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When someone breaks glass a number of tiny fragments 
may be transferred to that person. If the glass is broken in 
the commission of a crime then these fragments may be 
used as evidence. If a large number of fragments are 
recovered from the suspect, then it may be more efficient 
for the forensic scientist to examine a subset of these 
fragments. Such sampling incurs information loss. This 
paper will derive an expression that allows a partial 
quantification of this loss. The loss of such information due 
to the examination of a subset of recovered material arises 
with many forms of evidence. 

Lorsque quelqu'un casse du verre, un certain nombre de 
petits fragments peuvent &tre transfCrCs sur la personne. Si 
ce verre est cassC lors de la commission d'un dClit, alors le 
verre peut &tre utilisC comme indice. Si un grand nombre de 
fragments sont retrouvks sur un suspect, il peut alors &tre 
plus efficace pour l'expert forensique d'examiner une partie 
seulement de ces fragments. Un tel Cchantillonnage 
provoque une perte d'information. La perte d'une telle 
information rCsultant de l'examen d'une partie seulement 
du matkriel rCcoltC est un problCme rencontrk avec de 
nombreux types d'indices. 

Wenn Glas zerbrochen wird, konnen kleinste Glassplitter 
auf die betreffende Person iibertragen werden. Geschieht 
dies in Zusammenhang mit einer Straftat, konnen die 
Glassplitter als Beweismittel dienen. Werden am 
Tatverdachtigen viele Teilchen gesichert, kann es 
okonomischer sein nur eine bestimmte Gruppe von 
Teilchen auszuwerten. Diese Verfahrensweise beinhaltet 
aber Verlust von Information. Es wird eine Formel 
abgeleitet, mit der sich der Informationsverlust teilweise 
quantifizieren la&. Die Frage des Informationsverlusts bei 
der Untersuchung nur bestimmter Gruppen aus der 
Gesamtheit eines Spurengutes ergibt sich auch bei vielen 
anderen Spurenarten. 

Cuando alguien rompe un vidrio, una cierta cantidad de 
pequeiios fragmentos pueden ser transferidos a esa persona. 
Si el cristal se ha rot0 a1 cometer un delito, 10s fragmentos 
pueden ser utilizados como evidencia. Cuando se pueden 
obtener un gran numero de fragmentos del sospechoso, 
puede ser mas eficaz para el cientifico forense examinar un 
subconjunto de esos fragmentos. Este muestreo conlleva 
una pCrdida de informaci6n. Esta trabajo obtiene una 
expresi6n que permite una cuantificaci6n parcial de dicha 
pCrdida. La pCrdida de informacibn, debida a1 analisis de un 
subconjunto del material obtenido, surge con muchas 
formas de evidencia. 
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Introduction N = the total number of fragments recovered from the sus- 
As an example of a forensic comparison problem we con- pect. 
sider evidence from fragments of glass although such prob- 
lems arise with evidence derived from many other materi- 
als.When someone breaks glass a number of tiny fragments 
may be transferred to that person. If the glass is broken in 
the commission of a crime then these fragments may be 
used as evidence. A typical forensic treatment of glass evi- 
dence may involve taking a refractive index (RI) measure- 
ment on each recovered fragment of glass, or determining 
the elemental composition of each fragment of glass. Both 
of these methods are time consuming, thus if a large num- 
ber of fragments are recovered from the suspect, it may be 
necessary for the forensic scientist to examine a subset of 
these fragments. However, in taking a sample from the 
recovered fragments the forensic scientist runs the risk that 
he or she is losing information on the number of 'matching' 
or 'non-matching' fragments. This information has consid- 
erable evidential value and may be included in a Bayesian 
analysis of the evidence. Therefore in taking a sample, the 
forensic scientist has incurred an information loss. Bates 
and Lambert [ l ]  examined this problem and have answered 
only part of the question. This paper will explain the work 
of Bates and Lambert, and derive an expression that allows 
an extension of their answer. Clearly this problem is not 
restricted to glass analysis and can be applied to any mem- 
bership type applications. This result has been extended for 
multi-category trace evidence (such as fibres) and will be 
the subject for another publication along with the consider- 
ations of the multi-category problem. 

Use of the hypergeometric distribution for sampling in 
forensic glass comparison 
The comparison of a number of recovered items of the same 
generic type of material with a control sample of known ori- 
gin is required in a wide range of the casework carried out 
by a forensic scientist [I]. In the course of this comparison 
it falls upon the forensic scientist to decide how many items 
should be compared to the control sample, and what infor- 
mation may be lost by leaving some of the recovered items 
out of the sample. 

With respect to the statistical analysis of forensic glass evi- 
dence, there is considerable evidential value to be gained 
from information on the number and size of groups of glass 
on the suspect. This follows from the fact that it is uncom- 
mon to find a group of three or more glass fragments on the 
clothing of people unassociated with crime. Furthermore, 
even if some'glass is found, it is uncommon that this comes 
from more than one source [2,3]. We consider a hypotheti- 
cal case where the suspect has one set of glass fragments 
that match the glass from the crime scene on his clothing, as 
well as a number of sets of glass fragments from other 
sources. The fragments are classified as 'matching' or 'non- 
matching'. Assume that: 

M = the number of matching fragments in total. Therefore 
there are N-M non-matching fragments. M can only be 
determined by examination of all N fragments. M can be 
regarded as the Evidence. 

n = the number of fragments that are sampled without 
replacement from the N recovered fragments. 

m = the number of fragments in the sub-sample of n that 
match. 

Then as Bates and Lambert [ I ]  correctly point out, if we 
choose a sample of n fragments from the total N fragments, 
the probability that m of these fragments match the control 
is given by the hypergeometric distribution, i.e. 

M N - M  

~ r ( m l n , ~ , ~ )  = 11"- 1 
This, however, is not the probability we are interested in, 
nor do we have all the information to assess it. We wish to 
make a statement about the probability that M fragments 
match in our recovered sample of N fragments based on the 
fact that m fragments matched in our sub-sample of n frag- 
ments. The hypergeometric formula assumes that every- 
thing is known about the recovered fragments. In such a 
case there is nothing to be gained from taking a sample. In 
particular the number M is known. 

The real question of interest is 'what is the probability that 
there are M matching recovered fragments out of the total N 
given that I found m matching fragments in my sample of 
n?' We wish to find Pr(Mlm,n,N). 

Answering a more complete question 
We wish to make inferential statements about the 'popula- 
tion', the entire set of recovered fragments, based on the 
information contained in our 'sample', a subset of those 
fragments. As previously noted this problem is not restrict- 
ed to glass analysis and can be applied to any membership 
type applications. This result has been extended for multi- 
category trace evidence (such as fibres) and will be the sub- 
ject for another publication along with the considerations of 
the multi-category problem. An expression for Pr(Mlm,n,N) 
is derived using Bayes theorem. We know about 
Pr(mln,M,N), and we wish to use this information to calcu- 
late Pr(Mlm,n,N). Although one can calculate a formal 

Pr(MIN) expression for Pr(Mlm,n,N) (=Pr(ml,n,M,N) - 
Pr(m l n) 

) 

relatively easily, the expression cannot be used without 
empirical knowledge. 

We quantify uncertainty about M in terms of a parameter 8, 
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the true but unknown proportion of matching fragments in 
any similar set of recovered fragments. In fact, the expected 
value of the ratio M/N is 8, i.e. E[M/N] = 8, where E [ a  is 
the expected value of X. 

In the analysis of glass evidence, and other trace evidence, 
8 could change under the competing hypotheses of 'The 
suspect was in contact with the crime scene' or 'The suspect 
was not in contact with the crime scene'. In order to model 
each situation it is necessary to select a distribution for 8 
which reflects the facts under each hypothesis. If nothing is 
known, we can put an uninformative prior distribution on 8, 
i.e. 8 is uniformly distributed between 0 and 1. In fact, this 
is a problem that was first considered by Reverend Bayes 
himself [4]. 

In a Bayesian analysis of forensic glass evidence, the scien- 
tist is asked to evaluate a likelihood ratio (LR), which con- 
siders the probability of the evidence under the two 
hypotheses: 

Pr(Evidence1 Contact) 
LR = 

Pr(Evidence1 Contact) 

Therefore we must consider the distribution of 8 under the 
hypotheses of Contact and Contact. In the case of Contact 
one might take into account the distribution of the number 
of groups of glass found on people known to be associated 
with a crime. Under the assumption that the event Contact 
has taken place the prior probability of 8 should correspond 
to this distribution, the assumption being that a higher pro- 
portion of fragments of glass would come from one source. 

parameters a and p, then the mean of that random variable 
is 

This fact is useful in that if you have a prior estimate on the 
proportion, say p, then by choosing a = p and P = 1 -p ,  the 
Beta distribution will have a mean of p. 

Finally, the parameters a and P can be also be chosen to 
control the shape of the distribution so that a certain amount 
of probability is assigned to values less than some value x is 
p. For example, a situation may demand that the probabili- 
ty assigned to all the values less than 0.5 is 0.25, i.e. there 
is a 25% chance of the proportion of matching fragments 
being 0.5 or less. In this situation a choice of a = 4.61 and 
p = 1 would provide the desired properties. Given there are 
two unknown parameters there will never be a unique 
solution. However if p is set to 1 and 

log@) a =- then it can be shown that Pr(X I xla,p) = p. 
log(x) 

The parameters can be chosen so that the shape of the Beta 
distribution closely matches that of the empirical distribu- 
tions of the proportion of matching fragments from other 
similar sources. For example, in glass we might use distrib- 
utions of similar shape to those reported by Lambert et al. 
[2] or McQuillan and Edgar [3]. It must be noted that the 
choice of these parameters is always arbitrary and therefore 
subjective - there is no 'best' choice. It is hoped that in the 
future, methods will be developed to enable an objective 

Under the assumption of Contact, the prior probability of 8 selection method for the parameters. 
might correspond to the distribution of the number of 
groups of glass on people unassociated with crime. That is, 
if the suspect has glass on his clothing, then it is more like- 
ly to have come from a variety of sources rather than one 
concentrated source. 

Figure 1 shows the probability density function for a possi- 
ble prior under the hypothesis of Contact. The distribution 
puts high probability (80%) on values of 8 between 0.8 and 
1, representing the fact that one would expect to find a high- 

- - - - - - - - -- - - - - - - - - - - . 
er concentration of glass from one source, i.e. the crime 

Choosing these prior distributions is modelled by selecting scene, if the suspect truly was at the crime scene. 
the parameters of a Beta distribution. The Beta distribution 
is a convenient choice for the prior distribution of 8 for two 
reasons: ( I )  it can only take values between zero and one, 
and (2) the parameters of the distribution can be selected to 
model the hypotheses of Contact and Contact. 

The Beta distribution is often used to model the prior distri- 
bution of a probability or proportion. The reasons for this 
are threefold, and we shall explain each carefully. 

The most desirable property of the Beta distribution, is that 
it only assigns probability to values between 0 and 1, i.e. it 
does not allow (quite sensibly) the proportion that is being 
modelled to take a value less than zero or greater than one. 

The second property of the Beta distribution is that its 
parameters, a and p, control the mean of the distribution. 
That is, if a random variable has a Beta distribution with 

Figure 2 shows the probability density function for a possi- 
ble prior under the hypothesis of Contact. The distribution 
more or less evenly weights all values of 8 between 0 and 
1, representing the fact that one would expect to find differ- 
ent groups or sources of glass on the suspect given that he 
was not at the crime scene. 

Result 

Pr(Mlm,n,IY)= 
(:)(:':)(;) Beta (M+a, N-M+p) 

(3 a Beta (m+a, n-m+p)  ' 

M=m, ..., N-n+m 
where Beta(a,b) is the standard Beta function. 

Proof: See Appendix A. 
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FIGURE 1 Probability density function for a P(7.21,l) 
distribution. 

FIGURE 2 Probability density function for a P(1.32,l) 
distribution. 

Examples 
We give two examples to illustrate the 'common sense' 
behaviour of this probability function. A demonstration of 
the calculations required has been included in Appendix B. 

The first example has 100 recovered fragments in total (N = 

loo), with 50 fragments examined (n = 50) and 25 of those 
fragments are deemed to 'match' the control sample (m = 
25). 

Figure 3 demonstrates what we would logically assume. 
Given that 50 fragments out of 100 have been examined, 
and 25 'match', we would expect to find close to 50 frag- 
ments that 'match' in the entire recovered sample. The dis- 
tributions do not change much under each hypothesis 
because the evidence dominates the expression. 

In the second example 50 fragments have been recovered 
from the suspect (N = 50). A smaller sub-sample of 10 frag- 
ments has been examined (n = lo), and 9 of those fragments 
'match' the control sample. 

In Figure 4 again we see what we would logically expect. 
Given that 90% of the examined fragments 'match' the con- 
trol sample, we expect that around 90% of the entire recov- 
ered sample would 'match'. This time the prior distribution 
of 8 does play some part in changing the conditional distri- 
bution, thus reflecting the low information contained in a 
sub-sample size of 10 from a sample of 50. 

Conclusions 
We are now able to answer our question correctly, and quite 
sensibly. 

Pr(Mlm,n,N)= 
( ~ ) ~ ~ ' ~ )  @ Beta (M+a, N-M+B) 

(9 x($ 
Beta (m+a, n-m+B) 

fragments that match the control sample out of the total 
N fragments recovered is dependent on the probability of m 
fragments matching in our sample of n fragments and the 
likelihood of the data given that there are M matching frag- 
ments and the hypothesis of H = Contact or H = Contact. 

APPENDIX A 
Proof of result 
By the introduction of a nuisance parameter 8, with some 
prior distribution assumptions, a moderately simple closed 
form solution can be found. 

Assume that 8 - Beta(a,B) 

Given 

and 

then 

Now note that 

and 

This function says that the probability that there are M 
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M 

FIGURE 3 Pr(Mlm=25, n=50, N=100) under Contact and Contact. 
Fl Contact W not Contact 

M does not depend on n and rn is conditionally independent 
of N given n, therefore (6) becomes 

The ratio in (7) is simply a ratio of two binomial probabili- 
ties. If it is noted that 

then with the result from (2), equation (8) becomes 

Furthermore, given M and N,  8 is independent of rn and n, 

and 

Using these facts we have 

If the joint density of M and 8 conditional on rn, n, and N, 
is specified then we have 

Using this in conjunction with (1) gives 

Therefore the joint density of M and 8 conditional on rn, n, 
and N is given by 

It now remains to remove the nuisance parameter 8 to get 
the marginal distribution of M. This is done by integration 
of (16) with respect to 8. It is convenient at this point to 
adopt the notation fXvy(R,S,T) to represent the joint density 
of X and Y conditional on R, S and T. Thus (16) can be 
rewritten as 

Integration of (17) with respect to 8 gives the marginal 
distribution of M, i.e. 
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FIGURE 4 Pr(Mlm=9, n=10, N=50) under Contact and C=. 
H Contact H not Contact 

where 

fm(M,n,N) = 

APPENDIX B 
Take the first example: the forensic scientist recovered N = 
100 fragments. From these 100 fragments she took a sub- 
sample of n = 50 fragments and determined the RI of each 
fragment using GRIM. She found that m = 25 of these frag- 
ments 'matched' the control sample. We may now ask ques- 
tions of the type: 'given this information, what is the prob- 
ability that the total number of matching fragments, M, is 
x'. x is a placeholder for any number of fragments from 25 
to 75. Why? Well the scientist knows that there are 25 
matching fragments already so she can't find any fewer 

than 25 matching fragments, and she also knows that there 
are 25 non-matching fragments, so there are at most 50 
more fragments that match (25 + 50 = 75). We will calcu- 
late the probability for M = 55, 
i.e. we wish to find Pr(M=551m=25, n=50, N=100) 

under the hypotheses of Contact and Contact. 

x! - x x (x-l)x(x-2)x ... x l  
where t) = -- 

(x-c)!c! (x-c)x(x-c-1)x.. .x lxcx(c- l )x . . .x  1 
' 

for example 

Therefore 

Under the hypothesis of Contact we wish to assign 80% of 
the probability to the proportion of matching fragments 
being 0.8 or greater. Therefore, there is a 20% chance of 
getting a value less than 0.8. Using p = 0.2 and x = 0.8, we 
find that a = 7.21 if P = 1 .  Hence, under the hypothesis of 
Contact Beta(55+a,45+P) = 4.403287 x and 
Beta(25+a,25+P) = 2.77446 x lo-'', so that 

106 Science & Justice 1998; 38(2): 101-107 



JM CURRAN. CM TRIGGS and J BUCKLETON 

M M 
FIGURE 5 Pr(Mlm=l,n=l,N=3) under Contact and -t. FIGURE 6 Pr(Mlm=l,n=l,N=3) under Contact and w. 

I Contact W not Contact BI Contact W not Contact 

Pr(M=55lm+25,n=5O,N=lOO,Contact) 
= 47,129,212,243,960 x 1.587079 x 

= 0.075 (3 decimal places). 

Under the hypothesis Contact, we wish to assign a 60% 
chance to observing a proportion of matching fragments 
greater than 0.5. Therefore, there is a 40% chance of getting 
a value less than 0.5. Using p = 0.4 and x = 0.5, we find that 
a = 1.32 if P = 1 .  Hence, under the hypothesis Contact = 

we are only making inferences about the recovered frag- 
ments. We demonstrate the behaviour of the formulae under 
both hypotheses for two situations. In the first situation the 
analyst has determined the refractive index of one fragment 
and found that it 'matches' the control sample mean. Figure 
5 shows the probability that we might find 1, 2 or 3 
(M=1,2,3) matching fragments, given that there are three 
fragments altogether (N=3) and from a sample of one frag- 
ment (n=l) one was found to match (m=l). 

Beta(55+a,45+P) = 1.328784 x and Beta(25+a, 25+P) 
In the second situation the analyst has determined the 

= 1.239952~10-16, so that 
refractive index of two fragments and found that one of 

Pr(M=55lm=25,n=50,N= 100,Contact) these 'matches' the control sample mean. Figure 6 shows 
= 47,129,212,243,960 x 1.071642 x 10-l5 the probability that we might find 2 or 3 (M=2,3) matching 

= 0.05 1 (3 decimal places). 
fragments given that there are three fragments altogether 
(N=3) and from a sample of two fragments (n=2) one was 

The Beta function can be programmed quite simply in found to match (m=l). 
ExcelTM by using the function GAMMALN (the log of the 
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