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Abstract

In previous work [1–3] the authors [K.A.J. Walsh, J.S. Buckleton, C.M. Triggs, A practical
example of glass interpretation, Sci. Justice 36 (1996) 213–218; J.M. Curran, Forensic application
of Bayesian interference to glass evidence, Ph.D. Thesis, Department of Statistics, University of
Auckland, 1997; J.M. Curran, C.M. Triggs, J.S. Buckleton, S. Coulson, Combining a continuous
Bayesian approach with grouping information, Forensic Sci. Int. 91 (1998) 181–196] have
presented various aspects of a Bayesian interpretation of forensic glass evidence. Such an
interpretation relies on assumptions that may not hold. This paper demonstrates the robustness of
the Bayesian approach to deviations from the statistically convenient notion of normality of the
measurements.  1999 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

When someone breaks glass a number of tiny fragments may be transferred to that
person. If the glass is broken in the commission of a crime then these fragments may be
used as evidence. Interpretation of this evidence relies on, among other things, the
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difference in the mean refractive indices of the glass recovered from the suspect and a
control sample taken from the crime scene.

In previous publications [1–3] the authors note that a true Bayesian analysis would
include estimation of the difference in the distribution of the refractive indices of the
recovered fragments and the control fragments. Because this is considered difficult, if
not completely impossible to do, it is useful to note that without loss of generality [1] the
difference in the means can be examined instead. However, just as the true distribution
of the refractive indices are not known, neither is the true distribution of the difference
in the means. Walsh et al. [1] found an approximate solution by modelling the
distribution by using a t-distribution with Welch’s modification [4]. This approximation
is valid if the assumption of localised normality is valid. We have become concerned that
this assumption, made by ourselves and many other authors in the field of glass
evidence, does not have experimental validation. There are theoretical reasons to believe
that the sample recovered from the clothing may have ‘heavy tails’ due to a
preponderance of surface or near surface fragments in the recovered samples. Ex-
perimental work (pers. comm. J. Buckleton and A. Newton) has suggested that a sample
of recovered glass may contain 1 /3 to 1/2 of its fragments originating from a surface or
near to one. It has also been shown that typically one surface has a higher refractive
index than the mean of the bulk glass (and the other has a lower refractive index).
Recovered surface fragments are understood to come from both the surface facing the
breaker and the opposing one. Such considerations give plausibility to the suggestion
that the distribution of the refractive indices in the recovered sample (at least) may not
have localised normality and may in fact have ‘heavy tails’.

Statistical folklore has it that even if the assumption of localised normality is not true
the t-distribution will still work reasonably well, although violations will engender a
certain amount of information loss. This paper will examine the effect of departures
from normality on the likelihood ratio. The ultimate goal is to be able to quantify the
distribution of the difference between the control and recovered samples. However in the
interim we must work towards a system whereby the information loss that occurs by
departures from model assumptions is quantified.

2. Methodology

As in previous work [1–3], we take simple examples to demonstrate our findings.
Consider the following hypothetical crime:

A window is broken during a burglary. Some time later a suspect is apprehended and
his clothes, shoes and hair combings are taken as evidence. A forensic scientist finds a
number of fragments of recovered glass upon the suspect’s clothing, but finds no glass
on the suspect’s shoes or from in the suspect’s hair combings. The localisation of the
recovered glass to the suspect’s clothing increases the chance that all the recovered
fragments are from one source. The police provide the forensic scientist with a sample of
fragments from the window. Each fragment has its refractive index (RI) determined.
This information must be assessed.

The likelihood ratio provides a means of examining the plausibility of the evidence
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under two competing hypotheses. We shall call these hypotheses the prosecution
hypothesis, H and the defence hypothesis, H . In this particular example thesep d

hypotheses are
H : The suspect broke the windowp

H : The suspect did not break the windowd

The likelihood ratio is then

Pr EvidenceuHs dp
]]]]]LR 5
Pr EvidenceuHs dd

Using the notation introduced by Evett and Buckleton [5–7] we examine each of these
terms in turn.

The denominator must answer the following question:
If we examine the clothing of a man who has come to police notice on suspicion of a

glass breaking offence, yet he is unconnected with the offence, what is the probability
that we will find one group of glass fragments of the observed size and properties

Let
P be the probability that the suspect’s clothing would have one group of glass1

fragments upon his clothing beforehand.
¯S g(Y ) be the likelihood that a group of glass fragments on clothing will have nn rr ¯ ¯fragments and the observed RI, Y has density g(Y ).

T be the conditional probability of recovering k fragments of glass from the suspectk

given that an unknown number of fragments were transferred to the suspect from the
crime scene, the retention properties of the suspect’s clothing, and the time between the
commission of the crime and the arrest.

Using these terms, and the implicit assumptions of independence, the denominator can
be evaluated as

¯Pr(EvidenceuH ) 5 P S g(Y )d 1 nr

1We follow [8] and allow for at least two possible explanations in the numerator :
(a): no glass was transferred from the window at the crime scene, but the suspect

already had one group of glass on his clothing beforehand, or
(b): one group of glass was transferred from the crime scene, thus

¯ ¯Pr(EvidenceuH ) 5 T P S f 1 T P f(X 2 Y us ,s )p 0 1 n n 0 X Yr r

¯ ¯where f(X 2 Y us , s ) is the rescaled value of the density function for Student’s t densityX Y

at the difference between the control and recovered sample means. This function
measures the strength of the match between the mean of the control fragments and the

¯ ¯mean of all the recovered fragments. X, Y, s and s are the sample means and sampleX Y

standard deviations of the control and recovered samples respectively. If hx , x , . . . ,1 2

1There are in fact n11 possible explanations: r fragments were transferred, n2r being there beforehand;
where r50, 1, 2, . . . , n. But it is possible to show that most of the terms associated with these alternatives are
likely to be small and leaving them out is, in any case conservative, in the sense that the numerator will be
smaller than it should be [7].
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x j and hy , . . . , y j represent refractive index measurements on n control fragmentsn 1 n cc r

and n recovered fragments, then the summary statistics are given by:r

n nc r1 1¯ ¯] ]X 5 O x and Y 5 O yi jn nc ri51 j51

and
]]]]]] ]]]]]]n nc r1 12 2¯ ¯]] ]]s 5 O (x 2 X ) and s 5 O ( y 2 Y )X i Y jn 2 1 n 2 1œ c ri51 j51œ

The likelihood ratio in this case is:

¯ ¯T P f(X 2 Y us ,s )n 0 X Y
]] ]]]]LR 5 T 1 ?0 ¯P S g(Y )1 n

In this paper we consider four experimental situations:
A1: The recovered fragments are distributed normally with mean m and standard

deviation s

A2: The recovered fragments come from a truncated t-distribution on 3 degrees of
freedom. By truncated we mean we only accept random variates between m 23s and
m 13s. This will result in a t-shaped curve with more density mass around the central
values. This distribution should behave in a similar fashion to a standard t-distribution
but have heavier tails, than the normal distribution between m 23s, m 2s and m 1s,s d s
m 13s .d

A3: The recovered fragments come from a triangular distribution on the interval
[m 23s, m 1 3s] and mode at m. That is

A4: The recovered fragments come from a uniform distribution on the interval
[m 23s, m 1 3s] and mode at m. That is

Each set of control fragments is assumed to be normally distributed with mean m 1d

and standard deviation d, where d 50, . . . , 3. Therefore the standardised distance
between the means of the control and recovered samples will be approximately d. In the
very worst situation (the uniform case), the standard deviation is

(b 2 a)]]
]]X | U [a, b], sd[X] 5 Var[X] 5 ]œ Œ12

]Œso sd[X]5(6s / 12)¯1.73s, which is slightly larger than desired, but still acceptable.



J.M. Curran et al. / Forensic Science International 104 (1999) 91 –103 95

3. Results

Simulation was used to generate 10,000 samples of each combination of sample sizes
n 5 h2, 3, 4, 5, 6, 10j and n 5 h2, 3, 4, 5, 6, 10j respectively and for each value ofr c

25
d 5 0, . . . , 3 where s 5 4 3 10 , and d is the approximate standardised distance
between the recovered sample mean and the control sample.

To evaluate the likelihood ratios the P , and S terms were estimated usingn ni

information obtained from Lambert et al. [9]. The T probabilities were estimated usingk

the graphical model of Curran et al. [3]. The control sample (the crime scene sample)
was assumed to have a true mean refractive index of 1.51900. The frequencies of the
sample mean refractive indices were calculated from a density estimate of refractive

2index based on observed New Zealand case work (Fig. 1).
For each sample, each experiment provides one likelihood ratio (LR), so there are

10,000 LR’s calculated for each combination of d, n and n . The results are firstc r

presented in terms of the mean likelihood ratio of the 10,000 generated at each
combination of the parameters.

In Fig. 2 we examine the results when the number of control fragments, n 5 5, andc

the number of recovered fragments, n 5 2, 3, 4, 5, 6, 10 and there is no differenceh jr

between the means of the distributions (d 5 0). Fig. 2 clearly demonstrates what
statistical folklore has suggested. The results from the normally distributed (best case)
samples have the highest mean LR and the results from the uniformly distributed (worst

Fig. 1. Density estimate of the refractive index of glass samples based on NZ casework data.

2See Appendix A for details of this data and the probabilities.
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Fig. 2. Mean likelihood ratio when there is no difference between the means of the distributions (d 50).

case) samples have the lowest LR. As the sample sizes get larger this disparity seems to
increase. It is worth noting however that the results are comparable. That is, even though
the true situation may be as ‘bad’ as uniform, the t-approximation still gives a
comparable result to the best case situation.

The abrupt jump in the value of the likelihood ratio between n 5 4 and n 55 is duer r

to the sharp reduction in the values of S and S . Special attention should be paid to the4 5

fact that the horizontal scale is not linear, in that it jumps from 6 to 10.
The situation is slightly different however when d 5 1.0. Although it is difficult to see

from Fig. 3, the ordering has been partially destroyed. However, once again, all the
results are comparable.

When d 5 3.0 (Fig. 4) the ordering of results seem to have completely reversed.
However, we must consider the situation here. The data appear to have come from two
completely different distributions. Therefore an optimal result is the one that provides
the lowest LR. The results from the uniformly distributed data have the highest LR,
whereas the results from the normally distributed data have the lowest LR. However, it
must be borne in mind that this is the situation where the difference in means is the
greatest, and thus we expect the normally distributed data to provide the best
discrimination as demonstrated. Whilst the deviation of the uniformly distributed results
from the optimum seems large, it is still relatively minor in the scale of things. That is,
no one of these results would lead to a different /contradictory conclusion. The general
results for all combinations can be seen in Figs. 7–10.

It is important to realise that the mean alone is not an adequate summary of this data,
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Fig. 3. Mean likelihood ratio when the means of the two distributions are slightly separated (d 5 1.0).

Fig. 4. Mean likelihood ratio when the means of the two distributions are strongly separated for d 53.0.
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Fig. 5. LR kernel density estimate when n 56, n 53 and d 5h0, 1, 3j.c r

although it provides a concise summary. This is especially true for the likelihood ratio as
we have good reason to expect the distribution of the likelihood ratio to be positively
skewed. For that reason we show density estimates of the simulation results for
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Fig. 6. LR kernel density estimate when n 510, n 510 and d 5h0, 1, 3j.c r

specifically chosen cases. These cases were selected in order to display the features most
commonly exhibited by all combinations of the parameters.

We consider the two sample size combinations: a ‘realistic’ combination of 6 control
fragments (n 56) and 3 recovered fragments (n 5 3), and an ‘optimal’ combination ofc r

10 control fragments and 10 recovered fragments(n 5 n 5 10). We simulate data underc r

3 situations: ‘the samples match (d 5 0)’, ‘the samples match poorly’ (d 51), and ‘the
samples don’t match (d 5 3)’.

The most interesting feature to note from all of these graphs is that the density
estimate for the situation where the recovered sample is uniformly distributed is vastly
different to the other three situations. In Figs. 5(a) and 6(a) the bulk of the density mass
for the uniform results lies to the left of the other density estimates. This implies that the
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Fig. 7. Mean LR for d 50.

Fig. 8. Mean LR for d 51.0.
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Fig. 9. Mean LR for d 52.0.

Fig. 10. Mean LR for d 53.0.
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‘worst case’ scenario does result in a departure from the optimal, but that departure is
conservative, in that it returns a lower LR than expected. However, the LR is not so
much lower in the uniform case that the conclusions would be altered. Figs. 5(b), 5(c),
6(b) and 6(c) show the gradual convergence of the likelihood ratio to values less than 1.
It is interesting to note that the uniform density is more dispersed, implying a slower rate
of convergence. This behaviour accounts for the higher LR’s when d is large for the
uniform case. Finally, the order of performance that we would expect from each
situation is preserved in every picture.

4. Conclusions

We have examined the behaviour of the continuous likelihood ratio with respect to
departures from normality in the recovered sample. These departures ranged from minor
(truncated t) to major (triangular, uniform). In each and every case the approximation
provided by the t-distribution for the true distribution of the difference in the recovered
and control means provided a result that was comparable in magnitude and conclusion to
the situation where the data were true normally distributed. We conclude from these
experiments that using the t-distribution (with Welch’s modification) will provide a
robust approximation to the true difference in the means of the control and recovered
samples. It is also worth noting that the results from the uniform situation give us some
sort of lower bound on the performance of the LR. These results are undoubtedly
sensitive to the choice of the P , and S and T probabilities, however, it is expected thatn n ki

the order of the results would remain be preserved for different choices.
We hope that in presenting the results of these experiments, we have provided forensic

scientists with a valuable resource for defending the validity of the assumptions
associated with the use of the likelihood ratio.
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Appendix A

The P and S terms were estimated using information obtained from Lambert et al.n ni

[9]. These terms were interpolated from graphs as
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The T probabilities were estimated using the program detailed in Curran et al. [8],k

assuming that the breaker was around 70 cm from the window when he broke it and was
1
]apprehended around 1 h later.2

The New Zealand case work database consists of some 600 cases from the Physical
Evidence unit at ESR in Auckland. The density estimate is constructed from around 200
of these cases.
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