
University of Southern California

Center for Systems and Software Engineering

Future Challenges for Software Data
Collection and Analysis

Barry Boehm, USC-CSSE
PROMISE 2009 Keynote

May 18, 2009

University of Southern California

Center for Systems and Software Engineering

Future Software Measurement Challenges
• Emergent requirements

– Example: Virtual global collaboration support syst ems
– Need to manage early concurrent engineering

• Rapid change
– In competitive threats, technology, organizations,

environment

• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model-driven, service-oriented, Brownfield systems
– New phenomenology, counting rules

• Always-on, never-fail systems
– Need to balance agility and discipline

May 18, 2009 2Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Emergent Requirements
– Example: Virtual global collaboration support syst ems

• View sharing, navigation,
modification;agenda
control; access control

• Mix of synchronous and
asynchronous participation

• No way to specify
collaboration support
requirements in advance

• Need greater investments in
concurrent engineering

– of needs, opportunities,
requirements, solutions, plans,
resources

May 18, 2009 3Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

The Broadening Early Cone of Uncertainty (CU)

ConOps Specs/Plans IOC

• Need greater investments in
narrowing CU
– Mission, investment, legacy

analysis
– Competitive prototyping
– Concurrent engineering
– Associated estimation

methods and management
metrics

• Larger systems will often
have subsystems with
narrower CU’s

Global Interactive,
Brownfield

Batch, Greenfield

Local Interactive,
Some Legacy

May 18, 2009Copyright © USC-CSSE 4

X8

X4

X2

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 5

The Incremental Commitment Life Cycle Process: Ove rview
Stage I: Definition Stage II: Development and Operat ions

Anchor Point
Milestones

Anchor Point
Milestones

Synchronize, stabilize concurrency via FEDsSynchronize, stabilize concurrency via FEDs

Risk patterns
determine life
cycle process

Risk patterns
determine life
cycle process

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 6

ICM HSI Levels of Activity for Complex Systems

University of Southern California

Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 7

Nature of FEDs and Anchor Point Milestones

• Evidence provided by developer and validated by independent experts
that:
If the system is built to the specified architecture, it will

– Satisfy the specified operational concept and requi rements
• Capability, interfaces, level of service, and evolu tion

– Be buildable within the budgets and schedules in th e plan
– Generate a viable return on investment
– Generate satisfactory outcomes for all of the succe ss-critical stakeholders

• Shortfalls in evidence are uncertainties and risks
– Should be resolved or covered by risk management pl ans

• Assessed in increasing detail at major anchor point milestones
– Serves as basis for stakeholders’ commitment to proc eed
– Serves to synchronize and stabilize concurrently en gineered elements
– Can be used to strengthen current schedule- or event -based reviews

7

University of Southern California

Center for Systems and Software Engineering

4/15/05 © USC-CSE 8

Key Point: Need to Show Evidence
• Not just traceability matrices and PowerPoint chart s
• Evidence can include results of

– Prototypes: networks, robots, user interfaces, COTS interoperability
– Benchmarks: performance, scalability, accuracy
– Exercises: mission performance, interoperability, s ecurity
– Models: cost, schedule, performance, reliability; t radeoffs
– Simulations: mission scalability, performance, reli ability
– Early working versions: infrastructure, data fusion , legacy compatibility
– Representative past projects
– Combinations of the above

• Validated by independent experts
– Realism of assumptions
– Representativeness of scenarios
– Thoroughness of analysis
– Coverage of key off-nominal conditions

• Much more effort data, product data to collect and analyze

8

University of Southern California

Center for Systems and Software Engineering

9

COSYSMO

Size
Drivers

Effort
Multipliers

Effort

Calibration

Requirements
Interfaces
Scenarios
Algorithms

Volatility Factor

- Application factors
-8 factors

- Team factors
-6 factors

- Schedule driver WBS guided by
ISO/IEC 15288

COSYSMO Operational Concept

May 18, 2009 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

10

4. Rate Cost Drivers -
Application

University of Southern California

Center for Systems and Software Engineering

Next-Generation Systems Challenges

• Emergent requirements
– Example: Virtual global collaboration support syst ems
– Need to manage early concurrent engineering

• Rapid change
– In competitive threats, technology, organizations,

environment

• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model-driven, service-oriented, Brownfield systems
– New phenomenology, counting rules

• Always-on, never-fail systems
– Need to balance agility and discipline

11

University of Southern California

Center for Systems and Software Engineering

Copyright © USC-CSSE 12May 18, 2009

Rapid Change Creates a Late Cone of Uncertainty
– Need evolutionary/incremental vs. one-shot develop ment

- - No simple boundary between development and mainte nance
Uncertainties in competition,

technology, organizations,
mission priorities

University of Southern California

Center for Systems and Software Engineering

Incremental Development Productivity Decline (IDPD)

• Example: Site Defense BMD Software
– 5 builds, 7 years, $100M
– Build 1 productivity over 300 SLOC/person month
– Build 5 productivity under 150 SLOC/PM

• Including Build 1-4 breakage, integration, rework
• 318% change in requirements across all builds
• IDPD factor = 20% productivity decrease per build

– Similar trends in later unprecedented systems
– Not unique to DoD: key source of Windows Vista dela ys

• Maintenance of full non-COTS SLOC, not ESLOC
– Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLO C
– Build 2: 400 KSLOC of Build 1 software to maintain, integrate

May 18, 2009 13Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

“Equivalent SLOC” Paradoxes

• Not a measure of software size
• Not a measure of software effort
• Not a measure of delivered software capability
• A quantity derived from software component sizes

and reuse factors that helps estimate effort
• Once a product or increment is developed, its

ESLOC loses its identity
– Its size expands into full SLOC
– Some people apply reuse factors to this to determin e an

ESLOC quantity for the next increment
• But this has no relation to the product’s size

May 18, 2009 Copyright © USC-CSSE 14

University of Southern California

Center for Systems and Software Engineering

IDPD Cost Drivers:
Conservative 4-Increment Example

• Some savings: more experienced personnel (5-20%)
• Depending on personnel turnover rates

• Some increases: code base growth, diseconomies of
scale, requirements volatility, user requests

• Breakage, maintenance of full code base (20-40%)
• Diseconomies of scale in development, integration

(10-25%)
• Requirements volatility; user requests (10-25%)

• Best case: 20% more effort (IDPD=6%)
• Worst case: 85% (IDPD=23%)

May 18, 2009 15Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Effects of IDPD on Number of Increments

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

1 2 3 4 5 6 7 8

Build

Cumulative
 KSLOC

0% productivity decline
10% productivity decline
15% productivity decline
20% productivity decline

• Model relating productivity decline to
number of builds needed to reach 8M
SLOC Full Operational Capability

• Assumes Build 1 production of 2M SLOC
@ 100 SLOC/PM
– 20000 PM/ 24 mo. = 833 developers
– Constant staff size for all builds

• Analysis varies the productivity decline
per build
– Extremely important to determine the

incremental development
productivity decline (IDPD) factor per
build

2M

8M

SLOC

May 18, 2009 16Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Choosing and Costing
Incremental Development Forms

Copyright © USC-CSSE 17

Type Examples Pros Cons Cost Estimation

Evolutionary
Sequential

Small: Agile
Large: Evolutionary

Development

Adaptability to
change

Easiest-first; late,
costly breakage

Small: Planning-poker-type
Large: Parametric with IDPD

Prespecified
Sequential

Platform base plus
PPPIs

Prespecifiable
full-capability
requirements

Emergent
requirements or

rapid change

COINCOMO with no increment
overlap

Overlapped
Evolutionary

Product lines with
ultrafast change

Modular product
line

Cross-increment
breakage

Parametric with IDPD and
Requirements Volatility

Rebaselining
Evolutionary

Mainstream
product lines;

Systems of
systems

High assurance
with rapid change

Highly coupled
systems with

very rapid change

COINCOMO, IDPD for
development; COSYSMO for

rebaselining

IDPD: Incremental Development Productivity Decline, due to earlier increments breakage, increasing
code base to integrate

PPPIs: Pre-Planned Product Improvements

COINCOMO: COCOMO Incremental Development Model (CO COMO II book, Appendix B)

COSYSMO: Systems Engineering Cost Model (in-process COSYSMO book)

All Cost Estimation approaches also include expert- judgment cross-check.

May 18, 2009

University of Southern California

Center for Systems and Software Engineering

Next-Generation Systems Challenges

• Emergent requirements
– Example: Virtual global collaboration support syst ems
– Need to manage early concurrent engineering

• Rapid change
– In competitive threats, technology, organizations,

environment

• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model-driven, service-oriented, Brownfield
systems
– New phenomenology, counting rules

• Always-on, never-fail systems
– Need to balance agility and disciplineMay 18, 2009 18Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Further Attributes of Future Challenges

Copyright © USC-CSSE 19

Type Examples Pros Cons Cost Estimation

Systems of
Systems

•Directed: Future
Combat Systems

•Acknowledged:
Missile Defense
Agency

•Interoperability
•Rapid Observe-
Orient-Decide-
Act (OODA) loop

•Often-conflicting partner
priorities

•Change processing very
complex

•Staged hybrid models
•Systems engineering: COSYSMO
•Multi-organization development
costing

•Lead Systems integrator costing
•Requirements volatility effects

•Integration&test: new cost
drivers

Model-Driven

Development

•Business 4th-
generation
languages (4GLs)

•Vehicle-model
driven
development

•Cost savings
•User-
development
advantages

•Fewer error
sources

•Multi-model composition
incapabilities

•Model extensions for
special cases (platform-
payload)

•Brownfield complexities
•User-development V&V

•Models directives as 4GL
source code

•Multi-model composition
similar to COTS integration,
Brownfield integration

Brownfield

•Legacy C4ISR
System

•Net-Centric
weapons platform

•Multicore-CPU
upgrades

•Continuity of
service

•Modernization of
infrastructure

•Ease of
maintenance

•Legacy re-engineering
often complex

•Mega-refactoring often
complex

•Models for legacy re-
engineering, mega-refactoring

•Reuse model for refactored
legacy

May 18, 2009

University of Southern California

Center for Systems and Software Engineering

Further Attributes of Future Challenges
(Continued)

©USC-CSSE 20

Type Examples Pros Cons Cost Estimation

Ultrareliable
Systems

•Safety-critical
systems

•Security-critical
systems

•High-
performance real-
time systems

•System
resilence,
survivability

•Service-oriented
usage
opportunities

•Conflicts among
attribute
objectives

•Compatibility with
rapid change

•Cost model extensions for added
assurance levels

•Change impact analysis models

Competitive
Prototyping

•Stealth vehicle
fly-offs

•Agent-based
RPV control

•Combinations of
challenges

•Risk buy-down
•Innovation
modification

•In-depth
exploration of
alternatives

•Competitor
evaluation often
complex

•Higher up-front
cost

•But generally
good ROI

•Tech-leveling
avoidance often
complex

•Competition preparation,
management costing

•Evaluation criteria, scenarios, testbeds

•Competitor budget estimation
•Virtual, proof-of-principle, robust
prototypes

May 18, 2009 20Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Net-Centric Systems of Systems Challenges

• Need for rapid adaptation to change
– See first, understand first, act first, finish deci sively

• Built-in authority-responsibility mismatches
– Increasing as authority decreases through Directed,

Acknowledged, Collaborative, and Virtual SoS classe s
• Incompatible element management chains, legacy

constraints, architectures, service priorities, dat a,
operational controls, standards, change priorities. ..

• High priority on leadership skills, collaboration
incentives, negotiation support such as cost models
– SoS variety and complexity makes compositional cost

models more helpful than one-size-fits-all models

May 18, 2009 21Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009

Source
Selection

●

●

●

ValuationExploration Architecting Develop Operation

ValuationExploration Architecting Develop Operation

ValuationExploration Architecting Develop Operation

OperationDevelop Operation Operation Operation

System A

System B

System C

System x

LCO-type
Proposal &
Feasibility

Info

Candidate Supplier/
Strategic Partner n

●

●

●

Candidate Supplier/
Strategic Partner 1

SoS-Level ValuationExploration Architecting Develop

FCR1 DCR1

Operation

OCR1

Rebaseline/
Adjustment FCR 1 OCR2

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

•••• •••• ••••

OCRx1

FCRB DCRB OCRB1

FCRA DCRA

FCRC DCRC OCRC1

OCRx2 OCRx3 OCRx4 OCRx5

OCRC2

OCRB2

OCRA1

Example: SoSE Synchronization Points

22 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

©USC-CSSE 23

Average Change Processing Time:
Two Complex Systems of Systems

Average workdays
to process

changes

0

20

40

60

80

100

120

140

160

Within
Groups

Across
Groups

Contract
Mods

Incompatible with turning within adversary’s OODA l oop

03/19/2008May 18, 2009 23Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Compositional approaches: Directed systems of syste ms

Customer,
Users

LSI –
Agile

LSI IPTs –
Agile

Suppliers –
Agile

Suppliers –
PD – V&V

LSI –
Integrators

RFP, SOW,
Evaluations

,
Contracting

Effort/Staff

Proposals

Similar, with
added change
traffic from
users…

A
s
s
e
s
s

c
o
m
p
a
ti
b
il
it
y
,
s
h
o
rt
-

fa
ll
s

R
e
w
o
rk
 L
C
O
 →→ →→

L
C
A

P
a
c
k
a
g
e
s
 a
t
a
ll
 l
e
v
e
ls

COSOSIMO
-like

Assess
sources of
change;
Negotiate
rebaselined

LCA2

package at
all levels

COSOSIMO
-like

Similar, with
added re-

baselineing risks
and rework…

Inception
Elaboration

Source SoS
Selection Architecting

Increment 1 Increments
2,… n

Develop to
spec, V&VCORADMO

-like

Degree of
Completene

ss

risks,
rework

Proposal
Feasibility

LCO LCA

LCA1

IOC1

Effort/staff
at all levels

risks,
rework

Risk-manage
slow-

performer,
completeness

risks,
rework

Integrate

COSOSIMO
-like

LCA2 shortfalls

risks,
rework

Effort COSYSMO-like.

Schedule =
Effort/Staff

Try to model
ideal staff size

LCA2

May 18, 2009 24Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 25

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Percent of Time Added for Architecture and
Risk Resolution

P
er

ce
nt

 o
f T

im
e

A
dd

ed
 to

 O
ve

ra
ll

S
ch

ed
ul

e

How Much Architecting is Enough?
- Larger projects need more

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

10000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Sweet Spot Drivers:

Rapid Change: leftward

High Assurance: rightward

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 26

Comparison of Cost Model Parameters
Parameter Aspects COSYSMO COSOSIMO

Size drivers # of system requirements
of system interfaces
operational scenarios
algorithms

of SoS requirements
of SoS interface protocols
of constituent systems
of constituent system organizations
operational scenarios

“Product” characteristics Size/complexity
Requirements understanding
Architecture understanding
Level of service requirements
of recursive levels in design
Migration complexity
Technology risk
#/ diversity of platforms/installations
Level of documentation

Size/complexity
Requirements understanding
Architecture understanding
Level of service requirements
Component system maturity and stability

Component system readiness

Process characteristics Process capability
Multi-site coordination
Tool support

Maturity of processes
Tool support
Cost/schedule compatibility
SoS risk resolution

People characteristics Stakeholder team cohesion
Personnel/team capability
Personnel experience/continuity

Stakeholder team cohesion
SoS team capability

University of Southern California

Center for Systems and Software Engineering

Model-Driven, Service-Oriented, Brownfield Systems
New phenomenology, counting rules

• Product generation from model directives
– Treat as very high level language: count directives

• Model reuse feasibility, multi-model incompatibilit ies
– Use Feasibility Evidence progress tracking measures

• Functional vs. service-oriented architecture mismat ches
– Part-of (one-many) vs. served-by (many-many)

• Brownfield legacy constraints, reverse engineering
– Reverse-engineer legacy code to fit new architectur e
– Elaborate COSYSMO Migration Complexity cost driver
– Elaborate COCOMO II reuse model for reverse enginee ring

May 18, 2009 27Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009

Failed Greenfield Corporate
Financial System

• Used waterfall approach
– Gathered requirements
– Chose best-fit ERP system
– Provided remaining enhancements

• Needed to ensure continuity of service
– Planned incremental phase-in of new services

• Failed due to inability to selectively phase out
legacy services
– Dropped after 2 failed tries at cost of $40M

28Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009

Budgeting

Legacy Systems Patched, Highly Coupled
Financial and Non-Financial Services

Legacy Business Services

Contract Services Project Services

Deliverables
Management

Billing

Staffing

Work Breakdown Structure
Subcontracting

Scheduling

Progress TrackingChange Tracking

Reqs, Configuration Management

Earned Value Management

29 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009

ICM Approach to Brownfield Engineering

• Understanding needs
– Analysis of legacy system difficulties

• Envisioning opportunities
– Concurrently decouple legacy financial and non-fina ncial

services, explore new system phase-in and architect ure
options

• System scoping and architecting
– Extract legacy financial, non-financial services
– Prioritize, plan for incremental financial services phase-in/out

• Feasibility evidence development
– Successful examples of representative service extra ctions
– Evidence of cost, schedule, performance feasibility

30Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009

Legacy Business Services

Contract Services Project Services

Result of Legacy Re-engineering

Contract
Financial
Services

•Billing
•Subcontract
payments
•...

Contract Non-
Financial
Services

•Deliverables
mgmt.
•Terms
compliance
•...

General
Financial
Services

•Accountin
g
•Budgeting
•Earned
value
•Payroll
•...

General Non-
Financial
Services

•Progress
tracking
•Change
tracking
•...

Project
Financial
Services

•WBS
•Expenditure
categories
•...

Project Non-
Financial
Services

•Scheduling
•Staffing
•Reqs CM
•...

31 Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

Always-on, never-fail systems
• Consider using “weighted SLOC” as a productivity met ric
• Some SLOC are “heavier to move into place” than othe rs

– And largely management uncontrollables
– Examples: high values of COCOMO II cost drivers

• RELY: Required Software Reliability
• DATA: Database Size
• CPLX: Software Complexity
• DOCU: Required Documentation
• RUSE: Required Development for Future Reuse
• TIME: Execution Time Constraint
• STOR: Main Storage Constraint
• SCED: Required Schedule Compression

• Provides way to compare productivities across proje cts
– And to develop profiles of project classes

May 18, 2009 Copyright © USC-CSSE 32

University of Southern California

Center for Systems and Software Engineering

33 May 18, 2009Copyright © USC-CSSE

COSECMO Estimation Trends
Effort by Assurance Levels for Different Size Proje cts

• Plot of projects where only SECU & effort increasin g drivers
• Efforts seem a little low based on values from Oran ge Book projects

-

500.00

1,000.00

1,500.00

2,000.00

2,500.00

1 2 3 4 5 6 7

EAL

E
ffo

rt
(P

M
)

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

University of Southern California

Center for Systems and Software Engineering

Balancing Agility and Assurance

• No one-size-fits-all estimation and metrics approac h
– Need compositional approach for both phases and com ponents

• ICM decision table provides criteria for component
processes, estimation methods, management metrics
– Agile: Planning poker/ Wideband Delphi; story burnd own
– Architected agile: planning and implementation spri nts: agile

plus FED preparation estimation and progress monito ring
– Mission platforms: hardware, software cost models p lus FED

preparation estimation and progress monitoring; Lea ding
Indicators and Macro Risk Tool

– Systems of Systems: composite estimation models; FE D
estimation and monitoring; extended Macro Risk Tool

May 18, 2009 Copyright © USC-CSSE 34

University of Southern California

Center for Systems and Software Engineering

Copyright © USC-CSSE 35May 18, 2009

Common Risk-Driven Special Cases of the ICM

Special Case Example Size,
Complexity

Change Rate
%
/Month

Criticality NDI Support Org, Personnel
Capability

Key Stage I Activities : Incremental
Definition

Key Stage II Activities: Incremental
Development, Operations

Time per Build; per
Increment

1 Use NDI Small Accounting Complete Acquire NDI Use NDI

2 Agile E-services Low 1 – 30 Low-Med Good;
in place

Agile-ready
Med-high

Skip Valuation , Architecting
phases

Scrum plus agile methods of
choice

<= 1 day;
2-6 weeks

3 Architected Agile Business data
processing

Med 1 – 10 Med-High Good;
most in place

Agile-ready
Med-high

Combine Valuation, Architecting
phases. Complete NDI
preparation

Architecture-based Scrum of
Scrums

2-4 weeks;
2-6 months

4 Formal Methods Security kernel or
safety-critical LSI
chip

Low 0.3 – 1 Extra
high

None Strong formal
methods
experience

Precise formal specification Formally-based programming
language; formal verification

1-5 days;
1-4 weeks

5 HW component
with embedded
SW

Multi-sensor
control device

Low 0.3 – 1 Med-Very
High

Good;
In place

Experienced; med-
high

Concurrent HW/SW engineering.
CDR-level ICM DCR

IOC Development, LRIP, FRP.
Concurrent Version N+1
engineering

SW: 1-5 days;
Market-driven

6 Indivisible IOC Complete vehicle
platform

Med –
High

0.3 – 1 High-Very
High

Some in place Experienced; med-
high

Determine minimum-IOC likely,
conservative cost. Add deferrable
SW features as risk reserve

Drop deferrable features to
meet conservative cost.
Strong award fee for features
not dropped

SW: 2-6 weeks;
Platform: 6-18
months

7 NDI- Intensive Supply Chain
Management

Med –
High

0.3 – 3 Med- Very
High

NDI-driven
architecture

NDI-experienced;
Med-high

Thorough NDI-suite life cycle
cost-benefit analysis, selection,
concurrent requirements/
architecture definition

Pro-active NDI evolution
influencing, NDI upgrade
synchronization

SW: 1-4 weeks;
System: 6-18
months

8 Hybrid agile /
plan-driven
system

C4ISR Med –
Very High

Mixed parts:
1 – 10

Mixed
parts;
Med-Very
High

Mixed parts Mixed parts Full ICM; encapsulated agile in
high change, low-medium
criticality parts (Often HMI,
external interfaces)

Full ICM ,three-team
incremental development,
concurrent V&V, next-
increment rebaselining

1-2 months;
9-18 months

9 Multi-owner
system of
systems

Net-centric
military operations

Very High Mixed parts:
1 – 10

Very High Many NDIs;
some in place

Related
experience, med-
high

Full ICM; extensive multi-owner
team building, negotiation

Full ICM; large ongoing
system/software engineering
effort

2-4 months; 18-24
months

10 Family of
systems

Medical Device
Product Line

Med –
Very High

1 – 3 Med –
Very High

Some in place Related
experience, med –
high

Full ICM; Full stakeholder
participation in product line
scoping. Strong business case

Full ICM. Extra resources for
first system, version control,
multi-stakeholder support

1-2 months; 9-18
months

C4ISR: Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance. CDR: Critical Design Review.
DCR: Development Commitment Review. FRP: Full-Rate Production. HMI: Human-Machine Interface. HW: Hard ware.
IOC: Initial Operational Capability. LRIP: Low-Rate Initial Production. NDI: Non-Development Item. SW: Software

University of Southern California

Center for Systems and Software Engineering

Conclusions
• Future trends imply need to concurrently address ne w

estimation and management metrics challenges
– Emergent requirements, rapid change, net-centric sy stems of

systems, MDD/SOA/Brownfield, ultrahigh assurance

• Need to work out cost drivers, estimating relations hips
for new phenomena
– Incremental Development Productivity Decline (IDPD)
– ESLOC and milestone definitions
– Compositional approach for systems of systems
– NDI, model, and service composability
– Re-engineering, migration of legacy systems
– Ultra-reliable systems development
– Cost/schedule tradeoffs

• Need adaptive data collection & analysis feedback c ycle

May 18, 2009 Copyright © USC-CSSE 36

University of Southern California

Center for Systems and Software Engineering

37

TRW/COCOMO II Experience Factory: II

Ok?

Rescope

COCOMO II
Corporate parameters:
tools, processes, reuse

System objectives:
fcn’y, perf., quality

Execute
project
to next

Milestone

Ok?

Done?

End

Revise
Milestones,

Plans,
Resources

No

Revised
Expectations

M/S
Results

Yes

Yes

Milestone
expectations

N
o

Yes

Cost,
Sched,
Risks

No

Milestone plans,
resources

May 18, 2009 37Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

38

TRW/COCOMO II Experience Factory: IV

Ok?

Rescope

COCOMO II

Recalibrate
COCOMO II

Corporate parameters:
tools, processes, reuse

System objectives:
fcn’y, perf., quality

Execute
project
to next

Milestone

Ok?

Done?

End

Revise
Milestones,

Plans,
Resources

Evaluate
Corporate

SW
Improvement

Strategies

Accumulate
COCOMO II
calibration

data

No

Revised
Expectations

M/S
Results

Yes

Yes

Milestone
expectations

Improved
Corporate

Parameters

N
o

Yes

Cost,
Sched,
Risks

Cost, Sched,
Quality
drivers

No

Milestone plans,
resources

May 18, 2009 38Copyright © USC-CSSE

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 39

References
Boehm, B., “Some Future Trends and Implications for Systems and Software Engineering Processes”,

Systems Engineering 9(1), pp. 1-19, 2006.
Boehm, B. and Lane J., "21st Century Processes for Acquiring 21st Century Software-Intensive Systems o f

Systems." CrossTalk: Vol. 19, No. 5, pp.4-9, 2006.
Boehm, B., and Lane, J., “Using the ICM to Integrat e System Acquisition, Systems Engineering, and

Software Engineering,” CrossTalk, October 2007, pp. 4-9.
Boehm, B., Brown, A.W.. Clark, B., Madachy, R., Rei fer, D., et al., Software Cost Estimation with COCOMO II,

Prentice Hall, 2000.
Dahmann, J. (2007); “ Systems of Systems Challenges for Systems Engineering”, Systems and Software

Technology Conference, June 2007.

Department of Defense (DoD), Defense Acquisition Guidebook, version 1.6, http://akss.dau.mil/dag/, 2006.
Department of Defense (DoD), Instruction 5000.2, Operation of the Defense Acquisition System, May 2003.
Department of Defense (DoD), Systems Engineering Plan Preparation Guide, USD(AT&L), 2004.
Galorath, D., and Evans, M., Software Sizing, Estim ation, and Risk Management, Auerbach, 2006.
Lane, J. and Boehm, B., “Modern Tools to Support Do D Software-Intensive System of Systems Cost

Estimation, DACS State of the Art Report, also Tech Report USC-CSSE-2007-716
Lane, J., Valerdi, R., “Synthesizing System-of-Syst ems Concepts for Use in Cost Modeling,” Systems

Engineering, Vol. 10, No. 4, December 2007.
Madachy, R., “Cost Model Comparison,” Proceedings 21 st, COCOMO/SCM Forum, November, 2006,

http://csse.usc.edu/events/2006/CIIForum/pages/prog ram.html
Maier, M., “Architecting Principles for Systems-of- Systems”; Systems Engineering, Vol. 1, No. 4 (pp 267-

284).
Northrop, L., et al., Ultra-Large-Scale Systems: The Software Challenge of the Future, Software

Engineering Institute, 2006.
Reifer, D., “Let the Numbers Do the Talking,” CrossTalk, March 2002, pp. 4-8.
Valerdi, R, Systems Engineering Cost Estimation with COSYSMO, Wiley, 2009 (to appear)

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 40

List of Acronyms

AA Assessment and Assimilation
AAF Adaptation Adjustment Factor

AAM Adaptation Adjustment Modifier
COCOMO Constructive Cost Model
COSOSIMO Constructive System of Systems Integration Cost Model

COSYSMO Constructive Systems Engineering Cost Model
COTS Commercial Off-The-Shelf

CU Cone of Uncertainty
DCR Development Commitment Review

DoD Department of Defense
ECR Exploration Commitment Review

ESLOC Equivalent Source Lines of Code
EVMS Earned Value Management System

FCR Foundations Commitment Review
FDN Foundations, as in FDN Package

FED Feasibility Evidence Description
GD General Dynamics

GOTS Government Off-The-Shelf

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 41

List of Acronyms (continued)

ICM Incremental Commitment Model
IDPD Incremental Development Productivity Decline

IOC Initial Operational Capability
LCA Life Cycle Architecture

LCO Life Cycle Objectives
LMCO Lockheed Martin Corporation

LSI Lead System Integrator
MDA Model-Driven Architecture
NDA Non-Disclosure Agreement

NDI Non-Developmental Item
NGC Northrop Grumman Corporation

OC Operational Capability
OCR Operations Commitment Review

OO Object-Oriented
OODA Observe, Orient, Decide, Act

O&M Operations and Maintenance
PDR Preliminary Design Review

PM Program Manager

University of Southern California

Center for Systems and Software Engineering

May 18, 2009 Copyright © USC-CSSE 42

List of Acronyms (continued)

RFP Request for Proposal
SAIC Science Applications international Corporation

SLOC Source Lines of Code
SoS System of Systems

SoSE System of Systems Engineering
SRDR Software Resources Data Report

SSCM Systems and Software Cost Modeling
SU Software Understanding
SW Software

SwE Software Engineering
SysE Systems Engineering

Sys Engr Systems Engineer
S&SE Systems and Software Engineering

ToC Table of Contents
USD (AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics

VCR Validation Commitment Review
V&V Verification and Validation

WBS Work Breakdown Structure

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

