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even when a small proportion of contamination by the wider component occurs. The

contaminated normal is used to exemplify a ‘good’ distribution affected by outliers rather
than as a ‘typical’ distribution with long tails.
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On a problem in forensic science
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SUMMARY

A Neyman-Pearson test of identification in forensic science is shown to reflect all the

properties of a Bayes factor approach presented by D. V. Lindley in a previous volume of
this journal.

Some key words: Bayes factor; Forensic science; Hypothesis testing; Identification.

Recently Lindley (1977) discussed a problem in forensic science of deciding whether two
sets of fragments have come from a common source. A typical situation is where measure-
ments are made of the refractive indices of pieces of window glass at the scene of a crime and
of fragments of glass found on a suspect’s clothing. It is argued that evidence of identity
should depend not only on the measurements but also on the distribution of refractive
indices of window glass, an additional objective source of information. Although Lindley
considers the more realistic case of a nonnormal distribution for the refractive indices, he
shows that the essential features of his solution are embodied in the following simplified
situation. A measurement , with normal error having known standard deviation o, is made
on the unknown refractive index 6, of the glass at the scene of the crime. Another measure-
ment y, made on the glass found on the suspect, is also assumed to be normal but with mean
0, and the same standard deviation as x. The refractive indices 6 are assumed to be normally
distributed with known mean p and known standard deviation . If I is the event that the
two pieces of glass come from the same source (6, = 6,) and I the contrary event, Lindley
suggests that the odds on identity should be multiplied by the factor

P, y|I)[p(x,y|I). (1)

In this special case, it follows from Lindley’s equation (6) that the factor is

1+A2 1
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where
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Note that in the derivation of (2) it is not necessary to assume that A2 is negligible, although
this is typically the case. The result is exact and remains so for arbitrary but equal numbers of
measurements for both sets of fragments, when z and y are interpreted as the two sample

means, o? is replaced by o?/n, and # is the common sample size. If A2 is assumed to be neglig-
ible, then (2) simplifies to

g
A=—-, u=
T
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where s = (u+v)/{2 and ¢ = (u—v)/|2.

Lindley then compares the factor in (8) with the naive significance test based only on u,
that ignores the distribution of refractive indices 6, and also with a solution suggested by
Evett (1977) and Parker (1966) which, at least, implicitly acknowledges the distribution of 6.
He argues convincingly that the Bayes factor approach is superior to both significance tests
in that it successfully balances the various features of the situation.

The main purpose of this note is to point out that, regardless of any philosophical con-
victions, one can always use the objective information contained in the distribution of
refractive indices. In the case of the significance tester, or hypothesis tester, I and I each
become simple hypotheses when the joint distribution of # and y is compounded with that
of 6, and the Neyman—Pearson lemma is applicable. It is shown below that the most powerful
test also successfully balances the various features of the problem and does not conflict with
the inferences using the Bayes factor. The likelihood ratio is precisely the factor in (1), so
that if A2 is negligible and (8) is appropriate large values of st lead us to reject I in favour of 1.
But under the identity hypothesis I, s and ¢ are independent N(0,1) variates and thus
Table 3 in Lindley’s paper gives the required significance levels. Consider, for example, the
case suggested by Evett and discussed by Lindley in the third paragraph of §2. Here,
A= 001, v =0 and u = 2, so that st = 2 and, from Table 3, the observed significance level
is found to be about 3%,. Evett’s test concurs with this result, rejecting the identity hypo-
thesis at the 59, level, whereas the Bayes factor is about 10. In the case of Evett’s solution
Lindley argues:

What the test fails to take into account is the extraordinary coincidence of X and Y being so close
together were the pieces of glass truly different. If ¢ = 1 and 7 = 100 the difference is only 2-83 in a
distribution of X — Y of variance 2(¢?+ 72), or standard deviation about 145. Within 0-020 of the mean of
a N(0, 1) variable the probability is only about 0-008, much smaller than the 0-05 of the significance level.
The argument we have given balances the various features of a situation, some pulling some way, some
another, combining them all into a single factor. This the significance level, with its concentration on the
null hypothesis, here that of identity, does not do.

To see that the Neyman—Pearson test is not in conflict with the Bayes factor it is instructive
to consider in more detail the joint distribution of s and # under both hypotheses. Under I,
s and ¢ are independent N(0,1) variates, whereas under I the distribution is markedly
different, and this is best appreciated when A2 and higher powers are ignored. To this order
of approximation, s and ¢ are identically distributed normal variates with zero means but
having very large variance, 2. Moreover, the correlation coefficient between s and ¢ is
unity! Thus, to all intents and purposes, the joint distribution under 7 is a singular uniform
distribution concentrated on the line s = #. It follows that the test statistic st is approximated
by s? which is such that 2A%s? has a chi-squared distribution on one degree of freedom.
Consider again the Neyman—Pearson test applied to Evett’s example, st = 2 and A = 0-01.
At the observed significance level of 0-031 the power is one minus the chance that a standard
normal variate is between plus and minus 0-02, a probability of 0-984. This result indicates
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that not only is this test most powerful but very powerful. Suppose, for example, that it is
required that the two types of errors have equal probabilities. The critical level correspond-
ing to this requirement is about 1-8%,, so that in the above example st = 2 is not such clear
evidence against identity. Of course, within the context of criminal law an error of the second
kind, convicting an innocent person, is considered more serious than the error of setting a
criminal free. Lehmann (1958) has given a rule of thumb for choosing critical levels in such
cases. For example, if, somewhat conveniently, it is required that o = 148, where « and 8
are the errors of the first and second kind respectively, then o« = 0-14 and B = 0-01 when
A = 0-01. Both values are unacceptable in law but are, once again, in agreement with the
analysis in § 3 of Lindley’s paper.

Finally, consider what happens when A is halved to 0-005 and st = 2 as before. The Bayes
factor is doubled to 20 and the critical level to achieve equal error probabilities is reduced
to about 0-9%,. The power of the test is thus increased, which is intuitively reasonable since
the distributions under the two hypotheses become even more widely separated, the standard
deviation of the distribution under I being doubled.

The author would like to thank Professor Lindley for his helpful and thought-provoking
correspondence on several aspects of this note.
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A remark on likelihood, Bayes and affinity for
a preconceived value

By J. B. COPAS
Department of Mathematics, University of Salford

AxD J. M. DICKEY
Department of Statistics, University College of Wales, Aberystwyth

SuMMARY

As judged by large sample efficiency, one can make use of a preconceived value in a con-
siderably less modest way than Bayes s theorem permits, provided one respects the hkeh-
hood function.

Some key words: Bayesian theory ; Likelihood ; Point estimate; Prior knowledge.

Let X be the average of a random sample of size n from a normal distribution with unknown
mean p and known variance o2. We consider large #.
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