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ABSTRACT
Outliers have been a constant source of problems in the anal-
ysis of Empirical Software Engineering data. In some cases,
outliers are due to corrupted data, while they may be the
result of highly unlikely circumstances in others. In either
case, outliers may unduly greatly bias data analysis, as is the
case with Ordinary Least Squares (OLS) regression. Robust
data analysis techniques have been proposed to address this
problem. In this paper, we describe an existing robust linear
regression technique based on the Least Median of Squares
(LMS) and provide a statistical significance test for the as-
sociations obtained with it. We also apply LMS and OLS
regression to real-life, publicly available Empirical Software
Engineering data sets, to compare the results obtained and
investigate commonalities and differences between LMS and
OLS from a practical point of view.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, product metrics

General Terms
Measurement, Application

Keywords
Robust regression, Data analysis, Outliers, Statistical sig-
nificance, Effort prediction, Defect prediction

1. INTRODUCTION
In a data set, data points are hardly ever located in a nice
way that allows data analyzers to build a regression line in
a straightforward and easy way. The presence of outliers
is a common problem that arises when analyzing real data.
An outlier is a data point that lies far from the bulk of the
data points and which may overly and unduly influence the
regression model. For instance, take the data set shown in
Figure 1 (taken from [5]). It is clear that all points but one
(point A) are located on a straight line. Point A is so far
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Figure 1: Overinfluential outlier.

from the rest of the data points that is manages to irre-
sistibly attract the Ordinary Least Square (OLS) regression
line, which is shown in the figure. That singular data point
may be corrupted, due to some specific conditions that may
be highly unlikely to occur, or just due to a statistical fluc-
tuation. This regression line has a lower explanatory value
than the straight line that goes through all the other points.
We are sacrificing understanding the linear relation among
all data points but one because of only one data point.

In this paper, we use a specific kind of so-called robust re-
gression, whose goal is to produce linear models that are not
biased by few overinfluential outliers. This kind of robust
regression, based on the Least Median of Squares (LMS),
was introduced by Rousseeuw and Leroy [5] to this end.
To the best of this author’s knowledge, LMS regression has
only been used in Empirical Software Engineering for the
analysis of data about Web application designs [1]. So, the
first contribution of this paper is to illustrate and discuss
LMS regression (Sections 2, 3, and 4). By illustrating the
characteristics of LMS, we would like to make it simpler
for researchers and practitioners in Empirical Software En-
gineering to evaluate whether LMS regression may be useful
when they carry out data analyses.

When it was introduced [5], LMS regression did not come
with ways for assessing the statistical significance of LMS
regression models. The second contribution of this paper is
to introduce a statistical significance test for LMS regression
models (Section 5). This test is based on less constraining
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assumption than statistical significance tests used in Ordi-
nary Least Squares (OLS) regression, so it can be used to
assess the statistical significance of regression models when
that may not be possible with OLS regression models.

To show the application of LMS regression to real-life data
sets, Section 6 describes the results obtained by using LMS
regression on two data sets belonging to the PROMISE repos-
itory [3], namely “desharnais 1 1” and “qqdefects.” These
results are also compared to the results obtained with OLS
regression. More applications of LMS regression need to be
carried out, and further studies are necessary at the theo-
retical level as well, as outlined in Section 7.

2. LMS REGRESSION
The goal of robust regression techniques is to allow data
analyses not to be overly influenced by few data points. The
robustness of a regression technique can be quantified via
its so-called breakdown point, as follows. Suppose that an
estimator T (Z) is built based on a sample Z of n data points.
Let us study the influence of k out of those n data points,
so let Z′ be any sample of n data points, k of which are
different from those in Z and n − k of which coincide with
n − k data points in Z.

The bias due to the modification of k data points is defined
as the supremum of the deviations computed over all such
Z′, i.e., bias(k, T, Z) = supZ′ |T (Z′) − T (Z)| [5]. The esti-
mator breaks down if its bias is infinite, i.e., k outliers may
cause an arbitrarily large difference between the estimator
computed on the Z and the estimator computed on Z′. The
breakdown point of the estimator is the smallest proportion
k/n of modified data points that can make the estimator de-
viate to an arbitrarily large extent. For instance, the sample
mean as an estimator of the expected value of a distribution
and the OLS estimators of the coefficients of an OLS re-
gression model have a breakdown point given by 1/n. This
is the worst behavior possible for an estimator, as the esti-
mator may be led astray even by only one corrupted data
point. To make matters worse, when n becomes arbitrarily
large, this breakdown point becomes arbitrarily small, as it
is 0 in the limiting case when n tends to infinity. Dealing
with outliers requires a much higher breakdown point than
1/n.

Robust estimators have higher breakdown points than tra-
ditional estimators. For instance, the sample median has
a 50% breakdown point. At least 50% of the data must be
corrupted for the sample median to become arbitrarily large.
However, a higher breakdown point may be a problem. For
instance, having a 60% breakdown point would imply that
we can no longer tell the correct data points from the cor-
rupted ones, since the majority of data points are corrupted.

Here, we focus on LMS regression, which is a specific type
of robust regression. For notational convenience, in what
follows, given a dependent variable y and an independent
variable x, {yi} denotes the multiset of sample values ob-
tained for y and {xi} the multiset of corresponding sample
values obtained for x. Also, est = est(x; par) denotes the
estimation of variable y by means of function est(x; par),
which depends on x and is built by means of parameters
here collectively denoted as par. Finally, esti = est(xi; par)

is the estimated value corresponding to xi. The difference
between an actual and an estimated value is called a residual
ri = yi − esti. Note that a multiset of residuals may very
well exist even when {yi} is a set and not a multiset.

LMS regression is based on the minimization of the median
of the squared residuals r2

i = (yi−esti)
2. Its basic idea actu-

ally finds its motivations in the outlier problems that are typ-
ical of OLS regression, which is based on the minimization of
the average of the squared residuals

P
i in1..n(yi − esti)

2/n.
As explained above, the sample mean and the sample me-
dian have very different breakdown points.

For the sake of clarity, since the concept of median is cen-
tral for the research described here, it is necessary to clarify
that we use the so-called low median in this paper, as it is
well known that the median value may not be unique for a
multiset (or even a set) of ordinal values. In a multiset of
ordinal values, we define the low median as the minimum
value such that the total number of occurrences of the ele-
ments greater than the low median is not greater than n/2.
The low median clearly coincides with the median if the
median is unique. For brevity, we use the term “median”
instead of “low median” throughout the paper. Also, we re-
fer to the multiset of values that are not greater than the
low median as the lower half of the multiset, even though,
strictly speaking, this lower “half” may contain more than
n/2 occurrences of the elements.

These are the general ideas underlying LMS regression. How-
ever, for simplicity’s sake, we focus on the following two
special cases for the estimation model in this paper

• constant LMS regression: est = c

• univariate LMS regression: est = a · x + b.

So, we here focus on linear univariate LMS regression mod-
els, since the constant LMS regression case can be seen as
a special case of the more general linear univariate LMS re-
gression models. At any rate, most of our results are appli-
cable to multivariate linear models with an arbitrary num-
ber of independent variables, as as we point out throughout
the paper where appropriate. Also, we are interested in the
constant LMS regression case to introduce a statistical sig-
nificance test for LMS regression models (see Section 5).

It is worth noting that, when using the constant LMS re-
gression model, a new, robust indicator (mLMS) of central
tendency in its own right is defined as the value of parameter
c that minimizes med{(yi − c)2}. As a comparison, it is well
known that the value that minimizes

P
i∈1..n(yi − c)2/n is

the average m =
P

i∈1..n yi/n.

We now define and list a few properties for indicators of
central tendency, which mLMS shares.

1. If min and max denote, respectively, the minimum and
maximum sample values, then min ≤ mLMS ≤ max.

2. Indicator mLMS is a Chisini mean [2]. A function
F (z1, . . . , zn) of n variables leads to a Chisini mean



M if for every choice of the variables < z1, . . . , zn >,
with M = F (z1, . . . , zn), M is the only value such that
M = F (M, ..., M).

3. Indicator mLMS does not depend on the specific index-
ing chosen for the data points in {yi}, i.e., it is truly a
function of the multiset {yi}.

4. Indicator mLMS is a homogeneous function of degree
1, i.e., if mLMS minimizes the median of squares with
data set {yi}, then λ ·mLMS minimizes the median of
squares with data set {λ · yi} for any given value of λ.

5. Suppose that mLMS minimizes the median of squares
with data set {yi} and that one data point yj is re-
placed by another data point y′

j , with y′
j ≥ yj , to ob-

tain a new data set. The value m′
LMS that minimizes

the median of squares with this new data set is such
that m′

LMS ≥ mLMS. Symmetrically, if y′
j ≤ yj , we

have m′
LMS ≤ mLMS .

As for the univariate LMS regression model, we minimize
the median of the squared residuals r2

i = (yi − axi − b)2,
i.e., finding the values of parameters a and b that minimize
med{(yi − axi − b)2}. As a comparison, OLS finds the val-
ues of parameters a and b that minimize the average of the
squared residuals

P
i in1..n(yi−axi−b)2/n (note that this is

perfectly equivalent to minimizing the sum of squared resid-
uals

P
i in1..n(yi − axi − b)2, as is usually said in OLS).

For illustration convenience, we first investigate constant
LMS regression (Section 3) and we then proceed to univari-
ate LMS regression (Section 4).

3. CONSTANT LMS REGRESSION
Here, we show how mLMS can be computed. The final re-
sult is that mLMS is the midpoint of the narrowest interval
that contains at least �n/2� occurrences of data points in
{yi}. For instance, in the data set {yi} of Figure 2, we have
mLMS = 8.5, which is the midpoint of interval [6, 11], which
is the narrowest interval that contains at least �7/2 = 4�
occurrences of data points. Just for comparison’s sake, the
sample mean is m = 8.14 and the sample median is med = 7.

First, mLMS is comprised between the absolute minimum
yMin and the absolute maximum yMax values in {yi}. By
contradiction, suppose that mLMS < yMin and let r̃2

i =
(yi − mLMS)2 be the i-th square residual. We can always
find another value v = mLMS + δ for some δ > 0 such
that, for all i, the square residual r2

i = (yi − v)2 of the i-
th data point computed from v is smaller than the square
residual of the i-th data point computed from mLMS . To
show this, (yi−v)2 < (yi−mLMS)2 can be rewritten as (yi−
mLMS − δ)2 < (yi − mLMS)2, and, through computations,
as 2(yi − mLMS) > δ. Since yi − mLMS > 0 for all i, a
suitable positive value of δ always exist. As r2

i < r̃2
i for

all i, the median of multiset {r2
i } is lower than the median

of multiset {r̃2}, so the value we chose for mLMS does not
actually minimize the median square residual.

We now show how mLMS is computed, by using the data
sample in Figure 2 as an example when needed. Our discus-
sion is based on the following two observations.

1. The median of any multiset can be computed based on
the knowledge of the lower half of the data points (or,
equivalently, the upper half).

2. The median is simply the maximum of the lower half.

To find mLMS , we compute the median of multiset {r̃2
i }

of the square residuals of the yi’s from mLMS (i.e., r̃2
i =

(yi − mLMS)2). Because of observation 2 above, we need
to find the lower half of multiset {r̃2

i }. To build this lower
half, we need to find the appropriate half of multiset {yi},
composed of those yi’s with the lower half of distances to
mLMS (for clarity only, note that this half of multiset {yi}
by no means coincides with the lower half of multiset {yi}).

Let us take any value v ∈ [yMin, yMax] and let us compute
med{(yi − v)2}. To this end, we need to

• compute the square distances of all data points in {yi}
to v;

• order these square distances;

• find a data point yMed(v) such that (yMed(v)−v)2 is
the median of {(yi − v)2}. In general, given a value v,
there might exist more than one data point yMed(v)
such that (yMed(v)− v)2 is the median of {(yi − v)2}.
For illustration purposes only, we assume for the time
being that there exists only one such yMed(v). We
show that this temporary assumption does not really
affect our reasoning in Remark 1 below.

Thus, we need to find all those data points

• that are closer to v than the remaining data points,
since the ordering of square distances is the same as
the ordering of distances;

• whose occurrences are strictly necessary to account for
at least �n/2� occurrences in {yi}.

Given a value v, there always exists an interval I(v) =
[yLow(v), yHigh(v)]

• to which these �n/2� occurrences belong;

• in which no other data points fall;

• such that yLow(v) and yHigh(v) are data points in
{yi}, since, if either yLow(v) or yHigh(v) was removed
from I(v) the resulting interval would contain less than
�n/2� occurrences of data points in {yi}.

For instance, in Figure 2, I(3) = [1, 7].

So, yMed(v) = yLow(v) if |v − yLow(v)| > |v − yHigh(v)|;
yMed(v) = yHigh(v) if |v − yLow(v)| < |v − yHigh(v)|;
either yMed(v) = yLow(v) or yMed(v) = yHigh(v) if |v −
yLow(v)| = |v − yHigh(v)|, i.e., v is the midpoint of I(v).
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Figure 2: Computation of mLMS.

Two cases are possible: 1) v /∈ I(v); 2) v ∈ I(v). For exam-
ple, point 13 in Figure 2, for which the median distance is 7,
computed as the difference between 13 itself and the point
with value 6, does not belong to I(13). Let us now focus
on case 1), to show that such a v cannot be mLMS, and let
us suppose that v > yHigh(v), so yMed(v) = yLow(v) and
the distance of v from yMed(v) is obviously v − yLow(v).
Let us take any value u ∈ I(v). Its maximum distance from
data points in I(v) is yHigh(v) − yLow(v), which happens
when either u = yLow(v) or u = yHigh(v). It is clear that
yHigh(v) − yLow(v) < v − yLow(v), so this shows that all
points in I(v) have a lover maximum distance from �n/2�
occurrences of data points in {yi} than v. So, if I(v) is an
interval for which the chosen value of v is actually mLMS ,
then v ∈ I(v). Now, given one such interval I(v), it is im-
mediate to show that the midpoint (yLow(v)+yHigh(v))/2
is actually the value that minimizes the distance from the
farthest data point in I(v), since it is equidistant from the
extremes of the interval. Thus, mLMS must be one of these
midpoints. There is only a finite number of those inter-
vals, since their left extreme and their right extreme must
be values in {yi}. So, we can actually find mLMS by brute
force, by computing the maximum distance of the points in
each interval I(v) from the midpoint of the interval itself,
and pick the midpoint that minimizes this maximum dis-
tance. For the example of Figure 2, these are the possible
intervals: [1, 7]; [2, 9]; [6, 11]; [7, 21]. Now, the maximum
distance from the midpoint of an interval I(v) is obviously
(yHigh(v) − yLow(v))/2, so mLMS is the midpoint of the
narrowest interval I(v) that contains at least �n/2� occur-
rences of data points in {yi}. In Figure 2, this is interval
[6, 11], so mLMS = 8.5.

Remark 1. Given a value v, there may be more than one in-
terval that contains just enough data points to account for at
least �n/2� occurrences of data points in {yi}. For instance,
this is the case of v = 13.5 for the data set of Figure 2, which
is associated with intervals [6, 11] and [7, 21], since there may
be two possible values for yMed(v), i.e., yMed(v) = 6 and
yMed(v) = 21. However, this does not influence our results,
since mLMS is the midpoint of the narrowest interval I(v)
that contains at least �n/2� occurrences of data points.

Remark 2. “Degenerate” cases may occur, For instance, if
all data points are equidistant, �n/2� intervals exist that
contain at least �n/2� occurrences of data points in {yi}. In
this case, all intervals I(v) have the same width, so, it is not
possible to identify the narrowest one. However, this should
not be a surprise, because “degenerate” cases may exist even
for medians, as more than one median may exist between
the “low” and the “high” median too. Like with medians,
averaging mechanisms may be used for mLMS , but this is
beyond the scope of the paper.

4. UNIVARIATE LMS REGRESSION
We here concisely sketch how to build the univariate LMS
regression line based on the discussion on constant LMS re-
gression of Section 3. The univariate LMS regression line
lies halfway between the two parallel straight lines that are
closest to each other if their distance is measured along the
y axis and are such that at least �n/2� occurrences of data
points lie between or on them.

To show this, suppose that est = a · x + b is the univariate
LMS regression line. Thus, it is the straight line such that
med{(yi − axi − b)2} is minimal. Each single (yi − axi − b)2

may be viewed as the squared distance, measured along the
y-axis, between the actual value yi and the LMS regression
line. We call this type of distance y-distance. Like in Section
3, the value of med{(yi−axi−b)2} is obtained as the largest
value of the squared y-distance of the set of data points that
contain at least �n/2� occurrences of data points and also
contain the occurrences of the data points with the smallest
y-distances to the LMS regression line. These occurrences
of data points will therefore lie in a strip across the LMS
regression line, which is a part of the (x, y) plane delimited
by two parallel lines.

Given two parallel lines, the line that minimizes the maxi-
mum y-distance to any point in the strip between the two
parallel lines is located halfway between the two parallel
lines, and we use Figures 3 and 4 to exemplify our reason-
ing. We use geometrical arguments to characterize these
two parallel lines. Specifically, we show that the narrowest
strip is delimited by two straight lines, one of which goes
through at least one data point and the other goes through
at least two data points. Let sup and inf denote the two
parallel lines that delimit the narrowest strip, and let sup
lie above inf , so, for instance let sup be defined by equation
y = a · x + bsup and inf by equation y = a · x + binf , with
bsup > binf . We begin by showing that sup necessarily goes
through at least one data point A and inf through at least
one data point B. By contradiction, let us suppose that sup
does not go through any data points. This is the case shown
in Figure 3, where the strip delimited by sup and inf (the
two dotted lines in Figure 3) encloses �15/2� = 8 occurrences
of data points. For graphical convenience, the observations
lying outside the strip are represented by ’+’. The observa-
tions lying inside the strip are represented by dots, except
for points A, B, and C, which take some “special” impor-
tance in what follows: point A is represented with an ’o’ and
points B and C are represented with ’x’ for graphical con-
venience. Then, there exists another line sup′ with equation
y = a · x + bsup − δ with δ > 0 such that at least �n/2�
occurrences of data points remain in the strip delimited by
sup′ and inf . For instance, this is the thick dashed line in
Figure 3. In other words, it is always possible to make sup
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Figure 3: Shift of parallel lines.

shift downwards without changing its slope and still leav-
ing at least �n/2� occurrences of data points in the strip.
Line sup may shift downwards until it “hits” one of the data
points. In Figure 3 line sup may shift downwards until it
hits point A, but it cannot shift any lower, because the strip
delimited by sup′ and inf would enclose �14/2� = 7 occur-
rences of data points. Line sup′ is closer to inf , so the strip
delimited by sup′ is closer to inf is narrower than the strip
delimited by sup is closer to inf , in terms of y-distance. The
same kind of reasoning symmetrically applies to inf , which
can shift upwards until it hits point B in Figure 3.

Now, let us show that either sup or inf actually go through
at least two data points, with the aid of Figure 4. Again, by
contradiction, suppose that sup and inf do not go through
two data points. Since sup goes through point A with coor-
dinates (xA, yA) and inf goes through point B with coordi-
nates (xB, yB), as shown by the thick dashed lines in Figure
4, we can write their equations as y = a(x − xA) + yA and
y = a(x− xB) + yB , respectively. The line that lies halfway
between them has equation y = a(x− (xA + xB)/2) + (yA +
yB)/2, shown by line mid in Figure 4. Since point A is on the
border of the strip, A has the greatest y-distance from the
halfway line, so the square of its y-distance from the halfway
line is also the value of med{(yi−axi−b)2}. The y-distance
between A and the halfway line is (yA−yB)/2−a(xA−xB)/2.
That is obviously the same value as the y-distance between
B and the halfway line. Let us assume for now that xA �=
xB , as is the case in Figure 4. This y-distance is a function
of the slope a, so we can always find a value a′ such that the
new y-distance (yA −yB)/2−a′(xA−xB)/2 of points A and
B from the halfway line is lower, i.e., (yA − yB)/2− a(xA −
xB)/2 > (yA − yB)/2 − a′(xA − xB)/2. This happens when
a(xA − xB) < a′(xA − xB). In other words, we can make
sup rotate around point A and inf around point B in such
a way as to “rotate” the halfway line closer (as measured by
the y-distance) to A and B. For instance, the new halfway
line is represented by line mid′ in Figure 4. Thus, we have
a lower value for med{(yi − a′xi − b′)2} than we had for

20 40 60 80 100

40

80

120

160

200

x

x

+

+

+

+

+

+
+

A

B

C

inf

sup'

inf'

sup

mid

mid'

Figure 4: Rotation of parallel lines.

med{(yi − axi − b)2}. We can make both delimiting lines
rotate until either line hits a data point in the strip. In the
example in Figure 4, we can make both lines rotate coun-
terclockwise until line inf ′ hits point C. The lines cannot
rotate any further because otherwise we would end up with
a strip that contains �14/2� = 7 occurrences of data points.

For completeness only, even when xA = xB, we can make
both delimiting lines rotate anyway until either one “hits” a
data point even though this will not change the value of the
y-distance.

Thus, in the univariate LMS regression case, the LMS regres-
sion line lies halfway between the two parallel straight lines
that are closest to each other if their distance is measured
along the y axis and are such that at least �n/2� occurrences
of data points lie between or on them. We can extend this
result to multivariate cases as follows. Given a set of data
points with k independent variables and one dependent vari-
able, the k-dimensional LMS regression linear variety (gen-
eralization of LMS regression line to the k + 1-dimensional
space) lies halfway between a k-dimensional linear variety
that goes through at least k + 1 data points and a paral-
lel k-dimensional linear variety that goes through at least 1
data point. At any rate, we only take into account constant
and univariate LMS regression here, so the multidimensional
case will no longer be investigated in this paper.

5. STATISTICAL SIGNIFICANCE
Statistical regression techniques are usually used in conjunc-
tion with tests for evaluating the statistical significance of
various properties of the regression curve. For instance, in
OLS, tests are available for the statistical significance of the
estimated values for the coefficients of the regression straight
line and the estimated degree of correlation R2. When it was
proposed, LMS regression did not come with any statistical
significance tests, so its results could be used as an indi-
cation of a central tendency of the regression line, but no
further assessment could be made.



Here, we introduce a test for the statistical significance of
an indicator of the degree of correlation R2

LMS , which is the
counterpart of R2 used in OLS (which we denote R2

OLS in
what follows). We explain the rationale behind R2

LMS by
comparing it to the way R2

OLS is built. So, we first provide
a discussion of the way R2

OLS is built (Section 5.1) and then
we introduce R2

LMS (Section 5.2). We introduce statistical
inference for LMS regression in Section 5.3.

5.1 A Discussion on R2
OLS

R2
OLS is the instantiation for OLS of the more general indi-

cator R2
GL, where “GL” stands for Generalized Linear

R2
GL = 1 −

P
i∈1..n(yi − axi − b)2P

i∈1..n(yi − ȳ)2
=

1 −
P

i∈1..n(yi−axi−b)2

n
P

i∈1..n(yi−ȳ)2

n

= (1)

1 −
P

i∈1..n(yi−axi−b)2

n−1
P

i∈1..n(yi−ȳ)2

n−1

(2)

where ȳ is the sample mean of the {yi} data set and a and b
are estimated via some estimation procedure, not necessar-
ily OLS. Thus, R2

GL provides an indication of the change in
the average square residual that the linear univariate model
est = ax + b provides over the simpler constant regres-
sion model y = ȳ. For instance, R2

GL = 0 if and only if
P

i∈1..n(yi−axi−b)2

n
=

P
i∈1..n(yi−ȳ)2

n
, i.e., the two-parameter

model est = ax − b gives the same average squared residual
as the single parameter model y = ȳ. Note that there exist
values for a and b such that R2

GL < 0. For instance, take

a = 0 and b �= ȳ. Since ȳ actually minimizes
P

i∈1..n(yi−b)2

n
,

we have
P

i∈1..n(yi−b)2

n
>

P
i∈1..n(yi−ȳ)2

n
, so R2

GL < 0. Be-

cause of the continuity of R2
GLwith respect to a, we can even

find an infinity of values a �= 0 such that R2
GL < 0. Since

one of the desirable properties of R2
GL is to be nonnegative,

this shows that R2
GL cannot really be used with all kinds of

linear regression. Specifically, R2
GL cannot be used with a

and b estimated via LMS regression.

However, R2
GL can be safely used in conjunction with OLS

regression, since it can be shown that
P

i∈1..n(yi−axi−b)2

n
≤

P
i∈1..n(yi−ȳ)2

n
when a and b are estimated with OLS. Note

that, in Formula (1), we purposely wrote
P

i∈1..n(yi−axi−b)2

n

as the numerator and
P

i∈1..n(yi−ȳ)2

n
as the denominator, in-

stead of the more commonly used sums
P

i∈1..n(yi−axi−b)2

and
P

i∈1..n(yi − ȳ)2. The reason is that Formula (1) shows

that R2
GL is based on the ratio between two averages, and

these averages are the expressions that OLS minimizes. In
addition, Formula (2) shows that R2

GL can also be com-
puted based on the ratio between two unbiased estimators:
P

i∈1..n(yi−axi−b)2

n−1
is the estimator of the variance of the

estimation error yi − axi − b and
P

i∈1..n(yi−ȳ)2

n−1
is the esti-

mator of the variance of {yi}. The value of R2
OLS can be

interpreted as the fraction of the variance of the dependent
variable of the sample data that cannot be explained by the
OLS regression model.

Now, to make inferences with OLS, the following two as-
sumptions need to be satisfied

• the true regression line is linear;

• the values of y for any given x are independent and
identically normally distributed with mean αx−β and
variance σ2

e .

Under these conditions, it can be shown that R2
OLS is an

unbiased estimator of the true value ρ2
OLS =

σ2
xy

σ2
xσ2

y
= 1− σ2

e
σ2

x
,

where σ2
xy is the true value of the covariance of x and y, and

σ2
x and σ2

y are the true values of the variances of x and y,
respectively. The value of ρ2

OLS can be interpreted as the
fraction of the true variance of the dependent variable that
cannot be explained by the OLS regression model.

Also, it can be shown that the true value of coefficient α is
σxy

σ2
x

, of which the OLS estimator a =
P

i∈1..n(yi−axi−b)2
P

i∈1..n(yi−ȳ)2
is

an unbiased estimator.

It can also be shown that the sample random variable

t =

s
n − 2

1 − R2
OLS

ROLS

a
(a − α)

has a Student’s t distribution with n−2 degrees of freedom.
This sample random variable can be used to test null hy-
potheses of the kind H0 : α = α0, where α0 is a specified
value for α. Now, suppose we want to test the following null
hypothesis H0 : ρOLS = 0. If ρOLS = 0, then α = 0, so we

can use the sample random variable t =
q

n−2
1−R2

OLS
ROLS to

test this null hypothesis. Thus, the same statistic can be
used to test this specific hypothesis on ρOLS.

5.2 Introducing R2
LMS

Much in the same way as LMS regression is introduced in
comparison to OLS regression, we here define R2

LMS as fol-
lows

R2
LMS = 1 − medi∈1..n{|yi − axi − b|}

medi∈1..n{|yi − ȳLMS |}

where ȳLMS is mLMS for the {yi} data set. Thus, we have

replaced the average square residuals
P

i∈1..n(yi−axi−b)2

n
and

P
i∈1..n(yi−ȳ)2

n
of Formula (1) medi∈1..n{|yi − axi − b|} and

medi∈1..n{|yi − ȳLMS |}, which are with their counterparts
minimized in LMS regression. Note that using the median
absolute residuals instead of the median square residuals
medi∈1..n{(yi − axi − b)2} and medi∈1..n{(yi − ȳLMS)2} is
mostly a matter of taste, as it does not change the meaning
of R2

LMS , nor the statistical significance tests that can be
used, as we show later. For completeness, we also use

S2
LMS = 1 − medi∈1..n{(yi − axi − b)2}

medi∈1..n{(yi − ȳLMS)2} (3)

which we introduced in [1].



20 40 60 80 100

40

80

120

160

200

x

x

+

+

+

+

+

+
+

A

B

C

Constant LMS

Univariate LMS

Figure 5: Constant vs. univariate LMS regression.

Note that a correlation indicator, R2
RR is defined by Rousseeuw

and Leroy [5] as

R2
RR = 1 − (

medi∈1..N{|ri|}
mad(y)

)2 (4)

where mad(y) = medi∈1..N{|yi − medj∈1..N{|yj |}|} is the
median absolute deviation from the median. R2

RR shows
the improvement that a LMS regression model provides over
predicting the value of y for each data point with a constant
value: the median of y. R2

RR ranges between 0 (there is
no improvement) to 1 (the LMS regression model explains
all uncertainty in the data set). However, R2

LMS shows the
improvement that an LMS regression model provides over
predicting the value of y for each data point simply as the
mLMS of {yi}, i.e., a simpler linear LMS regression model
that has only the intercept but no independent variable.
This is more similar to OLS analysis, in which R2

OLS actu-
ally quantifies the improvement that an OLS model provides
in explaining the uncertainty (i.e., the variance) of the de-
pendent variable over a simpler model that predicts that the
value of the dependent variable in each data point is given by
the mean of y. It can be shown that R2

RR ≥ S2
LMS ≥ R2

LMS ,
i.e., R2

RR shows a greater improvement than R2
LMS , because

R2
RR quantifies the improvement of using a linear LMS re-

gression model over using the median (which does not min-
imize the median of the residuals), while R2

LMS quantifies
the improvement of using an LMS regression linear model
over using mLMS (which does minimize the median of the
residuals).

5.3 Statistical Inference for LMS Regression
To make inferences with LMS regression, we introduce the
following two assumptions that need to be satisfied

• the true regression line is linear;

• the values of y for any given x are independent and
identically distributed.

So, we remove one condition—normality of the distribution
of the residuals—that is an assumption used in OLS.

Statistical inference on R2
LMS and a can be carried out by us-

ing distribution-free, nonparametric tests, as follows. First,
like in the OLS case, ρ2

LMS = 0 (where ρ2
LMS is the true

value of R2
LMS implies α = 0 (where α is the true value

of a) and vice versa. Also, if α = 0, then the true LMS
regression line is est = β, i.e., the constant LMS regres-
sion line. So, the null hypothesis H0 : α = 0 for LMS
regression implies that the distribution of absolute residu-
als is the one obtained with constant LMS regression. This
also implies that the median of the distribution of abso-
lute residuals obtained with constant LMS regression is the
same as the median the distribution of absolute residuals
obtained with univariate LMS regression. Therefore, we can
use distribution-free, nonparametric statistical tests to this
end. Specifically, we here use Fisher’s sign test [4] with the
variable Zi = |ri,ULMS | − |ri,CLMS | where |ri,CLMS | is the
absolute value of the residual of the i-th observation with
constant LMS regression and |ri,ULMS | is the absolute value
of the residual of the i-th observation with univariate LMS
regression. For instance, in Figure 5, the horizontal, dashed
line represents the constant LMS regression line for the ex-
ample used in Section 4 and the other straight like represents
the univariate LMS regression line. The two sets of sample
absolute residuals are obtained by taking the absolute val-
ues of the y-distances of the observations to the univariate
LMS line and to the constant LMS line. These two sets are
used in the statistical test of hypotheses.

If α = 0, then the distributions of |ri,CLMS | and |ri,ULMS |
coincide, and the median of their difference is null. Fisher’s
sign test’s statistic B is the number of times Zi > 0 in the
data set. For simplicity, and because of the sufficiently large
number of observations of the data sets we analyze in Section
6, we can use the normal approximation to B’s exact distri-
bution. Specifically, it can be shown that B asymptotically
tends to a normal distribution with n/2 expected value and
n/4 variance, so variable (2B − n)/

√
n has an asymptotic

standard normal distribution.

6. EXPERIMENTAL RESULTS
We have applied OLS and LMS regression to two data sets
that belong to the PROMISE set of data sets. We used
the statistical tool JMP to carry out OLS regression, while
software was developed for LMS regression. Here, we sum-
marize the results we have obtained. We selected these two
data sets because they have different numbers of data points
and they also allow us to deal with the estimation of Defects
and Effort. At any rate, regression models are more often
used for effort estimation than defect estimation. We used
both dependent variables to show that the LMS approach
may be used for the prediction of the number of defects too.

In OLS, we dealt with outliers by using an iterative ap-
proach, by removing one outlier at a time from the data set
and then checking for further outliers on the new data set,
until no more outliers could be found. We used Mahalanobis
jackknife distances to identify outliers. The Mahalanobis
distance of a point P in a set of data points is a measure of
how far P is from the so-called “centroid” of the set of data
points, which provides a concise idea of the location of the



data points. The Mahalanobis jackknife distance of P in a
set of data points is a measure of how far P is from the set
of data point after P has been removed from the set of data
points. The idea is that P attracts the centroid, so it should
not be taken into account when assessing the distance of P
from all the other points. JMP uses a threshold value that is
based on Fisher’s F-distribution. A data point was classified
as an outlier if its Mahalanobis jackknife distance was “too
large.” Iteratively, the outlier with the largest Mahalanobis
jackknife distance was excluded from the data set. We used
JMP to compute Mahalanobis jackknife distances. Specif-
ically, we used JMP’s predefined threshold for identifying
Mahalanobis jackknife distances that are “too large,” which,
therefore, characterize outliers.

However, this iterative procedure may have drawbacks, es-
pecially in Empirical Software Engineering, in which large
data sets are not all that common. The risk is removing too
many observations and leaving too few to have a sufficient
statistical basis to obtain results. On the other hand, leav-
ing too many outliers in the data set may lead to unreliable
results and problems from a statistical point of view (e.g.,
heteroscedasticity or the fact that residuals do not follow a
normal distribution).

6.1 Analysis of Data Set desharnais_1_1
The first data set we analyzed is “desharnais 1 1” in the
PROMISE repository [3], which has data about 81 projects.
We used Effort (the development effort) as the dependent
variable and Transactions, Entities, and PointsNonAdjust
(obtained as the sum of Transactions and Entities) as the
independent variables. Table 1 contains the following de-
scriptive statistics for all of these variables (all tables are at
the end of the paper):

• V ariable is the name of the variable

• n is the number of observations

• min is the minimum observed value

• max is the maximum observed value

• med is the sample median

• mOLS is the ordinary mean (we have added the sub-
script “OLS” for additional clarity)

• σOLS is the standard deviation

• mLMS is the value that minimizes the Least Median
of Squares, as described in Section 3

• marC = med{|yi − mLMS |} median absolute residual
computed from mLMS , i.e., by using the constant LMS
regression model.

Table 2 contains the results for all the OLS univariate anal-
yses we carried out. These are the data reported for each
analysis: V ariable is the independent variable used; n is
the number of data points used in the analysis: if n = 81,
the analysis was carried out by using all of the data points,
otherwise n = 81 −#outliers; a is the estimate of the coef-
ficient of the independent variable; b is the estimate of the
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Figure 6: OLS and outliers.

intercept; p is the statistical significance of the OLS model:
like in most of the literature, we use a 0.05 statistical signif-
icance threshold, i.e., the model is statistically significant if
p < 0.05; R2

OLS is the square of the correlation coefficient; w
is the statistical significance of the Shapiro-Wilk W test for
normality of the residuals: again, we use a 0.05 statistical
significance threshold, i.e., the hypothesis that the residuals
are normally distributed is rejected if w < 0.05.

Let us take the first OLS analysis, carried out with the en-
tire data set and PointsNonAdjust as the independent vari-
able). For illustration purposes, Figure 6 also shows the OLS
line obtained on the entire data set.

The scatterplot visually shows the existence of both outliers
and heteroscedasticity. At any rate, in the remainder of the
paper, we do not take into account heteroscedasticity, but
we do investigate whether the residual distribution is nor-
mal. The value of w = 0.0006 shows that there is enough
evidence to reject the hypothesis that the residuals are nor-
mally distributed. So, even though the model appears to be
statistically significant, one cannot really accept these re-
sult as reliable. Let us now take the second OLS analysis,
carried out with 57 observations (i.e., 24 outliers removed)
and PointsNonAdjust as the independent variable). In this
case, the value of w = 0.3276 does not allow us to reject the
hypothesis that the residuals are normally distributed. The
other rows of Table 2 show the results for the other analy-
ses. Notice that, in the last analysis of the table, the value
of w = 0.0130 shows that there is enough evidence to reject
the hypothesis that the residuals are normally distributed,
even though 23 outliers have been removed.

Let us now carry out LMS regression analyses for the same
data set. Table 3 summarizes the results, where marU =
med{|yi−axi−b|} is the median absolute residual computed
from the univariate LMS regression model.

All the results are statistically significant. In general, it can
be noticed that, for each of these three LMS regression lines,



the slope is lower than the slope of the corresponding OLS
analyses, with or without outliers. This shows that high
leverage points do not have high influence on LMS regression
lines.

6.2 Analysis of Data Set qqdefects
We also used data set “qqdefects” in the PROMISE repos-
itory [3], which contains data about 31 projects. Table 4
contains the descriptive statistics for the three variables we
used: Defects (Testing Defects), Effort (Total Effort), and
KLOC.

We first used Defects as the dependent variable and KLOC
as the independent variable. We also used Defect as the
dependent variable and Effort as the independent variable.
Table 5 summarizes the OLS results we obtained.

The results do not provide evidence to reject the null hy-
pothesis that the distribution of residuals is normal for both
OLS models where KLOC is the independent variable. How-
ever, the sample is small, so rejection of this null hypothesis
could be due to insufficient power. On the contrary, there is
enough evidence to reject the null hypothesis according to
which the distribution of residuals is normal for both OLS
models where Effort is the independent variable. So, infer-
ences about the OLS models may not be reliable.

Table 6 shows the results we obtained for the corresponding
analyses with LMS regression. Again, the slopes are lower
than for the corresponding OLS analyses. The LMS regres-
sion models are statistically significant.

Next, we used Effort as the dependent variable and KLOC
as the independent variable. Table 7 summarizes the OLS
results we obtained. The results provide evidence to reject
the hypothesis that the distribution of residuals is normal
for both OLS analyses.

Table 8 summarizes the LMS results we obtained. However,
in this case, the LMS regression model does not appear to
be statistically significant.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have illustrated a robust regression tech-
nique that can be used to deal with outliers and that can
help remove some assumptions that are used in other data
analysis techniques, like OLS, which we have used here as a
comparison technique. Outliers and lack of compliance with
assumptions of existing data analysis techniques are often a
problem in Empirical Software Engineering research.

We have introduced a statistical significance test for the ro-
bust regression technique. We have used both LMS and OLS
regression on real-life data sets and the results for robust re-
gression appear to be somewhat promising.

A number of activities still remain to be done, though. We
here outline a few:

• check other robust data analysis techniques and com-
pare them with LMS and OLS;

• extend the statistical significance test to multivariate
LMS regression models and assess the statistical sig-
nificance of the entire model and the coefficient of each
independent variable;

• assess the power of the statistical significance test;

• check other possible statistical significance tests.
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Table 1: Descriptive statistics for data set desharnais 1 1
V ariable n min max med mOLS σOLS mLMS marC

Effort 81 546 23940 3647 5046.31 4419.77 2786 1386
Transactions 81 9 886 140 182.12 144.04 93 53

Entities 81 7 387 99 122.33 84.88 65 34
PointsNonAdjust 81 73 1127 266 304.46 180.21 239 82

Table 2: OLS regression results for data set desharnais 1 1
V ariable n a b p R2

OLS w
PointsNonAdjust 81 17.30 -220.08 <0.0001 0.50 0.0006
PointsNonAdjust 57 13.40 291.27 <0.0001 0.50 0.3276

Transactions 81 17.85 1795.19 <0.0001 0.34 <0.0001
Transactions 58 11.39 1727.13 0.0004 0.20 0.2920

Entities 81 26.57 1796.34 <0.0001 0.26 <0.0001
Entities 58 30.43 755.80 <0.0001 0.43 0.0130

Table 3: LMS regression results for data set desharnais 1 1
V ariable a b p marU R2

LMS S2
LMS

PointsNonAdjust 9.27 803.27 <0.0001 925.04 0.33 0.556
Transactions 7.29 2239.56 0.0027 1111.40 0.20 0.36

Entities 9.21 1677.13 0.0174 1150.24 0.17 0.31

Table 4: Descriptive statistics for data set qqdefects
V ariable n min max med mOLS σOLS mLMS marC

Defects 31 5 1906 209 445.22 510.92 107 102
Effort 31 1308 53995 13388 16141.88 13771.05 9183.0 5419.0
KLOC 29 0.9 155.2 26.67 39.36 40.73 13.78 12.89

Table 5: OLS regression results for data set qqdefects with Defects as the dependent variable
V ariable n a b p R2

OLS w
KLOC 29 11.41 10.09 <0.0001 0.78 0.1978
KLOC 25 9.54 55.99 0.0004 0.43 0.1830
Effort 31 0.0215 98.25 0.0006 0.34 0.0009
Effort 22 0.0167 73.57 0.04 0.19 0.0243

Table 6: LMS regression results for data set qqdefects with Defects as the dependent variable
V ariable a b p marU R2

LMS S2
LMS

KLOC 4.05 62.28 <0.0001 61.33 0.36 0.59
Effort 0.0053 62.60 0.0098 68.04 0.33 0.56

Table 7: OLS regression results for data set qqdefects with Effort as the dependent variable
V ariable n a b p R2

OLS w
KLOC 29 210.27 8680.12 0.0004 0.3819 <0.0001
KLOC 23 201.80 6096.7 <0.0001 0.7359 0.0375

Table 8: LMS regression results for data set qqdefects with Effort as the dependent variable
V ariable a b p marU R2

OLS S2
OLS

KLOC 0.22 5.91 0.2887 4.11 0.41 0.66
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