Misclassification cost-sensitive fault prediction models

Yue Jiang, Bojan Cukic
The Lane Department of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV26506-6109
{yue, cukic}@csee.wvu.edu

ABSTRACT

Traditionally, software fault prediction models are built by assum-
ing a uniform misclassification cost. In other words, cost implica-
tions of misclassifying a faulty module as fault free are assumed
to be the same as the cost implications of misclassifying a fault
free module as faulty. In reality, these two types of misclassifica-
tion costs are rarely equal. They are project-specific, reflecting the
characteristics of the domain in which the program operates. In
this paper, using project information from a public repository, we
analyze the benefits of techniques which incorporate misclassifica-
tion costs in the development of software fault prediction models.
We find that cost-sensitive learning does not provide operational
points which outperform cost-insensitive classifiers. However, an
advantage of cost-sensitive modeling is the explicit choice of the
operational threshold appropriate for the cost differential.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Design, Experimentation, Performance

Keywords
Fault prediction, Machine learning, Misclassification cost, Cost-
sensitive

1. INTRODUCTION
1.1 Fault Prediction Models

Research studying the detection of software modules which are
likely to contain faults has been ongoing for a long time. The faulty
information not only points to the need for increased quality mon-
itoring during the development but also provides important advice
to assign verification and validation activities. Various studies show
that software companies spend 50% to 80% of their software devel-
opment efforts on testing [34]. The identification of faulty modules

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

© ACM 2009 ISBN: 978-1-60558-634-2...510.00

might have a significant cost-saving impact on software develop-
ment.

A wide range of software metrics have been proposed for collection
and used to identify modules which may contain faults [16]. Met-
rics describing software requirements (i.e. requirement documents)
achieved notable success in predicting faulty modules [21, 35, 19].
Design metrics, either collected from design documents or reverse
engineered from code, have proved their utility for fault prediction
[42, 45]. Static code metrics, such as Halstead complexity [18] and
various code size metrics, have also proven their effectiveness in
many studies [36, 40, 26, 17, 7].

Metrics related to developer social networks have recently received
significant attention. Weyuker, Ostrand, and Bell [47] found that
the addition of developer information improves the accuracy of
fault prediction models. Li et al. analyzed 739 metrics collected
from software product, development, deployment, usage, software
and hardware configurations in OpenBSD [31]. They found that
the number of messages to the technical discussion mailing list dur-
ing the development period is the best predictor of the number of
field faults. Nagappan et al. [41] collected 8 organizational struc-
ture metrics which relate binary files to the social networks, i.e., the
number of engineers, the number of ex-engineers, edit frequency of
source code, and organization intersection factors to predict faults.
They compared this model with models which use five traditional
groups of metrics such as code churn, code complexity, code cov-
erage, dependency, and pre-release faults. They report that metrics
from organizational structure are better predictors of software faults
than the other five groups of metrics. The use of organizational
structure complexity metrics appears to hold a significant promise
for fault prediction. Unfortunately, no organizational complexity
metrics are available in the data sets we analyze in this paper.

1.2 Importance of Cost

The “traditional" software fault prediction models, some referenced
above and others mentioned in Section 5, typically assume uniform
misclassification cost. In other words, this models suppose that the
cost implications of wrongly predicting a faulty module as fault
free one is the same as the cost of indicating that a fault free mod-
ule may contain faults. In reality, the cost implications of these two
types of misclassification are seldom equal in the real world. In
high risk software projects, for example, safety-related spacecraft
navigation instruments, the cost of missing a faulty module may
have extreme consequence associated with a loss of the entire mis-
sion. Therefore, in such projects significant resources are typically
available for identifying and eradicating all faults because the cost
of losing a mission is much higher. On the other hand, in low risk

projects which aim to occupy a new market niche, time to market
pressure may imply that only a minimal number of faulty modules
can be analyzed. The cost of analyzing any significant number of
misclassified fault free modules is, therefore, unacceptable.

What makes the prediction of faulty modules a challenge is the

reality that they usually form a minority class compared to fault

free modules. The faulty and non-faulty classes are typically im-

balanced. Therefore, in order to develop models which find more

faults, one would expect that explicit placement of a cost premium

for fault identification will increase the accuracy of such models.

This expectation represents the motivation for the research described
in this paper.

1.3 Cost in Model Evaluation

While the techniques for model development which explicitly ac-
count for misclassification cost differential have not been studied in
software fault prediction modeling, there have been attempts to in-
clude cost factors into model evaluation. F-measure, for example,
offers a technique to account for the cost factor [20] when compar-
ing different models. Khoshgoftaar and Allen [27] proposed the use
of prior probabilities of misclassification to select classifiers which
offer the most appropriate performance. In [28] they compare the
return-on-investment in a large legacy telecommunication system
when V&V activities are applied to software modules selected by
a fault prediction model vs. at random. Cost has been considered
in test case selection for regression testing too [13, 14].

There is a steady trend in fault prediction modeling literature rec-
ommending model evaluation with lift charts [20], sometimes called
Alberg diagrams [42, 44]. Lift is a measure of the effectiveness
of a classifier in the detection of faulty modules. It calculates the
ratio of correctly identified faulty modules with and without the
predictive model. Lift chart is especially useful when the project
has resources to apply verification activities to a limited number
of modules. Cost effectiveness measure described by Arisholm et
al. [2] can account for the nonuniform cost of module-level V& V.
As opposed to these approaches, our goal is to analyze the benefits
of incorporating project specific misclassification costs in the de-
velopment of software fault prediction models, as opposed to their
evaluation.

The remainder of this paper is organized as follows. Section 2 in-
troduces our method of cost-sensitive modeling and our experimen-
tal design. Section 3 presents our experimental result and analysis.
Section 4 offers a short overview of related work. Section 5 con-
cludes the paper.

2. COST-SENSITIVE MODELING

In spite of the importance of misclassification cost in software fault
prediction modeling, most classifiers simply do not allow the in-
corporation of cost into the modeling process. Instead they are
typically designed to increase the overall prediction accuracy (or
decrease the overall error rate) assuming that all misclassifications
have the same cost.

In this section, we introduce a method to incorporate different mis-
classification costs into software fault prediction modeling. In these
cost-sensitive models, the goal will be to minimize the overall mis-
classification cost. This is quite different from the cost-insensitive
models. First, we discuss the confusion matrix and the correspond-
ing measurements used in this study. Then we explain our cost-
sensitive classification methods. Finally, we explain experimental

actual faulty | actual non-faulty

predict faulty TP FP

predict non-faulty FN TN
yRecall = yPD = TP;_%
yPr = FRITN
yPrecision = %_fTP
nRecall == nPD = FPZ%
nPF = TPI;‘_%
nPrecision = ﬁ

Figure 1: Confusion Matrix

design used to analyze the results.

2.1 Confusion Matrix

Figure 1 shows a confusion matrix. It has four categories: True
positives (1"'P) are modules correctly classified as faulty modules.
False positives (F'P) refer to fault-free modules incorrectly labeled
as faulty. True negatives (T'N) correspond to correctly classified
fault-free modules. Finally, false negatives (F'IN) refer to faulty
modules incorrectly classified as fault-free. In this study, we will
use recall, precision, and PF to evaluate prediction models. Recall
represents the probability of detection (P D) of faulty (or non-faulty)
modules. In this study, recall of faulty modules is denoted as
yRecall, recall of non-faulty modules is nRecall. Precision
is the proportion of the correctly predicted (faulty or non-faulty)
modules inside each prediction class: precision for faulty modules
is denoted y Precision, for non-faulty modules nPrecision. PF
represents the probability of false alarms: PF' for faulty modules
is denoted as y P F', for non-faulty modules nPF'.

Receiver Operating Characteristic (ROC) curve is a plot of the prob-
ability of detection (recall or PD) as a function of the probability
of false alarm (PF’) across all threshold settings. An ROC curve
provides an intuitive way to evaluate the classification performance
of software fault prediction models. Many classifiers allow users
to define and adjust threshold parameters in order to generate an
appropriate performance [48]. The Area Under the ROC Curve
(AUC) is a numeric performance evaluation measure directly as-
sociated with an ROC curve. In this study, we will utilize ROC and
AUC for model evaluation.

Boxplot diagrams, also known as box and whisker diagrams, graph-
ically depict numerical data distributions using the five first order
statistics: the smallest observation, lower quartile(Q)?1), median,
upper quartile()3), and the largest observation. The box is con-
structed based on the interquartile range(/QR) from Q1 to Q3.
The line inside the box depicts the median which follows the cen-
tral tendency. Outliers may be indicated as bubbles (or squares)
lying below/above 1.5 x IQR. The whiskers indicate the smallest
and the largest observations which are not outliers.

2.2 Modeling Algorithms

In this study, the term cost always stands for the misclassi fication cost.

Figure 2 shows a cost matrix similar to the confusion matrix shown
in Figure 1. The cost matrix emphasizes the implications of mis-
classification. For this reason, the costs of correct classifications
are 0. If a fault free module is misclassified as faulty (F'P), addi-
tional V&V activity imply additional expenditure. In Figure 1, this

actual faulty | actual non-faulty
0 (TP) 1(FP)
5(FN) 0(TN)

predict faulty
predict non-faulty

Figure 2: Cost matrix, an example

misclassification cost is assumed to be a factor 1. If a faulty module
is misclassified as fault free (F'N), the cost indicates the potential
for future damages. In Figure 1, it is assumed to be 5 times more
expensive than F'P.

The MetaCost method introduced by Domingos [11] makes clas-
sifiers cost-sensitive. Let 4, j denote two classes, m denotes a
module. The probability P(j|m) stands for the probability that
m belongs to class j. C(3, j) denotes the costs denoted in the cost
matrix. MetaCost tries to minimize the misclassification cost by
using Bayes optimal prediction:

R(ilm) = Z P(jlm)C i, j) e9)

The misclassification cost R(i|m) is the expected cost of predicting
that module m belongs to class . MetaCost aims to achieve the
lowest possible overall misclassification cost over all modules by
wrapping a procedure described in Equation 1 to a regular cost-
insensitive classifier [11]. MetaCost works as follows [11]:

e First, bootstrap the training subset to form a sample; run the
base cost-insensitive classifier on the bootstrapped sample.
This procedure is repeated multiple times.

e Estimate class’ probability P(j|m) for each module m, across
all bootstraped samples.

e Given the known cost matrix, C(%, j), using Equation 1 re-
label each module with the estimated optimal class in order
to minimize the overall misclassification cost, R(|m). This
process results in an optimal model.

o Apply the model developed accordingly to the test subset
samples.

Observe that with different cost matrices, the last two steps need
to be adjusted accordingly. According to Domingos, “MetaCost
treats the underlying classifier as a blackbox, requiring no knowl-
edge of its functioning or change to it” [11]. Weka offers MetaCost
procedure proposed by Domingos as a wrapper to any supported
classifier.

2.3 Design of Experiments

The 13 data sets listed in Table 1 come from the NASA Metrics
Data Program (MDP) repository [1]. The projects offer module
metrics associated with NASA Space Shuttle software. JM1 and
KC1 have 21 attributes that can be used as predictor variables, MC1
and PC5 have 39, while the other data sets have 40.

We do not know the cost matrix appropriate for each project. In
order to investigate the effect of cost-sensitive classification in soft-
ware fault prediction models, we assign 11 different cost matrices
to all projects shown in Table 2. In Table 2, the cost of 7'P and
TN are zero. We use cost_ratio to denote a cost matrix which is
shown in Table 2 as the third column. For example, in the first row,
the ratio between F'N and F'P is % The first five cost matrices
represent for low risk projects and the last five cost matrices stand
for the high risk projects.

The 11 cost ratios from Table 2 are run on each classifier over each
data set. We use standard 10 way cross-validation (CV) method in
this study. CV is the statistical practice of randomized partitioning
of a data set into two parts: one part of data is used as training and
the remaining part of data is left as testing subset. In this study,
50% of the data is used for training and the other 50% is used for
testing. The partition is randomized 10 times and run 20 times on
each data set to get a better understanding of variance.

In experiments, we use five classifiers from Weka which consis-
tently demonstrate good performance [20, 23, 24, 21]: random
forest (rf), boosting (bst), logistic (log), naiveBayes (nb), and
bagging (bag). The measures evaluated in this study are precision
(yPrecision and nPrecision) and recall (y Recall and n Recall).
Using 13 data sets, 11 different cost matrices, 5 machine learners,
and 20 cross validation runs, in total, our experiments resulted in
14,300 runs.

3. ANALYSIS OF EXPERIMENTS

For each classifier — data set combination, we generate two box-
plot diagrams, which depict precision and recall for faulty and
for non-faulty modules. In total, there are 13 * 5 * 2 = 130 such
diagrams. Understandably, we cannot describe all our observations
in a paper, and neither would it be very interesting. However, we
observed the following trends: logistic and boosting classifiers of-
fer very similar performance characteristics; bagging is similar to
random forests; NaiveBayes is quite different as the impact of cost,
measured by precision or recall, seems to have a minor, if any,
impact. Therefore, we use logistic and bagging classifiers as ex-
amples to illustrate observed results. Figure 3 depicts boxplot di-
agrams for precision and recall of logistic and bagging on CM1
and JM1 data sets.

From Figure 3, we can observe the clear increase of recall with
the decrease of precision in the detection of faulty modules when
cost_ratio varies from 1/75 to 75. However, the rate of increase
depends on the classifier. As expected, when identifying fault free
modules, recall decreases as precision increases.

Table 3 shows the median precision, recall, and PF for faulty
and fault free classes for 5 classifiers on CM1 and JM1 two data
sets. The performance indices for cost_ratio of 1/25,1/5, 5, and
25 are omitted as they follow the overall performance trends. In low
risk situations (cost_ratio < 1) misclassifying fault free mod-
ules is more expensive than misclassifying faulty ones. yRecall
is, therefore, very low. For example, in CM1 project from 0.25 to
0.26 using naive bayes down to 0 with bagging and random for-
est. yPrectsion is not good either. On the contrary, nRecall and
nPrecision are all quite high, greater than 0.80 with some even
as high as 1. This is not difficult to explain for field use data. When
there are limited resources to verify modules in a software project,
the cheapest choice is to check as few modules as possible. The be-
havior of bagging and random forest in these circumstances mimics
trivial classifiers by classifying every module as fault free.

In high risk projects (cost_ratio > 1) misclassifying a faulty
module as fault free is undesirable. The data sets used in this study
fall into this category, i.e., in most cases the models should identify
as many faults as possible. The good news is that when we increase
cost_ratio from 1 to 75, yRecall increases, although the rate of
increase depends on the algorithm. The bad news, although not
unexpected, is the decrease of y Precision which implies needless
analysis of a large number fault free modules (false positives). The

Table 1: Datasets used in this study

Data | mod.# | % faulty | project description lang.
IM1 10,878 19.3% Real time predictive ground system C
MC1 9466 0.64% Combustion experiment of a space shuttle (OC++
PC2 5589 0.42% Dynamic simulator for attitude control systems C
PC5 17,186 3.00% Safety enhancement system C++
PCI 1109 6.59% Flight software from an earth orbiting satellite C
PC3 1563 10.43% | Flight software for earth orbiting satellite C
PC4 1458 12.24% | Flight software for earth orbiting satellite C
CM1 505 16.04% | Spacecraft instrument C
MW1 403 6.7% Zero gravity experiment related to combustion C
KC1 2109 13.9% Storage management for ground data C++
KC3 458 6.3% Storage management for ground data Java
KC4 125 48% Ground-based subscription server Perl
MC2 161 32.30% | Video guidance system C++

Table 2: Eleven different cost matrices assigned to 13 projects in this experiment.

cost of FN | cost of FP | denoted as cost_ratio | risk type note
1 75 1/75 low
1 50 1/50 low
1 25 1/25 low lower cost to misclassifying faulty modules
1 10 1/10 low
1 5 1/5 low
1 1 1 equal cost to both classes
5 1 5 high
10 1 10 high
25 1 25 high higher cost to misclassifying faulty modules
50 1 50 high
75 1 75 high

optimal goal is to have high recall and precision at the same time,
but that seems impossible to achieve by varying cost_ratio only.
For example, in JM1 project when cost_ratto is greater than 50,
yRecall increases to 1 (using logistic and boosting) while n Recall
decreases to 0. This, again, reflects the result of a trivial classifier
which tags every module as faulty.

Figure 3 and Table 3 lead us towards the following observations:

e Faulty modules are the minority class. Different cost pa-
rameters indicate a compromise between yPrecision and
yRecall. Nevertheless, some classifiers offer better trade-
offs between the two evaluation parameters.

e Boosting, bagging and random forest algorithms consistently
reach yRecal rates close to 1 at high cost ratios, with preci-
sion slightly above 0.2.

e No matter what the cost_ratiois, nPrecision and n Recall
for identifying fault free modules are very high, reflecting the
fact that this is the majority class.

e NaiveBayes is quite different from the other four classifiers.
It’s performance indices (precision,recall, PF’) are rather
constant regardless of the cost.

We also want to acknowledge the high variance of yPrecision in
Figure 3 at cost_ratio = 1/5. Essentially, the precision in identi-
fying faulty modules varies from O to close to 1. We noticed similar
spikes in precision variance in a few other experiments. For exam-
ple, random forest on JM1 project at cost_ratio = 1/25, boost-
ing on KC3 data with cost_ratio between 1/75 and 1/5, bagging
on PC1 data with cost_ratio = 1 all report very high variance
for precision. Similarly, when the goal is to identify fault free mod-
ules, nPrectston at high cost_ratio may have a big variance too:

NaiveBayes on MC1 with cost_ratio=75, random forest on MC2
at cost_ratio 50 and 75, logistic with JM1 with cost_ratio be-
tween 50 and 75. These observations point that future research in
software fault prediction modeling must take such variances into
account when recommending best practices. With such unreliable
performance, it is difficult to trust prediction results. Menzies et
al. indicate that precision is not a good evaluation metric for fault
prediction models [37]. The good news is that recall does not ap-
pear to suffer from big variances through all the experiments in this
study. Therefore, recall should be relied upon when evaluating the
performance of software fault prediction models.

3.1 Statistical significance

We further conducted a statistical test procedure to compare y Recall
across 11 different cost matrices for each classifier with each data
set, using Demsar’s test [9, 20]. Our hypotheses are: Ho: There is
no difference in the performance among 11 different cost matrices
for a classifier on a specific data set evaluated using yRecall.

Vs.

H: At least two different cost matrices have significantly different
performance for a learner on a specific data set evaluated by using
yRecall.

Using 95% confidence interval to evaluate the significance of test,
five classifiers and 13 data sets, we conducted Demsar’s test 65
times. Amongst the 65 tests, only two accepted Hp and rejected
H,: naive bayes on JM1 and MWI1. In other 63 tests, the hy-
pothesis Hy is rejected and H, is accepted. The yRecall based
performance ranks prefer higher cost_ratios.

Statistically significant differences in performance when all 11 cost

Table 3: Median of precision and recall for 5 classifiers on CM1 and JM1 data set. y Precision and yRecall stand for precisionand
recall for faulty modules; nPrecision and nRecall are corresponding precision and recall rates for identification of fault free
modules.

dataset | learner | cost_ratio | yPF | yPrecision | yRecall | nPF | nPrecision | nRecall
log 1/75 0.03 | 0.45 0.11 0.89 | 0.85 0.97
log 1/50 0.03 | 0.45 0.12 0.88 | 0.85 0.97
log 1/10 0.03 | 0.45 0.14 0.86 | 0.85 0.97
log 1 0.08 | 0.41 0.29 0.71 | 0.87 0.92
log 10 0.34 | 0.26 0.6 0.4 0.9 0.66
cml log 50 0.48 | 0.21 0.67 033 | 0.9 0.52
log 75 049 | 0.21 0.67 033 | 09 0.51
bst 1/75 0 0.54 0.05 095 | 0.84 1
bst 1/50 0.01 | 0.59 0.04 0.96 | 0.84 1
bst 1/10 0.01 | 0.41 0.03 098 | 0.84 0.99
bst 1 0.03 | 0.43 0.13 0.87 | 0.85 0.97
bst 10 0.38 | 0.25 0.7 0.3 0.91 0.62
cml bst 50 0.63 | 0.21 0.88 0.13 | 0.94 0.37
bst 75 0.64 | 0.22 0.9 0.1 0.95 0.36
bag 1/75 0 0 0 1 0.84 1
bag 1/50 0 0 0 1 0.84 1
bag 1/10 0 0 0 1 0.84 1
bag 1 0.02 | 0.35 0.06 094 | 0.84 0.98
bag 10 0.33 | 0.26 0.63 0.37 | 091 0.67
cml bag 50 0.71 | 0.2 0.93 0.07 | 0.96 0.29
bag 75 0.79 | 0.19 0.98 0.02 | 0.98 0.21
f 1/75 0 0 0 1 0.84 1
rf 1/50 0 0 0 1 0.84 1
rf 1710 0 0 0 1 0.84 1
f 1 0.03 | 0.55 0.19 0.81 | 0.86 0.97
rf 10 0.17 | 0.33 0.47 0.54 | 0.89 0.83
cml of 50 0.53 | 0.23 0.84 0.16 | 0.94 0.47
rf 75 0.62 | 0.22 0.94 0.06 | 0.97 0.38
nb 1/75 0.08 | 0.36 0.25 0.75 | 0.86 0.92
nb 1/50 0.08 | 0.36 0.25 0.75 | 0.86 0.92
nb 1/10 0.08 | 0.36 0.26 0.74 | 0.87 0.92
nb 1 0.09 | 0.34 0.27 0.73 | 0.87 0.91
nb 10 0.1 0.33 0.29 0.71 | 0.87 0.9
cml nb 50 0.11 | 0.32 0.3 0.7 0.88 0.89
nb 75 0.11 | 0.32 0.3 0.7 0.88 0.89
log 1/75 0 0.77 0.01 0.99 | 0.81 1
log 1/50 0 0.76 0.01 0.99 | 0.81 1
log 1/10 0 0.81 0.01 0.99 | 0.81 1
log 1 0.02 | 0.6 0.12 0.88 | 0.82 0.98
log 10 0.83 | 0.22 0.94 0.06 | 0.93 0.17
jml log 50 1 0.19 1 0 0.54 0
log 75 1 0.19 1 0 0 0
bst 1/75 0 0.88 0.01 0.99 | 0.81 1
bst 1/50 0 0.89 0.01 0.99 | 0.81 1
bst 1/10 0 0.85 0.01 0.99 | 0.81 1
bst 1 0.03 | 0.52 0.11 0.89 | 0.82 0.97
bst 10 0.76 | 0.23 0.94 0.06 | 0.94 0.24
jml bst 50 1 0.19 1 0 0 0
bst 75 1 0.19 1 0 0 0
bag 1/75 0 0 0 1 0.81 1
bag 1/50 0 0 0 1 0.81 1
bag 1/10 0 0 0 1 0.81 1
bag 1 0.04 | 0.51 0.19 0.81 | 0.83 0.96
bag 10 043 | 0.29 0.74 0.26 | 0.9 0.57
jml bag 50 0.87 | 0.21 0.98 0.03 | 0.96 0.13
bag 75 095 | 0.2 0.99 0.01 | 0.97 0.06
f 1/75 0 0 0 1 0.81 1
f 1/50 0 0 0 1 0.81 1
f 1/10 0 0.87 0.01 1 0.81 1
rf 1 0.05 | 0.53 0.22 0.78 | 0.84 0.95
f 10 0.24 | 0.36 0.57 0.44 | 0.88 0.76
jml rf 50 0.69 | 0.24 091 0.09 | 0.94 0.31
rf 75 0.8 0.22 0.95 0.05 | 0.95 0.2
nb 1/75 0.05 | 0.49 0.18 0.82 | 0.83 0.95
nb 1/50 0.05 | 0.49 0.18 0.82 | 0.83 0.95
nb 1/10 0.05 | 0.49 0.19 0.81 | 0.83 0.95
nb 1 0.05 | 0.48 0.2 0.8 0.83 0.95
nb 10 0.06 | 0.48 0.21 0.79 | 0.83 0.94
jml nb 50 0.06 | 0.48 0.22 0.78 | 0.83 0.94
nb 75 0.06 | 0.47 0.22 0.78 | 0.84 0.94

Detecting faulty by log on em1

1.0

08
1
1

precision/recall
04 08
1
IURESt i

02

176 50125 490 5 1 5 10 25 B0 75

Various cost

Detecting faulty by bag on jm1

o
= - e -
i o
=
@]
2
=
=
2 .=
|5 =
5 =
s = 4
= o
g
=
-
—
S = -
Qo ==
2
T T T T T T T T T T T
175 ysp 125 490 15 1 5 10 25 50 75

Various cost

Figure 3: Boxplot diagrams depict precision and recall
for identifying faulty and non-faulty modules using different
cost_ratio. Shaded rectangle stands for precision; unshaded
notch stands for recall. Outliers for precision are indicated as
bubbles; and outliers for recall are indicated as squares.

ratios are taken into account are not surprising. Another important
question is how sensitive models are to small changes in the mis-
classification cost ratio. For this test, we will apply Demsar’s pro-
cedure to compare the rank performance of classification models
for each classifier using costs which range from 1 to 75.

Figure 4 depicts the results for random forest classifier over all the
13 projects. Any two classifiers which lay within the critical dis-
tance (C'D = 1.69) offer performance which cannot be interpreted
as different using 95% confidence interval. Using yRecall as the
performance measure, in most data sets models developed using
cost ratios 50 and 75, or 1 and 5 perform similarly. Analysis of
other classifiers offer similar results. For this reason, we conclude
that knowing the exact misclassification cost is not as important as
knowing its approximate cost range.

Using recall to evaluate the models’ performance to detect faulty
modules, we conclude that fault prediction generally benefits from
cost-sensitive learning in high risk cases because higher recall val-
ues, which indicate higher performance ranks, are obtained by ap-
plying higher. But the bottom line question is whether similar per-
formance could have been achieved through the traditional model
development, not “burdened" by the various misclassification cost
factors.

CD=169

5 4 3 32 1
em1 6 = Boooal w4
m1] o)¢ al w4
ket & o Jo ol w ¢
ked 6 oo} al = A
ked =] g [o &
met] el oo
me2 & o Joe [a %
mw1 & o ¢ o v
pcl & ad al = 4
pc2 -)
pcd & o Jo ol v]
pcd & o)¢ Al 7]
pcs =) o jo Ll w 4

Figure 4: Demsar’s rank test states that the rank performance
of classifiers within the critical distance (CD = 1.65) is not
statistically different. Classifiers were developed using random
forest algorithm and misclassification costs from 1 to 75.

3.2 Cost-sensitive vs. cost-ignorant

bst on cm1

recall{PD)
06

04

PF

Figure 5: The ROC curve of cost-ignorant model and the me-
dian (PF, recall) points for five different cost_ratio > 1 on

CM1. All models developed using boosting.
Figure 5 shows the ROC curve obtained from the boosting classifier

using the traditional cost-ignorant modeling approach on CM1 data
set. In the same figure, we overlayed the five median (PF, recall)
points of cost-sensitive learning with the values of cost_ratio > 1
over the ROC curve. The cost sensitive models have been devel-
oped using the same boosting classifier wrapped in the MetaCost
procedure [11]. We can observe that all five classifiers obtained
through cost-sensitive modeling can be obtained from cost-ignorant
model development by adjusting the model thresholds. The ob-
servations from this diagram are repeated for other classifiers and
other data sets. Another example is shown in Figure 6.

To generalize, appropriate threshold selection in cost-ignorant mod-
els offers the models with performance equivalent to models de-

bag onjmt

1.0

0.6 0.8

recall(PD)
0.4

0.2

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: The ROC curve of cost-ignorant model and the me-
dian (PF, recall) points for five different cost_ratio > 1. All
models developed using bagging.

rived using cost-sensitive modeling methodology. Cost-sensitive
modeling does not provide operational points which outperform
“traditional" classifiers, as evaluated by recall.

The other important implication from this study is that we can use
cost to choose suitable operational threshold (based on different
cost_ratio) to control a classifier’s performance. In this study, four
classifiers except naive bayes provide this flexibility.

3.3 Discussion

The experiments presented above provide valuable information in
the quest to understand the best modeling practices for software
fault prediction. The inclusion of misclassification cost ratio seems
a natural choice in the software engineering domain, as in many
cases the consequences of system failures far outweigh the cost of
module verification activities.

The fact that the models developed using cost-sensitive modeling
algorithm do not outperform the “traditional”, cost-ignorant models
has a two fold interpretation. The bad news is that this approach is
not opening a new frontier in model performance. There is a good
news, though. Cost-sensitive modeling explicitly reveals the model
which minimizes the overall cost of software faults, given that one
can trust the assumed misclassification cost ratio. Selecting a ap-
propriate model for predicting faulty modules through the explicit
notion of cost seems much easier for practitioners than tinkering
and / or justifying one amongst many possible threshold values of
the model.

In practice, exact costs are rarely known and could change as we
learn more about system requirements, its design, operational envi-
ronment, etc. When considering a wide range of cost ratios the re-
sulting models differ significantly. Nevertheless, our tests indicate
that changing the misclassification cost ratio from, say, 50 to 75 or
25 to 50 result in models whose performance is not significantly
different. Software project managers who are likely to desire ana-
lyzing various cost situations do not need to analyze many of them,
as the trends will be easy to understand.

3.4 Threats to Validity

We analyze three types of validity threats.

Considering internal validity, MDP data sets are generated from
source code using McCabe’s 1Q tool. Nevertheless, not all faults
can be explained by code metrics [15]. As discussed earlier, social
networks [41] have an impact on software faults too. Although
there may be other metrics that could improve MDP repository,
currently available data points have been used many times in the
literature demonstrating the robustness of fault prediction in the
MDP projects [36, 30, 20, 17, 8, 38, 46, 50, 49, 21, 23, 24, 22,
32, 33]. Therefore, we believe that our experiments and results
from MDP data sets are relevant for the software fault prediction
community.

Considering external validity, MDP projects come from NASA’s
Space Shuttle program. It is entirely possible that NASA’s ver-
ification and validation practices are significantly different from
other software development organizations. While this is a possi-
ble source of bias, we would like to note that projects included in
the MDP repository do not follow the same life-cycle activities,
they come from several software development organizations and
fall under varying criticality regimes.

With respect to construct validity, cost ratios in our experiments,
which vary from % to 75 might not include all meaningful cost
differentials. Different projects may have their own cost ranges
of interests. Furthermore, cost evolves together with a software
project’s development process. Boehm and Papaccio observe that
to fix a fault earlier in the lifecycle is much cheaper than later by a
factor of 50 — 200 [4]. However, we do not think this will affect
our conclusions since different costs only results in different points
in cost-ignorant models.

The selection of classifiers is another possible source of bias. We
cannot exclude the possibility that a classifier not studied here could
show significantly better performance. Nevertheless, based on our
experience, we believe that the chance of such a classification al-
gorithm being in existence is rather low.

4. RELATED WORK

A large number of fault prediction modeling techniques have been
proposed and applied to software fault prediction. Many of these
techniques are relatively straightforward transplants from the fields
of data mining and machine learning. Some of them, for exam-
ple, logistic regression [3], aim to use domain-specific knowledge
to establish the input (software metrics) output (software faults) re-
lationship. Some techniques, such as classification trees [17, 6],
neural networks [5], and genetic algorithms [25], try to examine the
available large-size data sets to recognize patterns and form gener-
alizations. Some utilize one single model to predict faults; others
are based on ensemble learning and build a collection of models
from a single training data set [32, 6]. Regression analysis (linear
or logistic) [39, 40, 41] has the advantage that it can be used by
itself but also in combinations with other algorithms,for example,
classification trees, to form regression tree algorithm.

A decision tree algorithm, for example C4.5, is one of the most
well studied classifiers which can depict the structure of software
metrics. C4.5 uses a divide and conquer mechanism to build a de-
cision tree from training set. After building and pruning the de-
cision tree is fitted to the training data set. Models from decision
trees are easy to interpret and, therefore, popular in practice when
a fault prediction model needs explanation. Khoshgoftaar et al.

used C4.5 to identify faulty modules and compared it with other
algorithms [29] NaiveBayes (nb), as its name suggests, “naively"
assumes independence between different prediction variables. This
assumption is considered overly simplistic in real life application
scenarios. However, in software engineering data sets, it’s perfor-
mance is surprisingly good [36]. Naive Bayes classifiers have been
used extensively in fault prediction, for example in [36, 21, 20].

Random Forest is a decision tree based classifier. As implied from
its name, it builds a “forest" of decision trees. In empirical stud-
ies, Random forest usually is one of the best classifiers in soft-
ware engineering domain [17, 21, 20]. Bagging stands for boot-
strap aggregating. It relies on an ensemble of different models.
The training data is resampled from the original data set. Bag-
ging typically performs better than any single method models and
almost never significantly worse. It has shown to have good per-
formance in software engineering experiments [21, 20]. Boost-
ing combines multiple models by explicitly seeking models that
complement one another. First, it is similar to bagging in using
voting for classification or averaging for numeric prediction. Like
bagging, boosting combines the models of the same type. How-
ever, boosting is iterative. “Whereas in bagging individual models
are built separately, in boosting each new model is influenced by
the performance of those built previously. Boosting encourages
new models to become experts for instances handled incorrectly by
earlier ones" [48]. Random forest, bagging and boosting develop
an ensemble of base models and use them in combination. In our
experiments, they demonstrate consistent performance in software
fault prediction [21, 20].

Another way to improve the performance of fault prediction models
is to use feature subset selection (FSS). FSS selects useful attributes
or features and eliminate irrelevant or noisy features before learning
process starts. Principal Component Analysis (PCA) is a classical
method to cope with multicollinearity among attributes. PCA trans-
forms a set of attributes (metrics, features) into their uncorrelated
linear combinations. PCA selected nine major components from 38
software metrics on open source Apache 1.3 and 2.0 projects [10].

Ostrand and Weyuker define the cost of F'P and F'N as type [
and type I misclassification cost [43]. They argue that in soft-
ware fault prediction type I/ misclassification is likely more seri-
ous than type I misclassification. Therefore, attention should be
put on higher cost_ratio (= tf‘gelf), which supports the similar
trend in our experiments.

Cost factors have been considered in test case selection for regres-
sion testing too [13, 14]. Elbaum er al. [13, 14] incorporated differ-
ent costs of test cases into software regression testing. They report
that incorporating costs into testing can improve test suites’ overall
rate of fault detection. Further, the effectiveness is substantially
improved, measured by the weighted average of the percentage
of faults detected over the life of the test case suite (AFPD) [13,
14]. Although our result indicate that incorporating cost factors
into fault modeling does not improve the overall performance of
classification models, this does not mean that our experiments con-
tradict theirs. The two studies have different goals (test case suites
vs. fault prediction models) and utilize different success measures
(APFD wvs. ROC).

As mentioned earlier, misclassification cost has been used in the
fault prediction literature but primarily for model evaluation. Cost
curves [12, 20], a graphical technique for visualizing a software

fault prediction model over the full range of possible misclassifica-
tion costs, has demonstrated its utility in software fault prediction
modeling [23]. Cost curves evaluate software fault prediction mod-
els which are built assuming the uniform costs of misclassification,
but project-specific costs can be incorporated into model evalua-
tion.

5. CONCLUSION

Software fault prediction models offer tangible advantages for op-
timizing project’s V&V activities by uncovering modules in which
software faults are most likely to hide. From the methodological
perspective, these are binary classification models. Typical propor-
tion of modules which are likely to contain faults is rather small.
This makes automated binary classification problem of detecting
faulty modules more difficult.

In this paper, we analyzed the possible advantages of cost sensi-
tive software fault prediction modeling. Cost sensitive modeling
assigns different cost factors to overlooking a faulty module and
falsely tagging a fault free module as fault prone. By minimizing
the overall cost of misclassification, rather than the number of mis-
classified modules, we expect to develop better classifiers.

We analyzed the impact of eleven different misclassification costs
to software fault prediction modeling, using the projects from the
NASA MDP repository. Cost-sensitive modeling does not improve
the overall performance of classification models. Nevertheless, ex-
plicit information about misclassification cost makes it easier for
software managers to select the most appropriate model for their
specific project environment. The alternative to cost-sensitive mod-
eling is to determine the most appropriate threshold in a set of mod-
els developed in absence of cost information, which we believe
to be more challenging. Our experiments further indicate that in
projects where the exact misclassification cost is unknown, a likely
scenario in practice, cost sensitive models with similar misclassi-
fication cost ratios are likely to exhibit performance which is not
significantly different.

6. REFERENCES

[1] Metric data program. NASA Independent Verification and
Validation facility, Available from
http://MDP.ivv.nasa.gov.
E. Arisholm, L. Briand, and M. Fuglerud. Data mining
techniques for building fault-proneness models in telecom
java software. In proceedings of the IEEE International
Symposium on Software Reliability Engineering (ISSRE
2007),Sweden, pages 215-224, 2007.
[3] V.R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators, IEEE
Trans. on Softw. Eng.,22(10):751-761, 1996.
B. Boehm and P. Papaccio. Understanding and controlling
software costs. IEEE Trans. on Softw. Eng.,
14(10):1462-1477, 1988.
G. Boetticher. An assessment of metric contribution in the
construction of a neural network-based effort estimator. In
The 2th International Workshop on Software Computing
Applied to Software Engineering, Enschade, NL, 2001.
[6] L. Breiman. Random forests. Machine Learning, 45:5-32,
2001.
V. U. Challagulla, F. B. Bastani, and I.-L. Yen. A unified
framework for defect data analysis using the mbr technique.
In Proc. of the IEEE International Conference on Tools with

[2

—

[4

—_

[5

—

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Artificial Intelligence (ICTAI’06), pages 3946, 2006.

V. U. Challagulla, F. B. Bastani, I.-L. Yen, and R.A.Paul.
Empirical assessment of machine learning based software
defect prediction techniques. In Proc. of the 10th IEEE
Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS’05), pages 263-270, 2005.

J. Demsar. Statistical comparisons of classifiers over multiple
data sets. J. of Machine Learning Research, 7:1-30, 2006.

G. Denaro and M. Pezze. An empirical evaluation of
fault-proneness models. In Proc. of International Conference
on Software Engineering, pages 241-251, 2002.

P. Domingos. How to get a free lunch: A simple cost model
for machine learning applications. In Proc. AAAI9S/ICMLIS,
Workshop on the Methodology of Applying Machine
Learning, pages 1-7, 1998.

C. Drummond and R. C. Holte. Cost curves: An improved
method for visualizing classifier performance. Machine
Learning, 65(1):95-130, 2006.

S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating
varying test costs and fault severities into test case
prioritization. In Proc. of the 23rd International Conference
on Software Engineering, pages 329-338, 2001.

S. Elbaum, A. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. I[EEE Trans. on
Softw. Eng., 28(2):159-182, Feb. 2002.

N. E. Fenton and M. Neil. A critique of software defect
prediction models. IEEE Trans. on Softw. Eng.,
25(5):675-689, 1999.

N. E. Fenton and S. Pfleeger. Software Metrics: A Rigorous
& Practical Approach. PWS Publishing
Company,International Thompson Press, 1997.

L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of
fault-proneness by random forests. In Proc. of the 15th
International Symposium on Software Relaibility
Engineering ISSRE 04, pages 417-428, 2004.

M. H. Halstead. Elements of Software Science. Elsevier,
North-Holland, 1975.

T. Javed, M. e Magsood, and Q. S. Durrani. A study to
investigate the impact of requirements instability on software
defects. SIGSOFT Softw. Eng. Notes, 29(3):1-7, 2004.

Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating
fault prediction models. Empirical Softw. Eng.,
13(5):561-595, 2008.

Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using
early lifecycle data. In The 18th IEEE International
Symposium on Software Reliability Engineering, pages
237-246, Nov. 2007.

Y. Jiang, B. Cukic, and T. Menzies. Can data transformation
help in the detection of fault-prone modules? In Proceedings
of the 2008 workshop on Defects in large software systems,
pages 16-20, 2008.

Y. Jiang, B. Cukic, and T. Menzies. Cost curve evaluation of
fault prediction models. In the 19th International Symposium
on Software Reliability Engineering, pages 197-206, Nov.
2008.

Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow. Comparing
design and code metrics for software quality prediction. In
Proceedings of the 4th international workshop on Predictor
models in software engineering, pages 11-18, 2008.

K. Kaminsky and G. Boetticher. Building a genetically
engineerable evolvable program (geep) using breath-based

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

explicit knowledge for predicting software defects. In Proc.
of the IEEE Annual Meeting of the Fuzzy Information, pages
27-30, 2004.

T. Khoshgoftaar. An application of zero-inflated poisson
regression for software fault prediction. In Proceedings of
the 12th International Symposium on Software Reliability
Engineering, Hong Kong, pages 66—73, Nov 2001.

T. M. Khoshgoftaar and E. B. Allen. Classification of
fault-prone software modules: Prior probabilities,costs, and
model evaluation. Empirical Softw. Eng., 3(3):275-298,
1998.

T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P.
Hudepohl. Cost-benefit analysis of software quality models.
Softw. Quality Control, 9(1):9-30, 2001.

T. M. Khoshgoftaar and N. Seliya. Fault prediction modeling
for software quality estimation: Comparing commonly used
techniques. Empirical Softw. Eng., 8(3):255-283, 2003.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings. IEEE
Trans. on Softw. Eng., 34(4):485-496, 2008.

P. L. Li, J. Herbsleb, and M. Shaw. Finding predictors of
field defects for open source software systems in commonly
available data sources: A case study of openbsd. In
METRICS ’05: Proceedings of the 11th IEEE International
Software Metrics Symposium, page 32, 2005.

Y. Ma. An Empirical Investigation of Tree Ensembles in
Biometrics and Bioinformatics. PhD dissertation, January
2007.

Y. Ma and B. Cukic. Adequate and precise evaluation of
predictive models in software engineering studies. In 3rd
Intl. Workshop on Predictor Models in SE (PROMISE
2007),Minneapolis, MN, May 2007.

R. Mahanti and J. Antony. Confluence of six sigma,
simulation and software development. Managerial Auditing
Journal, 20(7):739-762, 2005.

Y. Malaiya and J. Denton. Requirement volatility and defect
density. In Proc. International Symposium on Software
Reliability Engineering, pages 285-294, Nov. 1999.

T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans. on
Softw. Eng., 33(1):2-13, January 2007.

T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald.
Problems with Precision: A Response to "Comments on
’Data Mining Static Code Attributes to Learn Defect
Predictors’". IEEE Trans. on Softw. Eng., 33(9):637-640,
Sept., 2007.

M. Mertik, M. Lenic, G. Stiglic, and P. Kokol. Estimating
software quality with advanced data mining techniques.
Software Engineering Advances, International Conference
on, pages 19-19, Oct. 2006.

N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In 27th
International Conference on Software Engineering, pages
284-292, May 2005.

N. Nagappan, T. Ball, and B. Murphy. Using historical data
and product metrics for early estimation of software failures.
In Proc. International Symposium on Software Reliability
Engineering, Raleigh, NC, pages 62-71, 2006.

N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: an empirical

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

case study. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages
521-530, 2008.

N. Ohlsson and H. Alberg. Predicting fault-prone software
modules in telephone switches. IEEE Trans. on Softw. Eng.,
22(12):886-894, 1996.

T. J. Ostrand and E. J. Weyuker. How to measure success of
fault prediction models. In SOQUA °07: Fourth international
workshop on Software quality assurance, pages 25-30, 2007.
T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the
location and number of faults in large software systems.
IEEE Trans. on Softw. Eng., 31(4):340-355, 2005.

R. Subramanyam and M. S. Krishnan. Empirical analysis of
ck metrics for object-oriented design complexity:
Implications for software defects. IEEE Trans. on Softw.
Eng., 29(4):297-310, 2003.

B. Turhan and A. Bener. A multivariate analysis of static
code attributes for defect prediction. In QSIC "07:
Proceedings of the Seventh International Conference on
Quality Software, pages 231-237, 2007.

E.J. Weyuker, T. J. Ostrand, and R. M. Bell. Using developer
information as a factor for fault prediction. In PROMISE ’07:
Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, pages 1-8, 2007.
I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

S. Zhong, T. Khoshgoftaar, and N. Seliya. Analyzing
software measurement data with clustering techniques. /EEE
Intelligent Syst., 19(2):20-27, Mar-Apr 2004.

S. Zhong, T. Khoshgoftaar, and N. Seliya. Unsupervised
learning for expert-based software quality estimation.
Proceedings. Eighth IEEE International Symposium on High
Assurance Systems Engineering, pages 149—155, March
2004.

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

