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The interpretation of forensic evidence using a likelihood ratio

By D. M. GROVE
Department of Mathematical Statistics, University of Birmingham

SUMMARY

Forensic scientists often have to interpret refractive index measurements made on
fragments of window glass, some taken from the scene of a crime and some found on a
suspect. Adopting a model used recently by Lindley (1977) and Seheult (1978) this contri-
bution proposes a non-Bayesian solution based on a likelihood ratio. The problem of deciding
whether the fragments have come from a common source is distinguished from the problem
of deciding the guilt or innocence of the suspect.

Some key words: Error probability ; Forensic science; Identification; Likelihood ratio; Maximum likeli-
hood; Nuisance parameter.

1. INTRODUCTION

Lindley (1977) and Seheult (1978) have discussed the following problem in forensic science.
A window is broken at the scene of a crime. Fragments of glass are found in the clothing of
a suspect, and measurements are made of their refractive index. Measurements are also
made on fragments from the broken window. What evidence concerning the guilt of the
suspect do the measurements provide ?

We adopt the assumptions and notation introduced by Lindley. Measurements are normally
distributed with known variance o2 about a mean value 6, characteristic of the window
from which the fragment was taken. The mean for the scene window is 6,, and for the
fragments from the suspect 8,. The latter fragments are assumed to be window glass and, for
the present, to come from a single source. The sample sizes for scene and suspect are m and
n, and the sample means X and Y, respectively. The distribution of 8 over all windows will
be taken to be normal N(u,7?) with p and = known. This assumption is unrealistic but leads
to a simple solution of which the implications can be easily understood. Lindley considers
the hypotheses I, that the two sets of fragments come from a common source, and its
complement I. Given I, 8, = 6, is assumed to have the distribution of 8 over all windows.
Given I, 6, and 6, are assigned this distribution independently. Lindley derives the likelihood
ratio for I versus I. Although his results are presented in a Bayesian context, he also gives a
table of error probabilities for a decision rule of the form ‘decide guilty if the likelihood
ratio exceeds %’, for a range of values of k.

Seheult points out that the distributions assigned to 6, and 6, are potentially based on
objective information and suggests that they be formally incorporated into I and I, which
become simple hypotheses. Lindley’s rule then provides the most powerful test, in the usual
Neyman—Pearson sense, of I versus I, and thus need not be regarded as characteristically
Bayesian. An unstated consequence of Seheult’s argument is that Lindley’s Table 2 can be
read as a selection of values of («,8), where « is the size and 1 —pj the power of the test.

The present contribution has two purposes. The first is to argue the case for, and examine
the consequences of, treating 6, and 6, asymmetrically, given I. This approach leads to a
decision rule which is in general different from Lindley’s, although in an important special
case their properties are approximately the same. The second purpose is to examine the
relationship between evidence concerning I and evidence concerning @, the event that the



244 Miscellanea

suspect is guilty. This clarifies the role played by the assumption of a single source for Y.
It also shows that none of the approaches so far suggested, including the present one, can
be regarded as solving the problem of deciding between G' and @.

2. IDENTITY AND NONIDENTITY

In discussing the respective roles of 8, and 6, we start from the premise that an orthodox
non-Bayesian approach to a statistical problem requires that we do not attribute a proba-
bility distribution to an unknown parameter without special justification. In the present
example, provided the person is suspected for reasons not connected with the discovery of
the particular set of fragments, and no information is offered as to their source, I can be
interpreted as saying that the fragments came to be present ‘by chance’, entailing a random
choice of value for §,. There is no corresponding argument for regarding the value of 6, as
randomly chosen.

This argument leads us to regard 6, as a nuisance parameter, which in the Bayesian
approach is integrated out by reference to a prior distribution. There are several other ways
in which 6; could be eliminated. We could consider p(Y |6,)/p(Y), where

p(Y) = f P(Y]6,) p(6;) 46,

and use X, a ‘reliable’ estimate of 6, under both hypotheses, to estimate ;. Or, denoting
the observations from the scene by {z;} (i =1,...,m), those from the suspect by {y;}
(4 =1,...,n) and the overall mean by W, we could consider a ratio of marginal likelihoods,
suitable ancillary statistics being {x;— W} (¢ = 1,...,m) and {y,— W} (j = 1,...,n) under I,
{r,— X} and {y;} under I. Since under each hypothesis the ancillaries are independent of the
sufficient statistic for ;, these marginal likelihoods are also conditional likelihoods.

An alternative approach, which we pursue here, is to consider p(X, Y |I,6,)/p(X, Y |1,6,),
where p(X, Y|1,0,) = p(X |6,)p(Y|6,) and p(X, Y|, 6,) = p(X|6,)p(Y), and to replace 6,
by its maximum likelihood estimate under each hypothesis, i.e. by W and X respectively.
The resulting likelihood ratio is

aoay 2a2 o2 202

0% ep{ - E=TF (Y"‘)Z}, (1)

where 02 = o2/m, 0} = 2+ 0?n, 6 = o%/(m+n) and a® = 1/m +1/n.

Lindley assumes, realistically, that = is much larger than ¢. For further simplification we
can take m = n, and absorb the sample size into the definition of o. These assumptions lead
to the following approximate form of (1)

oo E= TP (T =g
P { T4 T )
This is very similar in form to Lindley’s expression
- o7, (o)
;\Té exp { bt 102 + 2.2 ’ (3)

where Z = §(X +Y). Each contains a term which corresponds to the usual test of the
hypothesis that 6, = 6, against a general alternative, together with a term which increases
the likelihood ratio in favour of identity when the observed refractive indices are unusual.
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It turns out that when (2) and (3) are used as the basis of decision rules, their properties are
approximately the same. In the spirit of our earlier discussion we show this for fixed 6,.

We assume (2) to be used in the form: decide I if (2) exceeds K, while (3) is used in the
form: decide I if (3) exceeds k. Given I, and taking K = k42, an error is made if

—p ot 4 > log (ko 2), “

where ¢ is approximately N(§,1), § = (6; —p)/r and 7 is approximately N(0,4) for (2) and
N8, 1) for (3). To a good approximation » can be neglected in both cases.
Given I, an error is made if

— 1824 In2<log (ko 2/7), (5)

where £ is N(0, 1) and 7 is N (8, 0?/7%) for (2) and N(8, $02/72) for (3). In this instance » cannot
be neglected for all §;, but as an alternative we can replace 4n? by its expectation. The
neglecting of terms in o?/72 leads to the same expression in both cases.

In the light of this approximate equivalence we can interpret the values in Lindley’s
Table 2 as approximate average error probabilities for a rule based on (2), the average
being with respect to the distribution of ; in the population of all windows. This average
may or may not be of practical interest: it is possible that windows which tend to be broken
in the course of a crime have a distribution of 8, very different from that in the whole
population. If we look at the problem for a given value of §, it is of interest to know the
maximum values taken by the error probabilities as 8, varies. Using (5), the maximum
probability of wrongly deciding I occurs when 6, = u. If we use (4), and neglect 72, the
maximum probability of wrongly deciding 7 also occurs when 6, = pu.

These approximate maximum error probabilities are given in Table 1 for the range of %
examined by Lindley. We take /o = 100 and 200; the latter case can be thought of as
corresponding to a more diffuse distribution of refractive index over all windows, or to a
more precise method of determining refractive index, or to having more fragments in both
samples. These values are roughly 509, larger than the corresponding ‘average’ values given
by Lindley.

Table 1. Approximate maximum error probabilities for a decision rule based on (2) or (3)

7/o k=1 k=2 k=4 k=38 k=16 k=32 k=64 k=128

100 ‘pr(decide 7 |I)  0-003 0-008 0-017 0-037 0-085 0-208 0-655 1-0
pr(decide I |I)  0-033 0-030 0-027 0-024 0-020 0-014 0-005 0-:000

200 pr(decide I |I)  0-002 0-003 0-008 0-017 0-037 0-085 0-208 0-655
pr(decide I |I)  0-018 0-017 0-015 0-014 0-012 0-010 0-007 0-003

3. GUILTY OR NOT GUILTY?

We are of course only concerned with the evidence about I in so far as it has a bearing on
the guilt or innocence of the suspect. The real quantity of interest to the Bayesian is
p(X, Y |@)/p(X, Y|G) and from the point of view of §2 is

maxp(X, Y |@&,0,)/maxp(X, Y|G,0,).
61 61

We define the event T, that fragments were transferred from the broken window to the
suspect and persisted there until discovery by the police, and 4, that the suspect came into
contact with glass from some other source. We can write p(X, Y |G) as

p(X,Y|T,4,6)p(T, 4| +p(X, Y|T,4,0)p(T, A|G)+pX, Y |T, 4, p(T,4|6), (6)
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with a similar expression for p(X,Y|G). Assuming that p(4|G)=p(4|@F) =p,, say,
p(T|G) = pp, A and T are independent given G and that p(7 | Q) is effectively zero, we have
that

p(X,Y|G)=p(X,Y|T,Z) (I—PA)pT p(X,Y|T,A)pT B
PX 0 X TITA)  pa | a&TIT,4) TP (7)

There is no reason to suppose that the second term in (7) can in general be ignored. We may,
though, be prepared to make our judgements about G on the assumption that S, the event
that fragments from a single source are found on the suspect, has occurred. Now

p(@1X,Y,8) _pX,Y,8|G)p(G) (8)
p(@|X,Y,8) pX,Y,8|G)p@)

and since § = (T'nA)u(Tn A), p(X,Y,S|G) is given by omitting the second term from (6)
and the likelihood ratio by omitting the second term from (7). Here 7'n 4 and T n A specify
the same conditions as I and I respectively, and although they are not complementary in
the wider context of this section, it is useful to retain Lindley’s notation; we can then write

p(X, ¥,816) nLTID_ ) )

P(X,Y,80) ”pf{(”l"”mx, Y IT)

Thus the likelihood ratio for I versus I need not give even an approximate indication of the
value of (9). D. W. Smith, in an unpublished M.Sc. dissertation, examined the following
data arising from a case in the Birmingham area:

Fragments from scene window: 1-518255, 1-518199, 1-518273, 1-518292, 1-518273,
1-518292, 1-518255, 1-518392.

Fragments found on suspect: 1-518273, 1-518347, 1-518119, 1-518218, 1-518283,
1-518338, 1-518246, 1-518255.

Using a method equivalent to Lindley’s, but with a ‘prior’ distribution based on data
collected by the Home Office Central Research Establishment, he obtained the value 116-5
for p(X, Y |I)/p(X, Y|I). Even if we fix p 4 at 0-01 say, the value of (9) can vary from about 1,
if p, is very small, to over 104, if p, is close to 1. It seems likely that realistic estimates of
pp and p, would be difficult to obtain in practice. A similar problem will of course occur in
the evaluation of

maxp(X, ¥,8|G,8,)/maxp(X, Y,8|G,6,).
01 01

The author is grateful to Mr I. W. Evett, who has derived expressions similar to (7) in
unpublished work, and to a referee for helpful suggestions.
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