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Future Software Measurement Challenges
• Emergent requirements

– Example:  Virtual global collaboration support syst ems
– Need to manage early concurrent engineering

• Rapid change
– In competitive threats, technology, organizations, 

environment

• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model-driven, service-oriented, Brownfield systems
– New phenomenology, counting rules

• Always-on, never-fail systems
– Need to balance agility and discipline

May 18, 2009 2Copyright © USC-CSSE



University of Southern California

Center for Systems and Software Engineering

Emergent Requirements
– Example: Virtual global collaboration support syst ems

• View sharing, navigation, 
modification;agenda 
control; access control

• Mix of synchronous and 
asynchronous participation

• No way to specify 
collaboration support 
requirements in advance

• Need greater investments in 
concurrent engineering 

– of needs, opportunities, 
requirements, solutions, plans, 
resources

May 18, 2009 3Copyright © USC-CSSE
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The Broadening Early Cone of Uncertainty (CU)

ConOps Specs/Plans IOC

• Need greater investments in 
narrowing CU
– Mission, investment, legacy 

analysis
– Competitive prototyping
– Concurrent engineering
– Associated estimation 

methods and management 
metrics

• Larger systems will often 
have subsystems with 
narrower CU’s

Global Interactive,
Brownfield

Batch, Greenfield

Local Interactive,
Some Legacy
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The Incremental Commitment Life Cycle Process:  Ove rview
Stage I: Definition Stage II: Development and Operat ions

Anchor Point 
Milestones

Anchor Point 
Milestones

Synchronize, stabilize concurrency via FEDsSynchronize, stabilize concurrency via FEDs

Risk patterns 
determine life 
cycle process

Risk patterns 
determine life 
cycle process
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Nature of FEDs and Anchor Point Milestones

• Evidence provided by developer and validated by independent experts 
that:
If the system is built to the specified architecture, it will

– Satisfy the specified operational concept and requi rements  
• Capability, interfaces, level of service, and evolu tion

– Be buildable within the budgets and schedules in th e plan
– Generate a viable return on investment
– Generate satisfactory outcomes for all of the succe ss-critical stakeholders

• Shortfalls in evidence are uncertainties and risks 
– Should be resolved or covered by risk management pl ans

• Assessed in increasing detail at major anchor point  milestones
– Serves as basis for stakeholders’ commitment to proc eed
– Serves to synchronize and stabilize concurrently en gineered elements
– Can be used to strengthen current schedule- or event -based reviews 

7
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Key Point: Need to Show Evidence
• Not just traceability matrices and PowerPoint chart s
• Evidence can include results of

– Prototypes: networks, robots, user interfaces, COTS  interoperability
– Benchmarks: performance, scalability, accuracy
– Exercises: mission performance, interoperability, s ecurity
– Models: cost, schedule, performance, reliability; t radeoffs
– Simulations: mission scalability, performance, reli ability
– Early working versions: infrastructure, data fusion , legacy compatibility
– Representative past projects
– Combinations of the above

• Validated by independent experts
– Realism of assumptions
– Representativeness of scenarios
– Thoroughness of analysis
– Coverage of key off-nominal conditions

• Much more effort data, product data to collect and analyze

8
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COSYSMO

Size
Drivers

Effort
Multipliers

Effort

Calibration

# Requirements
# Interfaces
# Scenarios
# Algorithms

Volatility Factor

- Application factors
-8 factors

- Team factors
-6 factors

- Schedule driver WBS guided by 
ISO/IEC 15288

COSYSMO Operational Concept

May 18, 2009 Copyright © USC-CSSE
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4. Rate Cost Drivers -
Application
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Next-Generation Systems Challenges

• Emergent requirements
– Example:  Virtual global collaboration support syst ems
– Need to manage early concurrent engineering

• Rapid change
– In competitive threats, technology, organizations, 

environment

• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model-driven, service-oriented, Brownfield systems
– New phenomenology, counting rules

• Always-on, never-fail systems
– Need to balance agility and discipline
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Rapid Change Creates a Late Cone of Uncertainty
– Need evolutionary/incremental vs. one-shot develop ment

- - No simple boundary between development and mainte nance
Uncertainties in competition, 

technology, organizations, 
mission priorities
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Incremental Development Productivity Decline (IDPD)

• Example: Site Defense BMD Software 
– 5 builds, 7 years, $100M
– Build 1 productivity over 300 SLOC/person month
– Build 5 productivity under 150 SLOC/PM

• Including Build 1-4 breakage, integration, rework
• 318% change in requirements across all builds
• IDPD factor = 20% productivity decrease per build

– Similar trends in later unprecedented systems
– Not unique to DoD: key source of Windows Vista dela ys

• Maintenance of full non-COTS SLOC, not ESLOC
– Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLO C
– Build 2: 400 KSLOC of Build 1 software to maintain,  integrate

May 18, 2009 13Copyright © USC-CSSE
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“Equivalent SLOC” Paradoxes

• Not a measure of software size
• Not a measure of software effort
• Not a measure of delivered software capability
• A quantity derived from software component sizes 

and reuse factors that helps estimate effort
• Once a product or increment is developed, its 

ESLOC loses its identity
– Its size expands into full SLOC
– Some people apply reuse factors to this to determin e an 

ESLOC quantity for the next increment
• But this has no relation to the product’s size

May 18, 2009 Copyright © USC-CSSE 14
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IDPD Cost Drivers: 
Conservative 4-Increment Example

• Some savings: more experienced personnel (5-20%)
• Depending on personnel turnover rates

• Some increases: code base growth, diseconomies of 
scale, requirements volatility, user requests

• Breakage, maintenance of full code base (20-40%)
• Diseconomies of scale in development, integration 

(10-25%)
• Requirements volatility; user requests (10-25%)

• Best case: 20% more effort (IDPD=6%)
• Worst case: 85% (IDPD=23%)

May 18, 2009 15Copyright © USC-CSSE
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Effects of IDPD on Number of Increments

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8

Build

Cumulative
 KSLOC

0% productivity decline
10% productivity decline
15% productivity decline
20% productivity decline

• Model relating productivity decline to 
number of builds needed to reach 8M 
SLOC Full Operational Capability

• Assumes Build 1 production of 2M SLOC 
@ 100 SLOC/PM
– 20000 PM/ 24 mo. = 833 developers
– Constant staff size for all builds

• Analysis varies the productivity decline 
per build
– Extremely important to determine the 

incremental development 
productivity decline (IDPD) factor per 
build 

2M

8M

SLOC
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Choosing and Costing
Incremental Development Forms
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Type Examples Pros Cons Cost Estimation

Evolutionary 
Sequential

Small: Agile
Large: Evolutionary 

Development

Adaptability  to 
change

Easiest-first; late, 
costly breakage

Small: Planning-poker-type
Large: Parametric with IDPD

Prespecified 
Sequential

Platform base plus 
PPPIs

Prespecifiable 
full-capability 
requirements

Emergent 
requirements or 

rapid change

COINCOMO with no increment 
overlap

Overlapped 
Evolutionary

Product lines with 
ultrafast change

Modular product 
line

Cross-increment 
breakage

Parametric with IDPD and 
Requirements Volatility

Rebaselining 
Evolutionary

Mainstream 
product lines; 

Systems of 
systems

High assurance 
with rapid change

Highly coupled 
systems with 

very rapid change

COINCOMO, IDPD for 
development; COSYSMO for 

rebaselining

IDPD: Incremental Development Productivity Decline,  due to earlier increments breakage, increasing 
code base to integrate

PPPIs: Pre-Planned Product Improvements

COINCOMO:  COCOMO Incremental Development Model (CO COMO II book, Appendix B) 

COSYSMO: Systems Engineering Cost Model (in-process  COSYSMO book)

All Cost Estimation approaches also include expert- judgment cross-check.

May 18, 2009
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Next-Generation Systems Challenges

• Emergent requirements
– Example:  Virtual global collaboration support syst ems
– Need to manage early concurrent engineering

• Rapid change
– In competitive threats, technology, organizations, 

environment

• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model-driven, service-oriented, Brownfield 
systems
– New phenomenology, counting rules

• Always-on, never-fail systems
– Need to balance agility and disciplineMay 18, 2009 18Copyright © USC-CSSE
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Further Attributes of Future Challenges
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Type Examples Pros Cons Cost Estimation

Systems of 
Systems

•Directed: Future 
Combat Systems

•Acknowledged: 
Missile Defense 
Agency 

•Interoperability
•Rapid Observe-
Orient-Decide-
Act (OODA) loop

•Often-conflicting partner 
priorities

•Change processing very 
complex

•Staged hybrid models
•Systems engineering: COSYSMO
•Multi-organization development 
costing

•Lead Systems integrator costing
•Requirements volatility effects

•Integration&test: new cost 
drivers

Model-Driven

Development

•Business 4th-
generation 
languages (4GLs)

•Vehicle-model 
driven 
development

•Cost savings
•User-
development 
advantages

•Fewer error 
sources

•Multi-model composition 
incapabilities

•Model extensions for 
special cases (platform-
payload)

•Brownfield complexities
•User-development V&V

•Models directives as 4GL 
source code

•Multi-model composition 
similar to COTS integration, 
Brownfield integration

Brownfield

•Legacy C4ISR 
System

•Net-Centric 
weapons platform

•Multicore-CPU 
upgrades

•Continuity of 
service

•Modernization of 
infrastructure

•Ease of 
maintenance

•Legacy re-engineering 
often complex

•Mega-refactoring often 
complex

•Models for legacy re-
engineering, mega-refactoring

•Reuse model for refactored 
legacy

May 18, 2009
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Further Attributes of Future Challenges 
(Continued)
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Type Examples Pros Cons Cost Estimation

Ultrareliable 
Systems

•Safety-critical 
systems

•Security-critical 
systems

•High-
performance real-
time systems

•System 
resilence, 
survivability

•Service-oriented 
usage 
opportunities

•Conflicts among 
attribute 
objectives

•Compatibility with 
rapid change

•Cost model extensions for added 
assurance levels

•Change impact analysis models

Competitive
Prototyping

•Stealth vehicle 
fly-offs

•Agent-based 
RPV control

•Combinations of 
challenges

•Risk buy-down
•Innovation 
modification

•In-depth 
exploration of 
alternatives

•Competitor 
evaluation often 
complex

•Higher up-front 
cost

•But generally 
good ROI

•Tech-leveling 
avoidance often 
complex

•Competition preparation, 
management costing

•Evaluation criteria, scenarios, testbeds

•Competitor budget estimation
•Virtual, proof-of-principle, robust 
prototypes

May 18, 2009 20Copyright © USC-CSSE
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Net-Centric Systems of Systems Challenges

• Need for rapid adaptation to change
– See first, understand first, act first, finish deci sively

• Built-in authority-responsibility mismatches
– Increasing as authority decreases through Directed,  

Acknowledged, Collaborative, and Virtual SoS classe s
• Incompatible element management chains, legacy 

constraints, architectures, service priorities, dat a, 
operational controls, standards, change priorities. ..

• High priority on leadership skills, collaboration 
incentives, negotiation support such as cost models
– SoS variety and complexity makes compositional cost  

models more helpful than one-size-fits-all models

May 18, 2009 21Copyright © USC-CSSE
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Source
Selection

●

●

●

ValuationExploration Architecting Develop Operation

ValuationExploration Architecting Develop Operation

ValuationExploration Architecting Develop Operation

OperationDevelop Operation Operation Operation

System A

System B

System C

System x

LCO-type
Proposal &
Feasibility 

Info

Candidate Supplier/ 
Strategic Partner n

●

●

●

Candidate Supplier/
Strategic Partner 1

SoS-Level ValuationExploration Architecting Develop

FCR1 DCR1

Operation

OCR1

Rebaseline/
Adjustment FCR 1 OCR2

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

OCRx1

FCRB DCRB OCRB1

FCRA DCRA

FCRC DCRC OCRC1

OCRx2 OCRx3 OCRx4 OCRx5

OCRC2

OCRB2

OCRA1

Example:  SoSE Synchronization Points
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Average Change Processing Time: 
Two Complex Systems of Systems

Average workdays 
to process 

changes

0

20

40

60

80

100

120

140

160

Within
Groups

Across
Groups

Contract
Mods

Incompatible with turning within adversary’s OODA l oop
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Compositional approaches: Directed systems of syste ms

Customer,
Users

LSI –
Agile

LSI IPTs –
Agile

Suppliers –
Agile

Suppliers –
PD – V&V

LSI –
Integrators

RFP, SOW, 
Evaluations

, 
Contracting

Effort/Staff

Proposals

Similar, with
added change
traffic from
users…

A
s
s
e
s
s
 

c
o
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p
a
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b
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y
, 
s
h
o
rt
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fa
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R
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rk
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 →→ →→

L
C
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k
a
g
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s
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t 
a
ll
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e
v
e
ls

COSOSIMO
-like

Assess 
sources of 
change; 
Negotiate 
rebaselined 

LCA2

package at 
all levels

COSOSIMO
-like

Similar, with
added re-

baselineing risks 
and rework…

Inception
Elaboration

Source                     SoS
Selection              Architecting

Increment 1 Increments 
2,… n

Develop to 
spec, V&VCORADMO

-like

Degree of 
Completene

ss

risks, 
rework

Proposal 
Feasibility

LCO LCA

LCA1

IOC1

Effort/staff
at all levels

risks, 
rework

Risk-manage 
slow-

performer, 
completeness

risks, 
rework

Integrate

COSOSIMO
-like

LCA2 shortfalls

risks, 
rework

Effort COSYSMO-like.

Schedule = 
Effort/Staff

Try to model
ideal staff size

LCA2
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How Much Architecting is Enough?
- Larger projects need more

Percent of Project Schedule Devoted to 
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

10000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Sweet Spot Drivers:

Rapid Change: leftward

High Assurance: rightward
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Comparison of Cost Model Parameters
Parameter Aspects COSYSMO COSOSIMO

Size drivers # of system requirements
# of system interfaces
# operational scenarios
# algorithms

# of SoS requirements
# of SoS interface protocols
# of constituent systems
# of constituent system organizations
# operational scenarios

“Product” characteristics Size/complexity
Requirements understanding
Architecture understanding
Level of service requirements
# of recursive levels in design
Migration complexity
Technology risk
#/ diversity of platforms/installations
Level of documentation

Size/complexity
Requirements understanding
Architecture understanding
Level of service requirements
Component system maturity and stability

Component system readiness

Process characteristics Process capability
Multi-site coordination
Tool support

Maturity of processes
Tool support
Cost/schedule compatibility
SoS risk resolution

People characteristics Stakeholder team cohesion
Personnel/team capability
Personnel experience/continuity

Stakeholder team cohesion
SoS team capability
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Model-Driven, Service-Oriented, Brownfield Systems
New phenomenology, counting rules

• Product generation from model directives
– Treat as very high level language: count directives

• Model reuse feasibility, multi-model incompatibilit ies
– Use Feasibility Evidence progress tracking measures

• Functional vs. service-oriented architecture mismat ches
– Part-of (one-many) vs. served-by (many-many)

• Brownfield legacy constraints, reverse engineering
– Reverse-engineer legacy code to fit new architectur e
– Elaborate COSYSMO Migration Complexity cost driver
– Elaborate COCOMO II reuse model for reverse enginee ring

May 18, 2009 27Copyright © USC-CSSE
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Failed Greenfield Corporate 
Financial System

• Used waterfall approach
– Gathered requirements
– Chose best-fit ERP system
– Provided remaining enhancements

• Needed to ensure continuity of service
– Planned incremental phase-in of new services

• Failed due to inability to selectively phase out 
legacy services
– Dropped after 2 failed tries at cost of $40M

28Copyright © USC-CSSE
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Budgeting

Legacy Systems Patched, Highly Coupled 
Financial and Non-Financial Services

Legacy Business Services

Contract Services Project Services

Deliverables 
Management

Billing

Staffing

Work Breakdown Structure
Subcontracting

Scheduling

Progress TrackingChange Tracking

Reqs, Configuration Management

Earned Value Management

29 Copyright © USC-CSSE
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ICM Approach to Brownfield Engineering

• Understanding needs
– Analysis of legacy system difficulties

• Envisioning opportunities
– Concurrently decouple legacy financial and non-fina ncial 

services, explore new system phase-in and architect ure 
options

• System scoping and architecting
– Extract legacy financial, non-financial services
– Prioritize, plan for incremental financial services  phase-in/out

• Feasibility evidence development
– Successful examples of representative service extra ctions
– Evidence of cost, schedule, performance feasibility

30Copyright © USC-CSSE
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Legacy Business Services

Contract Services Project Services

Result of Legacy Re-engineering

Contract 
Financial 
Services

•Billing
•Subcontract 
payments
•...

Contract Non-
Financial 
Services

•Deliverables 
mgmt.
•Terms 
compliance
•...

General 
Financial 
Services

•Accountin
g
•Budgeting
•Earned 
value
•Payroll
•...

General Non-
Financial 
Services

•Progress 
tracking
•Change 
tracking
•...

Project 
Financial 
Services

•WBS
•Expenditure 
categories
•...

Project Non-
Financial 
Services

•Scheduling
•Staffing
•Reqs CM
•...

31 Copyright © USC-CSSE
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Always-on, never-fail systems
• Consider using “weighted SLOC” as a productivity met ric
• Some SLOC are “heavier to move into place” than othe rs

– And largely management uncontrollables
– Examples: high values of COCOMO II cost drivers

• RELY: Required Software Reliability 
• DATA: Database Size
• CPLX: Software Complexity
• DOCU: Required Documentation
• RUSE: Required Development for Future Reuse
• TIME: Execution Time Constraint
• STOR: Main Storage Constraint
• SCED: Required Schedule Compression

• Provides way to compare productivities across proje cts
– And to develop profiles of project classes

May 18, 2009 Copyright © USC-CSSE 32
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COSECMO Estimation Trends 
Effort by Assurance Levels for Different Size Proje cts

• Plot of projects where only SECU & effort increasin g drivers
• Efforts seem a little low based on values from Oran ge Book projects
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Balancing Agility and Assurance

• No one-size-fits-all estimation and metrics approac h
– Need compositional approach for both phases and com ponents

• ICM decision table provides criteria for component 
processes, estimation methods, management metrics
– Agile: Planning poker/ Wideband Delphi; story burnd own
– Architected agile: planning and implementation spri nts: agile 

plus FED preparation estimation and progress monito ring
– Mission platforms: hardware, software cost models p lus FED 

preparation estimation and progress monitoring; Lea ding 
Indicators and Macro Risk Tool

– Systems of Systems: composite estimation models; FE D 
estimation and monitoring; extended Macro Risk Tool  

May 18, 2009 Copyright © USC-CSSE 34
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Common Risk-Driven Special Cases of the ICM

Special Case Example Size, 
Complexity

Change Rate 
%
/Month

Criticality NDI Support Org, Personnel 
Capability

Key Stage I Activities : Incremental 
Definition

Key Stage II Activities: Incremental 
Development, Operations

Time per Build;  per 
Increment

1 Use NDI Small Accounting Complete Acquire NDI Use NDI

2 Agile E-services Low 1 – 30 Low-Med Good; 
in place

Agile-ready
Med-high

Skip Valuation , Architecting 
phases

Scrum plus agile methods of 
choice

<= 1 day; 
2-6 weeks

3 Architected Agile Business data 
processing

Med 1 – 10 Med-High Good; 
most in place

Agile-ready
Med-high

Combine Valuation, Architecting 
phases. Complete NDI 
preparation

Architecture-based Scrum of 
Scrums

2-4 weeks; 
2-6 months

4 Formal Methods Security kernel or 
safety-critical LSI 
chip

Low 0.3 – 1 Extra 
high

None Strong formal 
methods 
experience

Precise formal specification Formally-based programming 
language; formal verification

1-5 days;
1-4 weeks

5 HW component 
with embedded 
SW

Multi-sensor 
control device

Low 0.3 – 1 Med-Very 
High

Good; 
In place

Experienced; med-
high

Concurrent HW/SW engineering. 
CDR-level ICM DCR

IOC Development, LRIP, FRP. 
Concurrent Version  N+1 
engineering

SW: 1-5 days; 
Market-driven

6 Indivisible IOC Complete vehicle 
platform

Med –
High 

0.3 – 1 High-Very 
High

Some in place Experienced; med-
high

Determine minimum-IOC likely, 
conservative cost. Add deferrable 
SW features as risk reserve

Drop deferrable features to 
meet conservative cost. 
Strong award fee for features 
not dropped

SW:  2-6 weeks;
Platform: 6-18 
months

7 NDI- Intensive Supply Chain 
Management

Med –
High

0.3 – 3 Med- Very 
High

NDI-driven 
architecture

NDI-experienced; 
Med-high

Thorough NDI-suite life cycle 
cost-benefit analysis, selection, 
concurrent requirements/ 
architecture definition

Pro-active NDI evolution 
influencing, NDI upgrade 
synchronization

SW: 1-4 weeks; 
System: 6-18 
months

8 Hybrid agile / 
plan-driven 
system

C4ISR Med –
Very High 

Mixed parts: 
1 – 10 

Mixed 
parts; 
Med-Very 
High

Mixed parts Mixed parts Full ICM; encapsulated agile in 
high change, low-medium 
criticality parts (Often HMI, 
external interfaces)

Full ICM ,three-team 
incremental development, 
concurrent V&V, next-
increment rebaselining

1-2 months; 
9-18 months

9 Multi-owner 
system of 
systems

Net-centric 
military operations

Very High Mixed parts: 
1 – 10 

Very High Many NDIs; 
some in place

Related 
experience, med-
high

Full ICM; extensive multi-owner 
team building, negotiation

Full ICM; large ongoing 
system/software engineering  
effort

2-4 months; 18-24 
months

10 Family  of 
systems

Medical Device 
Product Line

Med –
Very High

1 – 3 Med –
Very High

Some in place Related 
experience, med –
high

Full ICM; Full stakeholder 
participation in product line 
scoping. Strong business case

Full ICM. Extra resources for 
first system, version control, 
multi-stakeholder support

1-2 months;  9-18 
months

C4ISR: Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance.  CDR: Critical Design Review. 
DCR: Development Commitment Review.  FRP: Full-Rate Production. HMI: Human-Machine Interface. HW: Hard ware.  
IOC: Initial Operational Capability. LRIP: Low-Rate  Initial Production. NDI: Non-Development Item. SW: Software
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Conclusions
• Future trends imply need to concurrently address ne w 

estimation and management metrics challenges
– Emergent requirements, rapid change, net-centric sy stems of 

systems, MDD/SOA/Brownfield, ultrahigh assurance

• Need to work out cost drivers, estimating relations hips 
for new phenomena
– Incremental Development Productivity Decline (IDPD)
– ESLOC and milestone definitions
– Compositional approach for systems of systems
– NDI, model, and service composability
– Re-engineering, migration of legacy systems
– Ultra-reliable systems development
– Cost/schedule tradeoffs

• Need adaptive data collection & analysis feedback c ycle

May 18, 2009 Copyright © USC-CSSE 36
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TRW/COCOMO II Experience Factory: II

Ok?

Rescope

COCOMO II
Corporate parameters:
tools, processes, reuse

System objectives:
fcn’y, perf., quality
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TRW/COCOMO II Experience Factory: IV

Ok?

Rescope

COCOMO II

Recalibrate
COCOMO II

Corporate parameters:
tools, processes, reuse

System objectives:
fcn’y, perf., quality

Execute
project
to next

Milestone
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Done?

End

Revise
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Resources

Evaluate
Corporate
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COCOMO II
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No
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M/S
Results

Yes

Yes

Milestone 
expectations

Improved
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Parameters

N
o

Yes

Cost,
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No
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List of Acronyms

AA Assessment and Assimilation
AAF Adaptation Adjustment Factor

AAM Adaptation Adjustment Modifier
COCOMO Constructive Cost Model
COSOSIMO Constructive System of Systems Integration Cost Model

COSYSMO Constructive Systems Engineering Cost Model
COTS Commercial Off-The-Shelf

CU Cone of Uncertainty
DCR Development Commitment Review

DoD Department of Defense
ECR Exploration Commitment Review

ESLOC Equivalent Source Lines of Code
EVMS Earned Value Management System

FCR Foundations Commitment Review
FDN Foundations, as in FDN Package

FED Feasibility Evidence Description
GD General Dynamics

GOTS Government Off-The-Shelf
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List of Acronyms (continued)

ICM Incremental Commitment Model
IDPD Incremental Development Productivity Decline

IOC Initial Operational Capability
LCA Life Cycle Architecture

LCO Life Cycle Objectives
LMCO Lockheed Martin Corporation

LSI Lead System Integrator
MDA Model-Driven Architecture
NDA Non-Disclosure Agreement

NDI Non-Developmental Item
NGC Northrop Grumman Corporation

OC Operational Capability
OCR Operations Commitment Review

OO Object-Oriented
OODA Observe, Orient, Decide, Act

O&M Operations and Maintenance
PDR Preliminary Design Review

PM Program Manager
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List of Acronyms (continued)

RFP Request for Proposal
SAIC Science Applications international Corporation

SLOC Source Lines of Code
SoS System of Systems

SoSE System of Systems Engineering
SRDR Software Resources Data Report

SSCM Systems and Software Cost Modeling
SU Software Understanding
SW Software

SwE Software Engineering
SysE Systems Engineering

Sys Engr Systems Engineer
S&SE Systems and Software Engineering

ToC Table of Contents
USD (AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics

VCR Validation Commitment Review
V&V Verification and Validation

WBS Work Breakdown Structure
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