitting proportion 2/3-1/3 because it is a 

usual choice when dealing with hold-out methodologies [16]. 

Figure 1. Evaluation scheme of estimation models. 

 

Another valid proportion is 80%-20%. Based on the training set, 

we calibrate function fR. Note that, to avoid any confusion 

between the training set and the test set, we use an apostrophe to 

point out that the data belongs to the training set (i.e., X’ and Y’). 

Once we have calculated the parameters B, we feed X into fR and 

obtain the estimated values Yest. Notice that, the size of Yest is TE, 

i.e. Yest = (Yest
(1)

 … Yest
(TE)). Then, accuracy is evaluated by 

calculating two summary statistics over the Relative Error sample 

as shown in Figure 1. In particular, Mean(RETE) = (1/TE)Σi 

=1..TE(REi) is a measure of the bias of fR and STD(RETE) = 

SQRT{(1/N)Σi=1..TE([REi –Mean(RETE)]2)} is a measure of the 

spread of fR. Note that, a correct evaluation can be done through 

both statistics at the same time. For instance, if we find out that a 

model has a Mean(RETE) closer to zero with respect to another 

model, we can infer that the former is more accurate than the latter 

in terms of correctness. Moreover, if the former has a narrower 

STD(RETE) than the latter, we can infer that the former is more 

accurate in terms of reliability (stability). 

Therefore, two or more parametric estimation models can be 

compared by considering Mean and STD calculated over the same 

test set. Note that, each estimation model has to be calibrated 

based upon the same training set. The model that provides a 

shorter bias and spread is assumed better than the others. Note 

that, concept underlying Figure 1 can be used for evaluating 

accuracy of human-based estimation, as well [11].  

Using the scheme in Figure 1 implies we are evaluating the 

models being selected by the model error, i.e., we evaluate both 

the suitability of the model shape (e.g., linear, geometric) and the 

relevance of the independent variables. However, this is not 

sufficient to come up with a correct evaluation. We should check 

whether regression assumptions hold for each model being 

compared (Section 3). For instance, heteroscedasticity may affect 

the error distribution as well, as the latter may not be Gaussian. If 

regression assumptions do not hold, we should consider more 

suitable indicators to evaluate the model, e.g., statistics that are 

less sensitive to outliers, non-parametric statistics, using neither 

STD nor Mean. The accuracy evaluation should not depend on the 



indicators we use, i.e., the model selection criterion should be 

invariant to it. Moreover, if we selected one of the competing 

models through the scheme in Figure 1, we would not take into 

account all of the information about assumption error (the one 

that we may get from assuming wrong inputs) and scope error 

(the error about using the model in a different context from the 

one used to calibrated it). 

Another important issue regarding the scheme in Figure 1 is 

that the test set on which the evaluation is made may have no 

relationships at all to the project being estimated. That is, 

applying the scheme in Figure 1 would mean that we would make 

a decision about which model is best without taking into account 

what we are trying to predict. We argue that this (traditional) 

approach is simply unsuitable for the goals of mature 

organizations [1]. We must evaluate the estimation model just 

over what we are predicting, even though the information on it 

may be affected by uncertainty. In other words, we should not 

select a test set independently from the project being estimated, 

but we should evaluate performance over it and take into account 

uncertainty. The reason is that the estimation model may behave 

differently from project to project. Therefore, if we calculated 

Mean and STD over an unsuitable test set, the actual estimation 

model performance would be masked.  

There is another major point that makes scheme in Figure 1 

unsuitable for selecting estimation models, the fact that 

organizations find it much more useful to have two-point 

predictions instead of one-point predictions as used in Figure 1. In 

fact, when dealing with real project predictions, nobody would 

think that one-point predictions would be the right ones. 

Everybody thinks that a range where the prediction may fall with 

a stated confidence is much more useful and credible [15]. 

Mathematically, such an interval is called Prediction Interval 

defined as the range where the next estimate may fall with a stated 

confidence. For instance, <0.95, 120 PM, 180 PM> means that 

the effort in PM (Person Months) for the next estimate will lie 

between 120 and 180 with a confidence of 95%. Of course, the 

method for estimating such a range has to take into account any 

regression violations. 

 

5. BAYESIAN PREDICTION INTERVALS 
The approach we propose is an alternative to the non-parametric 

bootstrap method [8] and the Bayesian approach [14]. It is an 

extension of the Jørgensen and Sjøberg’s technique for calculating 

empirical PIs for both regression-based models [12] and human-

based judgment techniques [11]. Although the proposed 

methodology may be eventually be bootstrapped or included in a 

Markov Chain Monte Carlo simulation framework, in this initial 

stage, we do not consider resampling procedures or simulation 

approaches so as not to complicate the methodology definition. 

Moreover, one of the major aims in this technique was to try to 

find an improved approach in terms of computational cost and 

performance.   

The proposed strategy of estimating PIs is based on removing 

as many regression assumptions as possible and considering a 

sample of relative errors, i.e., a training set composed of relative 

errors, RETR (Figure 1). Since we do not assume that the 

distribution is a Gaussian and the sample is homoscedastic, we 

consider the distribution asymmetric, affected by outliers, and 

with variable spread. Moreover, we assume RE to be x-correlated. 

We estimate Bayesian Prediction Intervals by applying the six 

steps shown below. 

(1) We calculate the non-linear robust regression function of y 

with respect to x, e.g. y would be RE and x would be KSLOC in a 

two-dimensional space [20]. If we consider a multidimensional 

space the non-linear robust regression y has to be calculated with 

respect to a number of independent variables, e.g. x1, x2, …, xN. 

This kind of regression function provides an x-dependent median, 

minimizing the Minkowski R-distance (R = 1). It is called robust 

regression because it is less sensitive to outliers and asymmetric 

distributions. 

(2) To deal with the heteroscedasticity issue, we estimate the 

x-dependent variance empirically. The strategy is based on turning 

the problem into a two-class discrimination problem. In particular, 

we use the x-dependent median calculated above (y) for splitting 

the sample into two classes; class A (the space above the x-

dependent median) and class B (the space below the x-dependent 

median). We use observed elements of classes A and B as 

representatives of the unobserved data points of each class. 

(3) Then, we train a Multi-layer Feed-Forward Neural 

Network for Discrimination (MLFFNND) so that its output 

provides a classification decision, i.e. a new data point is 

classified as belonging to A or B according to its similarity to the 

data used for training. Therefore, our “a priori” information tells 

us how far a point is above or below the x-dependent median 

(binomial choice). 

Figure 2. Posterior probability density obtained by fixing 

KSLOC and letting RE vary. Dotted and dashed lines 

represent posterior probability functions with an increasing 

variance. 

 

We call this MLFFNND a Bayesian Discrimination Function 

(BDF) because its output can be interpreted as the posterior 

probability that any input belongs to class A [3]. Any input is 

classified as belonging to class A, if the BDF output is between 

[0.5, 1], e.g. 0.85. It is classified as belonging to class B 

otherwise, i.e. the BDF output is in [0,0.5[, e.g. 0.25, where [.,.] is 

a closed interval and [.,.[ is a right-open interval. 

Actually, we are not interested in classifying our new 

observations. Our aim is to use the BDF for inference (the inverse 

problem). Making inference by the BDF in Figure 2 means 

selecting the interval (MeDOWN, MeUP) on the x-axis 

corresponding to the two fixed confidence limits (e.g. [0.025, 

0.975]). Note that, the BDF performs a similarity analysis 

between the characteristics of the project being estimated and the 

observed projects upon which we built the BDF. 



The defined BDF in Figure 2 is expressed by the following 

relationship, fBDF(x1 = RE, x2=KSLOC) = [0,1], i.e. y = fBDF(x1, 

x2) = Pr(y=1|x1, x2), where [0, 1] points out any real number in 

[0,1] (e.g. the posterior probability), x1 and x2 represent the 

sample information, and y=1 represents class A (y=0 represents 

class B). Assume that, the BDF yields fBDF(P1) = 0.85 and fBDF(P2) 

= 0.25. Then, project P1 is classified as belonging to class A, 

because fBDF(P1) ≥ 0.5 and project P2 is classified as belonging to 

class B because fBDF(P2) < 0.5. 

Assume now that instead of fixing both values x1 = RE and 

x2=KSLOC, we fix only x2 (= constant c), and let x1 vary. Then, 

BDF turns into )x(y)x(f)x|1y(Pr 11cx|2x 21
=== = . Note that, in 

the case of an N-dimensional space (with N > 1), we fix all 

variables except x1 (the relative error RE), i.e. 

)x(y)x(f)x..x|1y(Pr 11cx,...,cx|N2x 1NN121
===

−==  where the 

variables (x2 … xN) are the same as the independent variables of 

the estimation model. 

(4) Once we build the posterior probability density (solid line 

in Figure 2), we can obtain a Bayesian PI by fixing a 95% 

confidence level, i.e. (0.025, 0.975), and picking the 

corresponding values of RE on the x-axis, i.e. (MeDOWN, MeUP). 

This interval represents the expected range where the next RE will 

fall. The posterior probability density in Figure 2 has an important 

characteristic. Its slope gets steeper as the variance decreases; it 

gets flatter as the variance increases [9]. Therefore, the increasing 

variance of the relative error with respect to the independent 

variables of the model has a geometric representation. It 

corresponds to the flatter slope of the sigmoid curves in Figure 2, 

e.g. the variance corresponding to the dotted line is lower than the 

variance corresponding to the dashed line. Therefore, the 

proposed strategy based on the BDF is able to evaluate the 

variance (calculating the RE range) from the slope of the posterior 

probability density function empirically. This approach is quite 

different from estimating the variance by resampling procedures 

such as bootstrap. See [9, pp. 20-24] for additional explanations. 

(5) To calculate the estimation PI (e.g. the effort) for the RE 

range, i.e. (MeDOWN, MeUP), we first consider the formula RE = 

(Actual − Estimated)/Actual and then, we deduce Actual = 

Estimated/(1 − RE).  

As shown by Jørgensen et al. [11], the PI is 

)]Me1/(O),Me1/(O[ UP
1N

estDOWN
1N

est −− ++
, where 

)b,'x(fO R
1N

est =+
, e.g. fR(x’ = 0.7,b). For instance, assuming that 

the RE interval obtained from Figure 2 is [-0.9, 0.1] and 

Estimated effort = 3 person months, the PI is [3/(1-(-0.9)), 3/(1-

0.1)] =[1.6, 3.4] person months. 

Although the proposed prediction interval shown in Figure 2, 

i.e. (MeDOWN, MeUP), has been derived empirically without 

making any specific assumptions, it actually represents an 

underestimate of the actual uncertainty. That is because the BDF 

was derived from the principle of maximum likelihood estimate 

(MLE) that considers only the most probable parameter set. We 

have to consider the uncertainty over the unknown parameters of 

the BDF, as well. To correct this underestimation, MacKey 

proposes to apply the Bayesian framework to classification 

problems. In our view, however, his approach is too 

computationally cumbersome and based on too many 

approximations and assumptions (e.g. normality). Another 

approach to correct the underestimation can be to apply Markov 

Chain Monte Carlo (MCMC) simulation, which avoids the 

Gaussian approximations, but is also computationally expensive 

and its reliability depends on the simulation assumptions. 

(6) To avoid the problem of too high a computational cost 

without any promise of getting better results, we prefer estimating 

this additional uncertainty through the generalization error 

provided by cross-validation (leave-one-out or K-fold). This 

procedure is more convenient because the cross-validation 

procedure has to be performed anyway when selecting the 

classification model and it has a comparable computational cost 

with respect to the bootstrap or MCMC procedures. Therefore, the 

proposed procedure would be more convenient from a practical 

point of view avoiding any specific assumptions.  

Figure 3. Posterior probability density (solid line) obtained by 

fixing KSLOC and letting RE vary with supplementary 

uncertainty due to the error in calculating the model 

parameters. 

 

Since the leave-one-out cross-validation (LOOCV) score is 

calculated by the SQRT(MSE), which is an unbiased estimator of 

the generalization error of the BDF, we use this quantity as a 

correction factor. Instead of using LOOCV, we may apply K-fold 

CV, as well. However, its score would not be an unbiased 

estimator of the generalization error even though it would be more 

realistic than the score obtained by leaving out only one data 

point. We sum and subtract the LOOCV score to the posterior 

probability density function (solid line in Figure 2), obtaining the  

two outer dashed lines in Figure 3. In particular, the upper dashed 

line is )MSE(SQRT)x(f 1cx| 2
+=  and the lower dashed line is 

)MSE(SQRT)x(f 1cx| 2
−= . The band included within the two 

dashed lines represents the overall uncertainty due to the variation 

in the BDF parameters. The upper and lower shifts determine an 

increase to the magnitude of the prediction interval (MeDOWN, 

MeUP) due to the supplementary uncertainty. 

The final prediction interval can be derived by fixing the 95% 

confidence as above, i.e. (0.025, 0.975), and selecting the 

corresponding values of RE on the x-axis. In particular, MeDOWN 

is calculated by the crossing point between the 0.025-horizontal 

line and the upper dashed line. The MeUP is calculated at the 

crossing point between the 0.975-horizontal line and the lower 

dashed line.  



6. INVARIANT COMPARISON 

CRITERION 
In this research, we propose a model selection criterion, which 

uses uncertainty instead of accuracy. The aim is to make more 

informed decisions about which model is best with respect to the 

project being estimated. We argue that the best model is the least 

risky one. Therefore, unlike traditional approaches, we take into 

account any regression model violation, assumption error, and 

scope error. As explained in Section 4, the approaches applied so 

far quantify uncertainty using traditional Prediction Intervals (i.e., 

based upon the frequentist paradigm). However, the authors have 

recently showed that traditional approaches for calculating 

prediction intervals cannot be effectively used to achieve this goal 

[20] because the magnitude that they provide is too wide to be of 

any utility. Moreover, traditional approaches do not take into 

account either regression violations or assumption and scope 

errors, while real world phenomena hardly ever satisfy regression 

assumptions and estimates often display scope and assumption 

errors. 

The strategy consists of using Bayesian Discrimination 

Functions (BDF) as explained in Section 6 for each considered 

estimation model/method being compared. The BDF is actually an 

“intelligent” function that is built upon the (relative) errors 

coming from the use of the estimation model over a sample set of 

observations. Based on the approach proposed by Jørgensen and 

Sjøberg [11], once we get an Error Bayesian Prediction Interval, 

we can turn it into an Estimate Bayesian Prediction Interval, as 

explained in Section 5. Note that, Error Bayesian Prediction 

Intervals and Estimate Bayesian Prediction Intervals are 

completely interchangeable hence they can both be used for 

comparison. We explain why in the following paragraph. 

As specified above, for comparison purposes, we can use 

either Error Prediction Intervals (i.e. [REDOWN, REUP]) or 

Estimate Prediction Intervals (i.e. [ActDOWN, ActUP]) because the 

magnitude of Error Prediction Intervals keeps proportionally 

constant with respect to the magnitude of Estimate Prediction 

Intervals, and vice versa. Usually, when dealing with numbers, we 

prefer using Error Prediction Intervals because of their smaller 

magnitudes. Nevertheless, because relative errors can be negative 

values, when not dealing with the numbers but concepts, we 

prefer to use Estimate Prediction Intervals because they seem to 

be easier and quicker to grasp. Therefore, our conceptual 

explanation will be given by considering Estimate Prediction 

Intervals (all of the quantities are positive), while the case study 

will be set up based upon a (Relative) Error Prediction Interval 

(quantities can be negative as well). 

Figure 4. Bayesian Prediction Interval-based comparison of 

estimation models. 

 

Based on Figure 4, if we compare only two estimation models, 

EM1 and EM2 (e.g., EM1 = Machine learning and EM2 = 

COCOMO II), we have to build two different BDFs, i.e. BDF1 

and BDF2. 

Applying the technology defined in Sarcia et al. [20] has the 

benefit of using the Bayesian approach, which allows shrinking 

the magnitude of the prediction intervals, making them more 

attractive and useful than the traditional prediction intervals. 

Through BDFs, we get Bayesian Prediction Intervals, which 

have the capability of dealing with the consequences of regression 

violations and displaying the scope error. A scope error is 

highlighted when the BDF, fed with values of the project being 

estimated, does not provide any BPI. 

Once we know that an estimation model provides a scope error 

on project P (i.e. observations used for calibrating the model are 

so different from project P that the model may have unexpected 

behaviors), we should decide whether or not to use such a model 

for prediction. Nevertheless, we suggest discarding all of the 

models showing a scope error and keeping the ones that provide 

acceptable intervals. If none of the models provide valid intervals, 

we suggest considering further models. 

The comparison brought out in Figure 4 is not complete. 

Before making a decision whether model EM1 is better/worse 

than EM2, we have to take into account the assumption error, as 

well. Assumption error is about whether we are sure about the 

actual values of project P being estimated. In other words, there 

are different possible values representing project P that we should 

consider. For instance, we may have C possible inputs for project 

P, i.e., I = )I,...,I,I( C21  each having its own probability to occur 

)IPr(),...,IPr(),IPr( C21 . If we do not know those probabilities, the 

uncertainty is on its maximum, i.e., 

C/1)IPr(...)IPr()IPr( C21 ==== . For instance, uncertainty may 

be about the project size or the project complexity. If there is not 

uncertainty about the project characteristics, there is no 

assumption error and I is composed of only one set. In that case, 

comparison in Figure 4 would be complete. 

To explain the way of dealing with the assumption error, 

consider the example in Figure 5. 

Figure 5. Calculating the Ultimate Bayesian Prediction 

Interval (UBPI) for project P being estimated. Project P has 

three possible input sets (I1, I2, and I3) each having probability 

of 0.33. Note that, magnitude of the UBPI cannot be shorter 

than the magnitude of each individual BPI.  

 

The overall uncertainty in the case of an assumption error is the 

union of all of the individual Bayesian Prediction Intervals. We 

call this union as Ultimate Bayesian Prediction Interval (UBPI). 

The output of applying the strategy in Figure 5 is then UBPIP, i.e. 

the UBPI on project P. It has to be calculated for each Estimation 



Model/Bayesian Discrimination Function. For instance, if we 

have only two estimation models to compare as in Figure 4, we 

get two different Ultimate BPIs on project P, say UBPI1P and 

UBPI2P corresponding to model 1 (EM1) and model 2 (EM2), 

respectively. 

Going back to Figure 4, we can now perform the comparison 

between models EM1 and EM2 (Figure 6). 

Figure 6. Ultimate Bayesian Prediction Interval-based 

comparison of two estimation models EM1 and EM2. The 

comparison is made through values of project P 

 

The result of the comparison is that, the best model is the one that 

shows the shortest Ultimate Bayesian Prediction Interval 

magnitude, i.e., UBPI1P in Figure 6. Therefore, we consider the 

best model to be the least risky model among those considered 

(i.e., showing the least uncertainty in estimating project P). Note 

that, if we had more than two models, the strategy in Figure 6 

would not change. 

If we used the Error Bayesian Prediction Interval instead of the 

Estimate Bayesian Prediction Intervals, where negative values of 

errors may occur, we should calculate the absolute value to obtain 

the magnitude. 

7. THE CASE STUDY 
In this section, we apply the strategy presented in Section 6 to the 

NASA COCOMO data set [19] by comparing different models 

having different features and shapes from each other. For the 

reasons stated in Section 6, the comparison is performed by an 

Error Bayesian Prediction Interval instead of an Estimate 

Bayesian Prediction Interval.   The analysis presented in this 

section aims at demonstrating the application of the proposed 

approach using real data.  

Consider the situation where NASA is the learning 

organization [1] using measurement [2] and, from 1971 to 1987, 

they developed 8 projects, e.g., Hubble Space Telescope, 

involving 93 software systems. We start with our analysis at the 

beginning of 1985, when NASA has already developed 77 

software systems so their experience is based upon those 77 

software systems, which we will use as the basis for building our 

estimation models. NASA’s goal is to figure out which model is 

best for estimating the effort of the 16 next software systems 

(from 1985 to 1987). Since we actually know the data from these 

16 software systems, we can use them as a test set for evaluating 

the proposed comparison strategy over 16 cases. 

The data set [19] is composed of 93 project instances. Each 

instance is described by 24 attributes (Table 1). In particular, 

“Size”, 15 COCOMO-I multipliers, “Effort”, and 7 attributes 

describing further characteristics of the NASA software system 

(project ID, project name, category of application, flight/ground 

system, NASA center, “YEAR” finished, and development mode). 

Note that, “Effort” is measured by calendar months of 152 hours, 

including development and management hours [4]. 

Based upon data from the 77 software systems, our case study 

consists of calibrating 4 different models and comparing them to 

each other through both the traditional criterion and the one we 

propose in this research (uncertainty). Conclusions enacted from 

this case study offer some new insights into the projects 

developed at NASA and show that using uncertainty as an 

invariant model comparison criterion can be a useful approach for 

making more informed decisions and increasing the prediction 

capabilities of mature organizations. 

Table 1: Data Set Description. 

 
 

Models that we consider are the following: 

- Lin: linear regression function, i.e. Effort = Lin(Size, 15 

COCOMO-I Variables); 

- LinMode: linear regression function with the categorical 

variable Mode, i.e. Effort = LinMode(Size, 15 COCOMO-I 

Variables, Mode); 

- LogLin: log-linear regression function, i.e. Effort = 

LogLin(Size, 15 COCOMO-I Variables); 

- LogLinMode: log-linear regression function with the 

categorical variable Mode, i.e. Effort = LogLinMode(Size, 15 

COCOMO-I Variables, Mode). 

Note that, the right way of coding categorical values is to use 

dummy (dichotomous) variables. If we have C categorical values, 

we create (C – 1) dichotomous variables, i.e. the variable can have 

values 0 or 1. Since “Mode” has three categories 

(“Semidetached”, “Embedded”, “Organic”), we included two 

dummy variables (D1, D2) in both LinMode and LogLinMode and 

coded the categories as follows, “Semidetached” became {D1 = 0, 

D2 = 1}, “Embedded” became {D1 = 1, D2 = 0}, “Organic” 

became {D1 = 0, D2 = 0}. Therefore, the categorical variable 

Mode was represented by a couple of dummy variables. 

We only used the attribute “YEAR” to split up projects, i.e. 

the first set (before 1985) was composed of 77 software systems, 

and the second set (after 1984) was composed of 16 software 

systems. 

To focus the goal of our study, we defined a GQM template: 

Analyze the uncertainty of regression models for the purpose of 

comparison with respect to the magnitude of Error Bayesian 

Prediction Intervals from the point of view of the project managers 

in the context of NASA’s projects. 



8. RESULTS 
Before presenting the results, we show that the BDF-based 

technique [20] provides more useful Prediction Intervals than the 

traditional approach. In particular, Error Bayesian Prediction 

Intervals (ErBPIs) are much shorter than the traditional ones. Of 

course, it would be the same if we used Estimate Bayesian 

Prediction Intervals (EsBPIs).  To this aim, we only considered 

the function Lin and calibrated the BDF by applying the BDF-

based procedure [20]. Then, we fed each element in the test set 

(16 data points) into the BDF and obtained 16 ErBPIs. 

Consequently, we turned the ErBPIs into the EsBPIs (unfilled 

rectangles in Figure 7) applying the procedure explained in 

Section 6. We also calculated Prediction Intervals by the tradition 

approach (filled rectangle in Figure 7). Since the traditional 

approach provided negative values for the lower limit of the 

rectangles in Figure 7, we decided to put the lower limit of these 

rectangles to zero. 

Figure 7. Comparison of magnitudes between Bayesian 

Prediction Intervals (filled) and the Traditional ones (unfilled). 

 

The y axis of the diagram in Figure 7 represents the effort and 

the x-axis expresses the software system belonging to the test set. 

The number shown below the x-axis in Figure 7 is the ID assigned 

in the original data set from NASA [19]. An “X” stands for actual 

effort and a “–” stands for estimated effort. Apart from the 

projects on which function Lin provides negative effort values 

(i.e., ID = 36, 39, and 37) where the analysis makes no sense, the 

Bayesian approach provides shorter prediction intervals in terms 

of magnitude than the traditional one for all of the cases. With 

respect to project 52, however, the interval does not include the 

actual RE meaning that occasionally the interval may be biased. 

Based on data in Figure 8, a valuable result is that the proposed 

approach is a valid alternative to the traditional methodology for 

shrinking the estimate prediction intervals. It makes possible 

using uncertainty for comparison purposes. 

To carry out a comparison among the four considered 

estimation models, we first calculated the BDF for each model. 

Then, we fed the test set (remaining 16 software systems) into 

each BDF and obtained 16 Error Bayesian Prediction Intervals for 

each estimation model (Figures 8, 9, 10, and 11) . Unlike Figure 

7, we did not turn ErBPIs into EsBPIs, but used the magnitude of 

the ErBPIs for comparing the models.  

With respect to Figure 8, 9, 10, and 11, the y-axis is the 

relative error (RE) and in the x-axis there are the 16 software 

systems belonging to the test set. ErBPIs are represented as 

vertical segments. Crossed circles represent the expected 

estimation relative error (median) for the test set. “EXT” refers to 

the fact that, the ErBPI does not include the median of the relative 

error. Therefore, as we explained in Section 6, it may signal a 

possible scope error. Moreover, we used a circle at the top of each 

diagram to indicate that the magnitude of the related Bayesian 

Prediction Interval exceeded the value of 0.30, assumed as an 

acceptable error magnitude. We used a square to indicate an error 

magnitude exceeding the value of 0.30, assumed as an 

unacceptable error magnitude. The limit of 0.30 plays the same 

role of H in the indicator PRED(H) = X. In other words, we may 

also consider the percentage of the number of circles (success) 

with respect to the overall number of elements in the test set as an 

overall uncertainty measure. 

For instance, in Figure 8 (model Lin), the Bayesian Prediction 

Interval PRED (BPI_PRED) would be BPI_PRED(0.30) = 8/16 = 

50%. Of course, 50% is not a good result, showing that the linear 

model does not perform very well. With respect to Figure 8, we 

have projects 26 and 24 on which a scope error may occur. Note 

that, as with PRED(0.25) and PRED(0.20), we can also consider a 

BPI_PRED(0.25) or even a BPI_PRED(0.20), respectively. 

Figure 8. Error Bayesian Prediction intervals for the model 

Lin. 

 

With respect to Figure 9 (model LinMode), we can see that 

adding the categorical variable Mode did not shrink the intervals, 

but they even increased in magnitude.  BPI_PRED(0.30) = 6/16 = 

37.5%, therefore we concluded that LinMode performed worse 

than Lin in terms of uncertainty. LinMode showed 6 projects in 

which a scope error may occur, as well. 

Figure 9. Error Bayesian Prediction intervals for the model 

LinMode. 

 

With respect to Figure 10 (LogLin), we can see that the 

logarithmic transformation definitely improved the model. In fact, 

BPI_PRED(0.30) = 12/16 = 75% with only one “EXT” on project 



38. Result in Figure 10 was expected somehow, because we know 

that a geometric function correctly describes the relationships 

between Effort and COCOMO variables. 

Figure 10. Error Bayesian Prediction intervals for the model 

LogLin. 

 

With respect to Figure 11 (LogLinMode), we included the 

categorical variable Mode in the logarithmic model. Unlike Figure 

9, where the variable Mode made the model worse, in this case we 

got an improvement in terms of uncertainty, i.e., the ErBPIs 

shrank. In fact, BPI_PRED(0.30) = 16/16 = 100% without “EXT” 

points. 

Figure 11. Error Bayesian Prediction intervals for the model 

LogLinMode. 

 

 

From the accuracy point of view, however, the situation is 

different. As shown in Table 2, the LogLin, model is slightly more 

accurate than the LogLinMode model.. 

Table 2: Comparing the models with respect to accuracy. 

 
 

This is a very interesting situation because, based on the proposed 

analysis, we show that before selecting a model as best we should 

take into account uncertainty, as well. In particular, our analysis 

says that NASA should use LogLinMode if they care about 

uncertainty, while NASA should use LogLin if they care about 

accuracy. 

The comparison criterion that we presented in Section 6 refers 

to comparing the models over each project being estimated (16 

data points). Therefore, we have to make a decision as to whether 

or not to select a specific estimation model for prediction based 

upon its uncertainty with respect to the project being estimated. 

To this end, Table 3 shows the results of comparing, project by 

project, the four models under study. 

Table 3: Comparing, project by project, the models with 

respect to uncertainty. 

 
 

In particular, the filled rectangles including bold figures show the 

smallest magnitude among the models. Therefore, we concluded 

that, from a practical point of view, based upon the comparison 

criterion defined in this work, the best model was LogLinMode on 

projects 33, 30, 39, 34, 13, 37, 35, 24, 52, 21, 23, 25, 22. With 

respect to projects 26 and 40 the best (least risky) model was 

LogLin. With respect to project 30 the best model was either 

LogLin or LogLinMode.  

9. CONCLUSION 
The uncertainty analysis presented in this work has an important 

implication for software organizations and practitioners in terms 

of model comparisons. Analyses presented in this work show that, 

one estimation model can be more accurate than another, even 

though the former may be more risky than the latter. Unlike 

traditional approaches, the criterion presented in this paper is 

invariant with respect to the error measures and indicators for 

making the comparison.  

Before claiming that one model is “better” than another, 

however, an organization should specify the nature of the 

comparison and the context in which the comparison is made. For 

instance, one should say that one model is better than another in 

terms of accuracy (or in terms of uncertainty/risk) and select the 

one that is more appropriate with respect to organization’s goals. 

Nevertheless, accuracy criteria are not invariant. In the example 

shown above, an organization aiming at accuracy should select the 

log-linear model without categories (LogLin). An organization 

aiming at shrinking the uncertainty should select the log-linear 

model with categories (LogLinMode). It is worth noting that, 

some authors [15], [11], however, argue that providing one-point 

estimates (i.e. aiming at accuracy) is ineffective and even 

misleading. The authors believe that organizations should aim at 

uncertainty, i.e., estimates should always be provided in terms of 

prediction intervals (two-point estimates) because two-point 

estimates are more realistic and useful for software organizations. 

Based on the uncertainty analysis, before predicting a new 

project, we should consider different models as stated above and 

select the one that provides the least risk. Once the most accurate 

and least risky model has been selected among those considered, 

we can use the model to predict predicting new projects and 

continue to evolve the model to find the best model repeatedly. 
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