
Memory-Efficient Inference in Relational Domains

Parag Singla Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{parag, pedrod}@cs.washington.edu

Abstract
Propositionalization of a first-order theory followed by sat-
isfiability testing has proved to be a remarkably efficient
approach to inference in relational domains such as plan-
ning (Kautz & Selman 1996) and verification (Jackson 2000).
More recently, weighted satisfiability solvers have been used
successfully for MPE inference in statistical relational learn-
ers (Singla & Domingos 2005). However, fully instantiating
a finite first-order theory requires memory on the order of the
number of constants raised to the arity of the clauses, which
significantly limits the size of domains it can be applied to.
In this paper we propose LazySAT, a variation of the Walk-
SAT solver that avoids this blowup by taking advantage of
the extreme sparseness that is typical of relational domains
(i.e., only a small fraction of ground atoms are true, and most
clauses are trivially satisfied). Experiments on entity reso-
lution and planning problems show that LazySAT reduces
memory usage by orders of magnitude compared to Walk-
SAT, while taking comparable time to run and producing the
same solutions.

Introduction
Most problems of interest to AI are relational in nature: they
involve explicit consideration of multiple objects and rela-
tions among them, not just unpacked propositions. Infer-
ence in these domains has traditionally been performed us-
ing lifted techniques like resolution. Unfortunately, this type
of inference does not, in general, scale well for fully auto-
mated theorem proving. In the last decade, however, propo-
sitionalization followed by satisfiability testing has emerged
as a highly efficient alternative. While the basic idea is not
new, it has been given fresh impetus by the development of
very fast solvers like WalkSAT (Selman, Kautz, & Cohen
1996) and zChaff (Moskewicz et al. 2001). Despite its suc-
cesses, the applicability of this approach to complex rela-
tional problems is still severely limited by at least one key
factor: the exponential memory cost of propositionalization.
To apply a satisfiability solver, we need to create a Boolean
variable for every possible grounding of every predicate in
the domain, and a propositional clause for every grounding
of every first-order clause. If n is the number of objects
in the domain and r is the highest clause arity, this requires
memory on the order of nr. Clearly, even domains of moder-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ate size are potentially problematic, and large ones are com-
pletely infeasible.
The emergence in the last few years of the field of sta-
tistical relational learning (SRL) has added new urgency to
this problem (Dietterich, Getoor, & Murphy 2004). SRL
supports probabilistic inference over relational domains, and
often requires it to be repeatedly performed during learning.
While some promising steps have been taken in develop-
ing lifted inference techniques for this setting, they are still
quite far from being applicable to problems of realistic size
(Poole 2003; de S. Braz, Amir, & Roth 2005). Recently,
Richardson and Domingos (2006) and Singla and Domin-
gos (2005) showed how weighted satisfiability solvers can
be used for MPE/MAP inference in a broad class of SRL
models (those expressible in Markov logic). However, this
approach is limited by the same memory explosion as more
traditional satisfiability applications.
This paper introduces an approach to satisfiability
testing that largely overcomes this problem. It is based
on a property that seems to characterize almost all re-
lational domains: their extreme sparseness. The vast
majority of predicate groundings are false, and as a re-
sult the vast majority of clauses (all clauses that have
at least one false precondition) are trivially satisfied.
For example, in the domain of scientific research, most
groundings of the predicate Author(person, paper)
are false, and most groundings of the clause
Author(person1, paper) ∧ Author(person2, paper) ⇒
Coauthor(person1,person2) are satisfied. Our approach
is embodied in LazySAT, a variant of WalkSAT that reduces
memory while producing the same results. In LazySAT, the
memory cost does not scale with the number of possible
clause groundings, but only with the number of groundings
that are potentially unsatisfied at some point in the search.
Clauses that are never considered for flipping literals are
never grounded. Experiments on entity resolution and
planning problems show that this can yield very large
memory reductions, and these reductions increase with
domain size. For domains whose full instantiations fit in
memory, running time is comparable; as problems become
larger, full instantiation for WalkSAT becomes impossible.
We begin by briefly reviewing some necessary back-
ground. We then describe LazySAT in detail, and report on
our experiments.

Relational Inference Using Satisfiability
Satisfiability
A knowledge base (KB) in propositional logic is a set of
formulas over Boolean variables. Every KB can be con-
verted to conjunctive normal form (CNF): a conjunction of
clauses, each clause being a disjunction of literals, each lit-
eral being a variable or its negation. Satisfiability is the prob-
lem of finding an assignment of truth values to the variables
that satisfies all the clauses (i.e., makes them true) or deter-
mining that none exists. It is the prototypical NP-complete
problem. The last decade and a half has seen tremendous
progress in the development of highly efficient satisfiability
solvers. One of the most efficient approaches is stochas-
tic local search, exemplified by the WalkSAT solver (Sel-
man, Kautz, & Cohen 1996). Starting from a random initial
state, WalkSAT repeatedly flips (changes the truth value of)
a variable in a random unsatisfied clause. With probabil-
ity p, WalkSAT chooses the variable that minimizes a cost
function (such as the number of currently satisfied clauses
that become unsatisfied, or the total number of unsatisfied
clauses; see Gent & Walsh (1993) for discussion), and with
probability 1 − p it chooses a random variable. WalkSAT
keeps going even if it finds a local maximum, and after n
flips restarts from a new random state. The whole procedure
is repeated m times. WalkSAT can solve random problems
with hundreds of thousands of variables in a fraction of a
second, and hard ones in minutes. However, it cannot distin-
guish between an unsatisfiable CNF and one that takes too
long to solve.
The MaxWalkSAT (Kautz, Selman, & Jiang 1997) algo-
rithm extends WalkSAT to the weighted satisfiability prob-
lem, where each clause has a weight and the goal is to maxi-
mize the sum of the weights of satisfied clauses. (Systematic
solvers have also been extended to weighted satisfiability,
but tend to work poorly.) Park (2005) showed how the prob-
lem of finding the most likely state of a Bayesian network
given some evidence can be efficiently solved by reduction
to weighted satisfiability. WalkSAT is essentially the spe-
cial case of MaxWalkSAT obtained by giving all clauses the
same weight. For simplicity, in this paper we will just treat
them as one algorithm, called WalkSAT, with the sum of
the weights of unsatisfied clauses as the cost function that
we seek to minimize. Algorithm 1 gives pseudo-code for
WalkSAT. DeltaCost(v) computes the change in the sum of
weights of unsatisfied clauses that results from flipping vari-
able v in the current solution. Uniform(0,1) returns a uni-
form deviate from the interval [0, 1].

Relational Domains and Propositionalization
First-order logic (FOL) allows us to explicity represent a
domain’s relational structure (Genesereth & Nilsson 1987).
Objects are represented by constants, and the relations
among them by predicates. This paper focuses on function-
free FOL with the domain closure assumption (i.e., the only
objects in the domain are those represented by the con-
stants). A predicate or formula is grounded by replacing all
its variables by constants. Propositionalization is the pro-
cess of replacing a first-order KB by an equivalent propo-

Algorithm 1 WalkSAT(weighted clauses, max flips, max-
tries, target, p)
vars← variables in weighted clauses
for i← 1 to max tries do
soln← a random truth assignment to vars
cost← sum of weights of unsatisfied clauses in soln
for i← 1 to max flips do
if cost ≤ target then
return “Success, solution is”, soln
end if
c← a randomly chosen unsatisfied clause
if Uniform(0,1)< p then
vf ← a randomly chosen variable from c
else
for each variable v in c do
compute DeltaCost(v)
end for
vf ← v with lowest DeltaCost(v)
end if
soln← soln with vf flipped
cost← cost + DeltaCost(vf)
end for
end for
return “Failure, best assignment is”, best soln found

sitional one. In finite domains, this can be done by replac-
ing each universally (existentially) quantified formula with
a conjunction (disjunction) of all its groundings. A first-
order KB is satisfiable iff the equivalent propositional KB
is satisfiable. Hence, inference over a first-order KB can be
performed by propositionalization followed by satisfiability
testing.
Learning statistical models of relational domains is cur-
rently a very active research area (Dietterich, Getoor, &
Murphy 2004). One of the most powerful representations
used in this area is Markov logic (Richardson & Domingos
2006). A Markov logic network (MLN) is a set of weighted
first-order clauses. Together with a set of constants, it de-
fines a Markov network with one node per ground predicate
and one feature per ground clause. The weight of a fea-
ture is the weight of the first-order clause that originated it.
The probability of a state x in such a network is given by
P (x) = (1/Z) exp (

∑
i wifi(x)), where Z is a normaliza-

tion constant, wi is the weight of the ith clause, fi = 1 if
the ith clause is true, and fi = 0 otherwise. Finding the
most probable state of a grounded MLN given some evi-
dence is thus an instance of weighted satisfiability, and the
LazySAT algorithm we develop in this paper can be used to
scale MLN inference to much larger domains than standard
WalkSAT. Although we do not pursue it in this paper, the
ideas in LazySAT are also directly applicable to scaling up
the computation of marginal and conditional probabilities in
MLNs using Markov chain Monte Carlo algorithms.

Memory-Efficient Inference
The LazySAT algorithm reduces the memory required by
satisfiability testing in relational domains by taking advan-
tage of their sparseness. Because the great majority of

ground atoms are false, most clauses are satisfied through-
out the search, and never need to be considered. LazySAT
grounds clauses lazily, at each step in the search adding only
the clauses that could become unsatisfied. In contrast, Walk-
SAT grounds all possible clauses at the outset, consuming
time and memory exponential in their arity.
Algorithm 2 gives pseudo-code for LazySAT, highlight-
ing the places where it differs from WalkSAT. LazySAT
inputs an MLN (or a pure first-order KB, in which case
all clauses are assigned weight 1) and a database (DB). A
database is a set of ground atoms. (For example, in plan-
ning problems the database is the set of ground atoms de-
scribing the initial and goal states. In probabilistic inference,
the database is the evidence we condition on.) An evidence
atom is either a ground atom in the database, or a ground
atom that is false by the closed world assumption (i.e., it is a
grounding of an evidence predicate, and does not appear in
the database). The truth values of evidence atoms are fixed
throughout the search, and ground clauses are simplified by
removing the evidence atoms. LazySAT maintains a set of
active atoms and a set of active clauses. A clause is active
if it can be made unsatisfied by flipping zero or more of its
active atoms. (Thus, by definition, an unsatisfied clause is
always active.) An atom is active if it is in the initial set
of active atoms, or if it was flipped at some point in the
search. The initial active atoms are all those appearing in
clauses that are unsatisfied if only the atoms in the database
are true, and all others are false. We use dynamic arrays
to store the active clauses and the atoms in them. The un-
satisfied clauses are obtained by simply going through each
possible grounding of all the first-order clauses andmaterial-
izing the groundings that are unsatisfied; search is pruned as
soon the partial grounding of a clause is satisfied. Given the
initial active atoms, the definition of active clause requires
that some clauses become active, and these are found using a
similar process (with the difference that, instead of checking
whether a ground clause is unsatisfied, we check whether it
should be active).1 Each run of LazySAT is initialized by as-
signing random truth values to the active atoms. This differs
from WalkSAT, which assigns random values to all atoms.
However, the LazySAT initialization is a validWalkSAT ini-
tialization, and we have verified experimentally that the two
give very similar results. Given the same initialization, the
two algorithms will produce exactly the same results.
At each step in the search, the variable that is flipped is
activated, as are any clauses that by definition should be-
come active as a result. When evaluating the effect on cost
of flipping a variable v, if v is active then all of the relevant
clauses are already active, and DeltaCost(v) can be com-
puted as in WalkSAT. If v is inactive, DeltaCost(v) needs
to be computed using the knowledge base. (In principle, re-
peated calculation of this kind can be avoided by activating
a variable (and its clauses) when it is first encountered, but
we found the time savings from this to be outweighed by
the added memory cost.) This is done by retrieving from

1Although for simplicity the pseudo-code does not show this,
the initial set of active clauses and active atoms can be saved and
reused for each restart, saving time.

Algorithm 2 LazySAT(weighted KB, DB, max flips,max-
tries, target, p)
for i← 1 to max tries do
active atoms← atoms in clauses not satisfied by DB
active clauses← clauses activated by active atoms
soln← a random truth assignment to active atoms
cost← sum of weights of unsatisfied clauses in soln
for i← 1 to max flips do
if cost ≤ target then
return “Success, solution is”, soln
end if
c← a randomly chosen unsatisfied clause
if Uniform(0,1)< p then
vf ← a randomly chosen variable from c
else
for each variable v in c do
compute DeltaCost(v), using weighted KB if
v &∈ active atoms

end for
vf ← v with lowest DeltaCost(v)
end if
if vf &∈ active atoms then
add vf to active atoms
add clauses activated by vf to active clauses

end if
soln← soln with vf flipped
cost← cost + DeltaCost(vf)
end for
end for
return “Failure, best assignment is”, best soln found

the KB all first-order clauses containing the predicate that v
is a grounding of, and grounding each such clause with the
constants in v and all possible groundings of the remaining
variables. As before, we prune search as soon as a partial
grounding is satisfied, and add the appropriate multiple of
the clause weight to DeltaCost(v). (A similar process is used
to activate clauses.) While this process is costlier than using
pre-grounded clauses, it is amortized over many tests of ac-
tive variables. In typical satisfiability problems, a small core
of “problem” clauses is repeatedly tested, and when this is
the case LazySAT will be quite efficient.
At each step, LazySAT flips the same variable that Walk-
SAT would, and hence the result of the search is the same.
The memory cost of LazySAT is on the order of the max-
imum number of clauses active at the end of a run of flips.
(Thememory required to store the active atoms is dominated
by the memory required to store the active clauses, since
each active atom appears in at least one active clause.) In
the current version of LazySAT, clauses and atoms are never
deactivated, but this could easily be changed to save memory
without affecting the output by periodically reinitializing the
active sets (using the current truth values of all non-evidence
atoms, instead of all false). In our experiments this was not
necessary, but it could be quite useful in very long searches.

Experiments
We performed experiments on two entity resolution domains
and a planning domain to compare the memory usage and
running time of LazySAT and WalkSAT. We implemented
LazySAT as an extension of the Alchemy system (Kok et
al. 2005), and used Kautz et al.’s (1997) implementation of
MaxWalkSAT, included in Alchemy. When propositional-
izing a problem for WalkSAT, we did not ground clauses
that are always true given the evidence, and this saved a
significant amount of memory. Since the two algorithms
can be guaranteed to produce the same results by using the
same random initialization for both, we do not report solu-
tion quality. In all the experiments we ran WalkSAT and
LazySAT for a million flips, with no restarts. The exper-
iments were run on a cluster of nodes, each node having
3.46 GB of RAM and two processors running at 3 GHz. All
results reported are averages over five random problem in-
stances.

Entity Resolution
In many domains, the entities of interest are not uniquely
identified, and we need to determine which observations
correspond to the same entity. For example, when merging
databases we need to determine which records are dupli-
cates. This problem is of crucial importance to many large
scientific projects, businesses, and government agencies,
and has received increasing attention in the AI community
in recent years. We used two publicly available citation
databases in our experiments: McCallum’s Cora database
as segmented by Bilenko and Mooney (2003) (available at
http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz);
and BibServ.org, which combines CiteSeer, DBLP, and
user-donated databases. Cora contains 1295 citations,
extracted from the original Cora database of over 50,000,
and BibServ contains approximately half a million citations.
We used the user-donated subset of BibServ, with 21,805
citations. The inference task was to de-duplicate citations,
authors and venues (i.e., to determine which pairs of
citations refer to the same underlying paper, and similarly
for author fields and venue fields). We used the Markov
logic network constructed by Singla and Domingos (2005),
ignoring clauses with negative weight (which we are
currently extending MaxWalkSAT to handle). This contains
33 first-order clauses stating regularities such as: if two
fields have high TF-IDF similarity, they are (probably) the
same; if two records are the same, their fields are the same,
and vice-versa; etc. Crucially, we added the transitivity rule
with a very high weight: ∀x, y, z x = y ∧ y = z ⇒ x = z.
This rule is used in an ad hoc way in most entity resolution
systems, and greatly complicates inference. The highest
clause arity, after conditioning on evidence, was three. We
learned clause weights on Cora using Singla and Domingos’
(2005) algorithm, and used these weights on both Cora and
BibServ. (We could not learn weights on BibServ because
the data is not labeled.)
We used the cleaned version of Cora as described in
Singla and Domingos (2005). We varied the number of
records from 50 to 500 in intervals of 50, generating five

random subsets of the data for each number of records. We
ensured that each real cluster in the data was either com-
pletely included in a subset or completely excluded, with
the exception of the last one to be added, which had to be
truncated to ensure the required number of records. Figure 1
(left) shows how the total number of clauses grounded by
LazySAT and WalkSAT varies with the number of records.
The RAM usage in bytes correlates closely with the number
of groundings (e.g., for 250 records WalkSAT uses 2.1 GB,
and LazySAT 288 MB). The memory reduction obtained by
LazySAT increases rapidly with the number of records. At
250 records, it is about an order of magnitude. Beyond this
point, WalkSAT runs out of memory. To extrapolate beyond
it, we fitted the function f(x) = axb to both curves, obtain-
ing a = 1.19, b = 2.97 (with R2 = 0.99) for WalkSAT and
a = 6.02, b = 2.34 (with R2 = 0.98) for LazySAT. Us-
ing these, on the full Cora database LazySAT would reduce
memory usage by a factor of over 300.
Figure 1 (right) compares the speed of the two algorithms
in average flips per second (i.e., total number of flips over
total running time). LazySAT is somewhat faster thanWalk-
SAT for low numbers of records, but by 250 records this ad-
vantage has disappeared. Recall that total running time has
two main components: initialization, where LazySAT has
the advantage, and variable flipping, where WalkSAT does.
The relative contribution of the two depends on the problem
size and total number of flips. WalkSAT flips variables at a
constant rate throughout the search. LazySAT initially flips
them slower, on average, but as more clauses become active
its flipping rate increases and converges to WalkSAT’s.
On BibServ, we formed random subsets of size 50 to 500
records using the same approach as in Cora, except that in-
stead of using the (unknown) real clusters we formed clus-
ters using the canopy approach of McCallum et al. (2000).
Figure 2 (left) shows the number of clause groundings as a
function of the number of records. RAM usage behaved sim-
ilarly, being 1.9 GB for WalkSAT and 78 MB for LazySAT
at 250 records. As before, WalkSAT runs out of memory
at 250 records. LazySAT’s memory requirements increase
at a much lower rate on this database, giving it a very large
advantage over WalkSAT. Fitting the function f(x) = axb

to the two curves, we obtained a = 1.02, b = 2.98 (with
R2 = 0.99) for WalkSAT and a = 28.15, b = 1.75
(with R2 = 0.98) for LazySAT. Extrapolating these, on the
full BibServ database LazySATwould reduce memory com-
pared to WalkSAT by a factor of over 400,000. The greater
advantage of LazySAT on BibServ is directly attributable to
its larger size and consequent greater sparseness, and we ex-
pect the advantage to be even greater for larger databases.
(To see why larger size leads to greater sparseness, consider
for example the predicate Author(person, paper). When
the number of papers and authors increases, its number of
true groundings increases only approximately proportion-
ally to the number of papers, while the number of possi-
ble groundings increases proportionally to its product by the
number of authors. On a database with thousands of authors,
the resulting difference can be quite large.)
Figure 2 (right) compares the speeds of the two algo-
rithms. They are similar, with LazySAT being slightly faster

1.6*107

1.2*107

8.0*106

4.0*106

0
 0 100 200 300 400 500

N
o.

 C
la

us
es

No. Records

LazySAT
WalkSAT

1.0*106

1.0*104

1.0*102

1.0
 0 100 200 300 400 500

Fl
ip

s/S
ec

No. Records

LazySAT
WalkSAT

Figure 1: Experimental results on Cora: memory (left) and speed (right) as a function of the number of records.

1.6*107

1.2*107

8.0*106

4.0*106

0
 0 100 200 300 400 500

N
o.

 C
la

us
es

No. Records

LazySAT
WalkSAT

1.0*106

1.0*104

1.0*102

1.0
 0 100 200 300 400 500

Fl
ip

s/S
ec

No. Records

LazySAT
WalkSAT

Figure 2: Experimental results on BibServ: memory (left) and speed (right) as a function of the number of records.

1.6*107

1.2*107

8.0*106

4.0*106

0
 0 20 40 60 80 100

N
o.

 C
la

us
es

No. Blocks

LazySAT
WalkSAT

1.0*106

1.0*104

1.0*102

1.0
 0 20 40 60 80 100

Fl
ip

s/S
ec

No. Blocks

LazySAT
WalkSAT

Figure 3: Experimental results on the blocks world domain: memory (left) and speed (right) as a function of the number of
blocks.

below 100 objects and WalkSAT slightly faster above.

Planning
To compare LazySAT and WalkSAT on a pure (unweighted)
satisfiability problem, we experimented on the classical
blocks world planning domain, where the goal is to find a
sequence of block moves that transforms the initial stacking
of blocks into the goal stacking. Kautz & Selman (1996)
showed how to encode planning problems as instances
of satisfiability, by writing formulas that specify action
definitions, frame axioms, etc., and using a database of
ground atoms to specify the initial state and goal state.
We used the formulas they wrote for the blocks world do-
main (publicly available at http://www.cs.washington.edu/-
homes/kautz/satplan/blackbox/satplan dist 2001.tar.Z). The
maximum clause arity was four. All the clauses were as-
signed unit weight. Given a number of blocks, we generated
random problem instances as follows. We set the number of
stacks in both the initial and goal state to the square root of
the number of blocks (truncated to the nearest integer). The
stacks were then populated by randomly assigning blocks
to them. The number of allowed moves was liberally set
to the length of the trivial solution (unstacking and restack-
ing all the blocks). We added rules to allow null moves,
making it possible for the algorithms to find shorter plans.
We varied the number of blocks from 10 to 100 in incre-
ments of 10, and generated five random instances for each.
Figure 3 (left) shows how the number of clauses grounded
by the two algorithms varies with the number of blocks.
LazySAT once again obtains very large reductions. RAM
usage closely paralleled the number of clauses, being 1.6 GB
for WalkSAT and 203 MB for LazySAT at 50 blocks. Walk-
SAT is only able to go up 50 blocks, and LazySAT’s gain
at this size is about an order of magnitude. Fitting the func-
tion f(x) = axb to the two curves, we obtained a = 2.79,
b = 3.90 (with R2 = 0.99) for WalkSAT, and a = 1869.58,
b = 1.68 (with R2 = 0.99) for LazySAT. The difference in
the asymptotic behavior is even more prominent here than in
the entity resolution domains.
Figure 3 (right) compares the speed of the two algorithms.
WalkSAT is somewhat faster, but the difference decreases
gradually with the number of blocks.
In all domains, LazySAT reduced memory by an order
of magnitude or more at the point that WalkSAT exceeded
available RAM. Most importantly, LazySAT makes it feasi-
ble to solve much larger problems than before.

Conclusion
Satisfiability testing is very effective for inference in rela-
tional domains, but is limited by the exponential memory
cost of propositionalization. The LazySAT algorithm over-
comes this problem by exploiting the sparseness of rela-
tional domains. Experiments on entity resolution and plan-
ning problems show that it greatly reduces memory require-
ments compared to WalkSAT, without sacrificing speed or
solution quality.
Directions for future work include applying the ideas in
LazySAT to other SAT solvers and to MCMC, combining

it with Richardson and Domingos’ (2006) KBMC algorithm
for bounding the ground network, and extending it to de-
grade gracefully when the number of weighted clauses ex-
ceeds the available memory.

Acknowledgments
We are grateful to Henry Kautz for helpful discussions. This
research was partly supported by DARPA grant FA8750-
05-2-0283 (managed by AFRL), DARPA contract NBCH-
D030010, NSF grant IIS-0534881, and ONR grant N00014-
05-1-0313. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as necessarily representing the official policies, either
expressed or implied, of DARPA, NSF, ONR, or the United
States Government.

References
Bilenko, M., and Mooney, R. 2003. Adaptive duplicate detection
using learnable string similarity measures. In Proc. KDD-03, 39–
48.
de S. Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. In Proc. IJCAI-05, 1319–1324.
Dietterich, T.; Getoor, L.; and Murphy, K., eds. 2004. Proc.
ICML-04 Workshop on SRL and its Connections to Other Fields.
Genesereth, M. R., and Nilsson, N. J. 1987. Logical Foundations
of Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.
Gent, I. P., and Walsh, T. 1993. Towards an understanding of
hill-climbing procedures for SAT. In Proc. AAAI-93, 28–33.
Jackson, D. 2000. Automating first-order relational logic. In
Proc. ACM SIGSOFT Symposium on Foundations of Software En-
gineering, 130–139.
Kautz, H., and Selman, B. 1996. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In Proc. AAAI-
96, 1194–1201.
Kautz, H.; Selman, B.; and Jiang, Y. 1997. A general stochastic
approach to solving problems with hard and soft constraints. In
Gu, D.; Du, J.; and Pardalos, P., eds., The Satisfiability Problem:
Theory and Applications. New York, NY: AMS. 573–586.
Kok, S.; Singla, P.; Richardson, M.; and Domingos, P. 2005.
The Alchemy system for statistical relational AI. http://www.cs.-
washington.edu/ai/alchemy.
McCallum, A.; Nigam, K.; and Ungar, L. 2000. Efficient clus-
tering of high-dimensional data sets with application to reference
matching. In Proc. KDD-00, 169–178.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Malik,
S. 2001. Chaff: Engineering an efficient SAT solver. In Proc.
DAC-01, 530–535.
Park, J. D. 2005. Using weighted MAX-SAT engines to solve
MPE. In Proc. AAAI-05, 682–687.
Poole, D. 2003. First-order probabilistic inference. In Proc.
IJCAI-03, 985–991.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62:107–136.
Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strate-
gies for satisfiability testing. In Johnson, D. S., and Trick, M. A.,
eds., Cliques, Coloring, and Satisfiability: Second DIMACS Im-
plementation Challenge. Washington, DC: AMS. 521–532.
Singla, P., and Domingos, P. 2005. Discriminative training of
Markov Logic Networks. In Proc. AAAI-05, 868–873.

