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Previously the authors suggested the use of Hotelling's T 2  
statistic, a multivariate equivalent of Student's t-test, for 
determining a 'match' between glass fragments recovered 
from a suspect and a 'control' sample of glass fragments 
from the crime scene [I].  The use of Hotelling's T2 test was 
suggested as a replacement to either range overlap methods 
or '3 sigma' methods. While Hotelling's T2 test is certainly 
a better approach than any '3 sigma' or range overlap 
method, it is still subject to the weaknesses inherent in any 
hypothesis testing approach. This paper will introduce a 
continuous Bayesian method based on Hotelling's T2 test 
that overcomes these weaknesses. 

Les auteurs ont prtckdemment proposk l'utilisation des 
statistiques T2 de Hotelling, un Cquivalent multivarik du test 
t de Student, pour dCterminer une correspondance entre des 
fragments de verre retrouvts sur un suspect et un 
tchantillon de contr6le provenant de la sckne de crime [I] .  
L'utilisation du test T2 de Hotelling a Ctt suggCrC en 
remplacement des mtthodes de superposition des 
domaines ou mtthodes dites '3 sigma'. Alors que le test T2 
de Hotelling reprtsente certainement une meilleure 
approche que toute mtthode '3 sigma' ou superposition des 
domaines, il souffre toujours des faiblesses inhCrentes A 
toute approche de test d'hypothkse. Cet article introduit une 
mtthode Bayesienne continue, basee sur le test T2 de 
Hotelling, qui surmonte ces faiblesses. 

In einer kiirzlich erschienenen Arbeit haben die Autoren 
vorgeschlagen, fur die Priifung der ~bere ins t immun~ von 
Glasspuren von einem Tatverdachtigen mit inkriminierten 
Glasspuren den Hotelling's T2 Test anzuwenden, einem 
multivariaten ~qu iva len t  zum Student's t-Test [I]. Es 
wurde vorgeschlagen, den Hotelling's T2 Test anstatt der 
~berlappungsbereichmethoden oder der 3 Sigma- 
Methoden anzuwenden. Obwohl der Hotelling's T2 Test 
sicherlich zu einer besseren Annaherung fiihrt als jeder 
3 Sigma-Test oder jede ~berlappungsbereichmethode, ist 
dieser Test immer noch der Schwachpunkt, der jedem 
hypothetischen Naherungsverfahren innewohnt. Die Arbeit 
stellt eine weiterentwickelte Bayes Methode vor, die auf 
dem Hotelling's T2 Test aufbaut und diesen Schwachpunkt 
eliminiert. 

Previamente 10s autores sugirieron el uso de la estadistica 
T2 de Hotelling, un equivalente multivariado del test de la t 
de Student, para determinar el grado de correlaci6n entre 
10s fragmentos de vidrio recogidos de un sospechoso y una 
muestra control de fragmentos de vidrio de la escena del 
crimen [I]. Se sugiri6 el uso del test de la T2 de Hotelling 
para reemplazar tanto a1 mCtodo de rango de solapamiento 
como a 10s mCtodos de 3 sigma. Aunque este mttodo del 
test de la T2 de Hotelling es mejor que 10s anteriores, tiene 
una cierta debilidad inherente a cualquier mCtodo de 
enfoque con hip6tesis. Este trabajo introduce un mttodo 
bayesiano continuo sobre el test de la T2 de Hotelling para 
salvar esta debilidad. 
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Introduction 
If a window is broken tiny fragments of glass may be trans- 
ferred to the clothing of the person breaking the window. If 
a crime is committed in the breaking of a window, these 
fragments may be used in evidence. Recent work in the 
characterisation of glass evidence by its elemental compo- 
sition, as opposed to traditional refractive index (RI) based 
methods, has required a framework for the evaluation of 
this data. 

The analysis of glass evidence consists of comparing the 
physical and chemical properties of a fragment retrieved 
from a suspect to a possible source of the glass and then 
assessing the value of that association. In the case where the 
fragments are sufficiently large, coincidental edges may be 
found or density, colour and thickness comparisons can be 
attempted. The typical glass transfer case, however, pro- 
duces very small recovered fragments and the only analyses 
that can be performed are refractive index (RI) and elemen- 
tal composition comparisons. 

In a previous publication [ l ]  the authors suggested the use 
of Hotelling's T' test, a multivariate equivalent of Student's 
t-test for determining a 'match' between glass fragments 
recovered from a suspect and a 'control' sample of glass 
fragments from the crime scene. Hotelling's T' test is for 
use with multivariate data consisting of concentrations of 
several different elements, rather than the single datum, the 
RI of a sample fragment. The use of Hotelling's T 2  test was 
suggested as a replacement to either range overlap methods 
or '3 sigma' methods. 

A typical range overlap method compares each recovered 
measurement to the range of the control sample for each 
element. If any of the recovered measurements fall outside 
the control range, then the fragment is deemed to not match. 

A typical '3 sigma' approach to the analysis of the data has 
been to compare the intervals defined by adding and sub- 
tracting three times the standard error (or three times sigma) 
of an element concentration to the mean concentration for 
the control and recovered samples respectively. If the inter- 
vals overlap for every discriminating element then samples 
are said to match. However, if any one interval does not 
overlap then the samples are said to not match. 

While Hotelling's T2 test, or any formal hypothesis test, is 
certainly a better approach than any '3 sigma' or range 
overlap method, it is still subject to the weaknesses inherent 
in hypothesis testing. Use of hypothesis tests in forensic sci- 
ence suffers from three main problems. The first is that a 
hypothesis test fails to incorporate relevant evidence, such 
as the relative frequency of the recovered glass and indeed 
the mere presence of glass fragments on the suspect. The 
second problem is what K Smalldon termed the 'fall off the 
cliff' effect. It seems illogical that if a probability of 
0.989999 (1 - P-value, i.e. 1- 0.010001) is returned from a 

hypothesis test then the samples should be deemed to 
'match' when a probability of 0.990001 (1 - P-value, i.e. 
1-0.0099999) would be a 'non-match', particularly when 
these probabilities are calculated under distributional 
assumptions which (almost certainly) do not hold. The third 
problem is that hypothesis testing does not answer the ques- 
tion that the court is interested in. Robertson and Vignaux 
[2] argue that presentation of a probability answers the pre- 
data question 'What is the probability of a match if 1 carry 
out this procedure' rather than the post-data question 'How 
much does this evidence increase the likelihood that the 
suspect is guilty.' It is, of course, the latter that the court is 
interested in. 

The suggestion of taking a Bayesian approach to these 
problems is by no means a novel approach [3]. For refrac- 
tive index based data see Walsh et al. [4]. This paper will 
extend the continuous approach for multivariate (elemental 
composition) data. 

The continuous likelihood ratio for elemental 
observations 
Walsh et al. [4] discuss a case where a pharmacy window is 
broken. Fragments of glass were retrieved from two sus- 
pects, and compared with a sample of fragments from the 
crime scene on the basis of mean refractive index. Both 
recovered samples just fail a t-test and that is where the 
matter might end as a conventional approach would deem 
these to be a 'non-match'. However, there are a number of 
aspects contradictory to the conclusion that the fragments 
did not come from the crime scene window. Firstly, both 
offenders had a large number of fragments of glass on their 
person. Studies [5-6, J McQuillan and S McCrossan 
Personal Communication] have shown that finding large 
groups of glass fragments on clothing is a reasonably rare 
event on people unassociated with a crime. Pearson et al. 
[7] found more than three fragments of glass on 16 out of 
100 suits taken from a local dry cleaner, however, no 
attempt was made to group the fragments into common 
sources. Lambert et al. [6] examined glass from 589 indi- 
viduals involved in 405 cases. In the cases where matching 
glass was found, 36.6% of the suspects had more than three 
fragments of glass from one source. In the cases where no 
matching glass was found, 5.6% of the suspects had more 
than three fragments of glass from one source. 

Laboratory examination of the pharmacy window suggest- 
ed that the recovered fragments came from a flat float glass 
object - again a relatively rare event (somewhere between 
1 and 3% [6]). In addition, paint flakes recovered from one 
of the suspects were unable to be distinguished from the 
paint in the window frame at the crime scene. 

Thus the weight of the evidence supports the suggestion 
that both suspects were at the crime scene when the window 
was broken. This is a classic example of Lindley's paradox 
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[8], although Lindley himself refers to it as Jefferys' difference between the mean RI of the recovered sample 
paradox. Although the samples fail the t-test, the results are and the mean RI of the control sample, and (2) additional 
still more likely if they had come from the same source than evidence is given by the relative rarity (or frequency) of the 
from different sources. recovered RI mean. The equation f ( X - Y I sx,sY) is the 

Walsh et al. [4] propose an extension to the ideas put for- 
ward by Evett and Buckleton [9] which retains grouping 
information while dropping the matchlnon-match approach. 
Evidence in this case represents the refractive index 
measurements made on the fragments recovered from the 
suspect and taken from the crime scene. They suggest that 

~ r ( ~ v i d e n c e l ~ o n t a c t )  -.-. TLPO 
= L R  = To+--- . lr  ,,,,,, ( I )  

~ r ( ~ v i d e n c e I ~ o n t a c t )  PLSL 

where 

and 

To = the probability that none of the glass fragments trans- 
ferred have persisted and been recovered 

TL = the probability that three or more of the glass frag- 
ments transferred, have persisted and been recovered 

Po = the probability of a person having no glass on their 
clothing 

P, = the probability of a person having one group of glass 
on their clothing 

SL = the probability that a group of glass on clothing con- 
tains three or more fragments 

g( Y )  = the value of the probability density for float glass at 
the mean RI of the recovered sample, usually obtained from 
a density estimate 

f (X- YI s,,s,) = the value of the probability density for the 
difference of two sample means. This is simply a rescaled r- 
distribution using Welch's modification to Student's t-test. 
Welch's modification is used because it is more robust to 
departures from the assumptions of the t-test. 

Sx and S, are sample quantities defined in Appendix A. 

Equation (1) can be rewritten as 

as the term To is small and generally unlikely to affect the 
final interpretation. 

From Equation (2) it can be seen that It-,,,,,, depends in two 
quantities: g(Y), and f (X- Y ( sx,sY). What are these quanti- 
ties? The motivation for a continuous approach rests on two 
main factors: (1) some evidence is contributed by the 

height of a rescaled Student's t-distribution. The standard 
(or scaled) Student's t-distribution has been scaled by the 
standard error of the difference between the means so that 
the difference is measured in unit-free standard errors not 
RI. To remove this scaling, normally one would multiply 
the value by the standard error. However, we wish to put the 
data on a 11RI scale, the reason being that g(Y), which is a 
data-based estimate of the frequency (in fact, it is the height 
of the density estimate at the recovered mean), is on the 
same scale. This rescaling is necessary to ensure that the 
resulting likelihood ratio is unit-free. 

In a case where the glass evidence is quantified by elemen- 
tal composition rather than by refractive index, the only 
change in evaluating the likelihood ratio is the method for 
evaluating lr,,,,,,,. It should be noted that lr ,,,,,, is an approxi- 
mation to the true ratio of the densities, and the basic 
derivation is given in Walsh et al. [4]. 

Hotelling's T 2  is a multivariate analogue of the t-test, which 
examines the standardised squared distance between two 
points in n-dimensional space. These two points, of course, 
are given by the estimated mean concentration of the dis- 
criminating elements in both samples. It seems logical that 

the multivariate form of lr,,,,,, should replace f (X- Sx,Sy) 
with the rescaled probability density function for the distri- 
bution of T 2 .  It is necessary to ensure that the resulting like- 
lihood ratio is unit-free. This, however, is not quite as 
simple as it sounds. 

If there are n,. control fragments and n, recovered fragments 
to be compared on the concentration of p different elements, 
and n, + n, > p + 1, then T 2  has an F-distribution scaled by 
the sample sizes [I], i.e. 

where 

If the approach suggested by Walsh et al. [4] is applied here, 

f Sx,Sy) should be replaced by the value of the rescaled 
(in order to gain a unit-free likelihood ratio) probability 
density for an F-distribution on p and n, + n,.-p - 1 degrees 

T 2  of freedom at - . 
k 

In the same way g ( Y )  should be replaced by the value of a 
multivariate probability density estimate at the recovered 
mean p (recall that p is now a p x 1 vector). However, the 
appropriate value used to rescale a multivariate distribution 
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is the inverse of the covariance matrix. Multiplying the 
F-distribution by the inverse of the covariance matrix is 
analogous to dividing the t-distribution by the standard 
error. As noted however, this involves a matrix, while both 

( f 2 )  and gl Y I are scalars. so lrc,, could be evaluated. but 

the result would be a matrix and have no intuitive meaning. 
The solution to this problem comes from the way 
Hotelling's T' test works. 

The test statistic for a Student's t-test is calculated by divid- 
ing the difference between the means by the value of the 
standard error of the difference. This is referred to as a stan- 
dardised difference. Hotelling's T' does the same, except in 
this case the difference is squared. This must be done so that 
the F-distribution is useable. Hotelling's T 2  finds the linear 
combination of the variables that maximises the squared 
standardised distance between the two mean vectors (this 
vector defines the first principal component, an axis that 

same bottle as a recovered sample (n,. = 5) so that the popu- 
lation means are truly equal. Thus, Ir,,,,,, = 2,600, so in this 
case the evidence would be 20,800 times more likely if the 
suspect was at the crime scene than if he wasn't. 

The second example takes the ten fragments from the green 
bottle as the control sample (n, = 10) and the ten fragments 
from the colourless bottle as the recovered sample (n,. = lo), 
so the null hypothesis is false, i.e. the population means are 
truly different. 

Ir,,,,,, = 4 x 10.''' 

Because Ir,,,,,, is so small, the term To in equation (1) now 
determines the LR. If To is taken at a typical value of around 
0.1, then, in this case the evidence would be 10 times less 
likely if the suspect was at the crime scene than if he wasn't, 
i.e. the evidence against the suspect strongly disputes the 
hypothesis that the suspect was at the crime scene. 

explains the largest proportion of the variation present in Conclusions 
the data). Hotelling's T' test for the difference in two mean vectors 

More specifically, there is some vector I ( p  x 1) of coeffi- 
cients such that 1 '(n - p) maximises the difference between 
the populations. This is more easily understood if the geom- 
etry of the problem is explained. Imagine that each mea- 
surement lies in a multi-dimensional space, with each axis 
representing the measurement on a specific element. 
Finding 1 can be thought of as rotating the axes so that the 
two means lie on an axis where the distance between them 

provides a valid statistical method for the discrimination 
between two samples of glass based on elemental data. 
However, it is subject to problems and does not answer the 
real question adequately. The Bayesian approach along with 
the continuous extension is the only method that fulfils the 
requirements of the forensic scientist, the statistician, and 
the court. All analyses of elemental data should use the con- 
tinuous Bayesian approach. 

is the greatest. The authors realise that while calculation of the lr,,,,,, statis- 

If Hotelling's T2 rejects the null hypothesis of no difference 
then 1 '(n - p) will have a non-zero mean [ l  11. This fact pro- 
vides the solution. The vector 1 that maximises the differ- 
ence is used to derive a new statistic, t f  (Appendix A), 
which has the same distribution as T2 but has a scaling fac- 
tor that is not a matrix [ l l ] .  The numerator of lr,,,,,,, there- 
fore becomes f (1 '( X - Y ) Is,). The numerator is the height 
of a probability density for an F-distribution on p and 

n, + n, - p - 1 degrees of freedom at j+ transformed back to 
k 

the scale of the linear combination. The denominator must 
be on the same scale, thus it becomes the value of a uni- 
variate probability estimate density at 17y. 

Examples 
The data in the following examples come from two distinct 
sources, one green bottle and one colourless bottle taken 
from the same plant at the same time. Ten fragments were 
taken from each bottle and the concentrations of alumini- 
um, calcium, barium, iron, and magnesium ( p  = 5) were 
determined by ICPIAES. The quantities, TL, Po, P, and SL are 
taken to be those given in [4], so that 

LR = 8. lr,.,,,,, 

The first example uses five fragments from the green bottle 
as a control sample (n,  = 5) and five fragments from the 

248 

tic is mathematically simple, it is computationally inten- 
sive. For that purpose a small software package that calcu- 
lates It-,,,,,,, T', and also returns the relevant probability from 
the F-distribution has been provided. Versions are available 
for MS-DOS, MS-Windows, and UNIX and may be 
requested via post or e-mail from the corresponding 
authors. In order to run this software a database of elemen- 
tal compositions for glass fragments is needed. 

Appendix A 
If n, control fragments are to be compared with n,. recovered 
fragments on p elements, then let 

represent the measurements. 

Let xj = [xjl,xj2 ,..., xjpIr and yj = [yjl,yj2 ,..., yjpIT, then the 
summary statistics are defined by 

1 "' 1 "r F=- E x j  and y= -  x y j  
n, , = I  nr j = l  
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respectively. An estimate of the common covariance, C, is 
given by 

Hotelling's T2 is then defined by 

It can be shown that the vector of coefficients, I, that defines 
the maximum population difference (this vector defines the 
first principal component, an axis that explains the largest 
proportion of the variation present in the data) is propor- 

tional to [sI~,,.l..ll-' (T - F 1. 
If i = [S ,,,,, ,e,l]-' (T- y ), then t :  is defined as 

In fact T = sup t : .  The denominator of t :  is the scaling. 
I 

Therefore 

1 1 -  
where D = (;: h)lTsP,ied i 

and g[(iTg)') is a kernel estimate of the density at the point 
( i ? ~ ) ~ .  
g(y) is a traditional kernel density estimate. It works by 
smoothing the data by replacing each data point by a densi- 
ty function (typically a Gaussian), or kernel, centred at the 
data point. The resulting density estimate at any point, y, is 
the mean of the values of the individual densities for each 
datum at that point. The smoothness of the resulting densi- 
ty estimate, @j), is controlled by a tuning parameter, or 
'window', h. 

g(y) is defined as 

h = 1.06 ~ 3 , , n - " ~  [12] is the 'window' width, where k y  is 
standard deviation of the data. The smooth kernel function, 

is the probability density function for a standard Gaussian 
variable. 
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