
1

Compute-Intensive Methods in AI:
New Opportunities for Reasoning and

Search

Bart Selman
Cornell University

selman@cs.cornell.edu

2

Introduction

In recent years, we’ve seen substantial progress in

 propositional reasoning and search methods.

 Boolean satisfiability testing:

 1990: 100 variables / 200 clauses (constraints)

 1998: 10,000 - 100,000 vars / 10^6 clauses

 Novel applications:

 e.g. in planning, software / circuit testing,

 machine learning, and protein folding

3

 Factors in Progress

 a) new algorithms

 e.g. stochastic methods

 b) better implementations

 several competitions ---

 Germany 91 / China 96 / DIMACS-93/97/98

 c) faster hardware

Also, close interplay between theoretical, experimental,

 and applied work.

4

Applications: Methodology

 Combinatorial

 Task SAT Encoding SAT Solver

 Decoder

 Shift work to “encoding phase’’,

 use fast, off-the-shelf SAT solver and tools.

5

 Compare methodology to the use of

 Linear / Integer Programming packages:

 --- Emphasis is on mathematical modeling

 (e.g. using primal and dual formulations).

 --- After modeling phase, problem is handed to a

 state-of-the-art solver.

6

 Perhaps theoretically, but often not in practice

 --- It’s difficult to duplicate efforts put in designing

 fast solvers.

 --- Encodings can compensate for much of the

 loss due to going to a uniform representation

 formalism (e.g. SAT, CSP, LP, or MIP).

Would specialized solver not be better?

7

Outline

 I --- Example application: AI Planning

 The SATPLAN system

 II --- Current Themes in SAT Solvers

 randomization / scalability

 III --- Current Themes in SAT Encodings

 declarative control knowledge

 IV --- Conclusions

8

I. Example Application: Planning

9

Planning: find a (partially) ordered set of
actions that transform a given initial
state to a specified goal state.

• in most general case, can cover most forms of
problem solving

• special case of program synthesis

• scheduling: fixes set of actions, need to find
optimal total ordering

- planning problems typically highly non-linear,
require combinatorial search

10

Some Applications of Planning

Autonomous systems

 Deep Space One Remote Agent (NASA)

 mission planning

Softbots - software robots

• Internet agents, program assistants

• AI “characters” in games, entertainment

Synthesis, bug-finding (goal = undesirable state), …

Supply Chain Management --- “just-in-time”
manufacturing (SAP, I2, PeopleSoft etc. $10 billion)

Proof planning in mathematical domains (Melis 1998)

11

State-space Planning

Find a sequence of operators that
transform an initial state to a goal state

State = complete truth assignment to a set of
variables (fluents)

Goal = partial truth assignment (set of states)

Operator = a partial function State ! State

specified by three sets of variables:

precondition, add list, delete list

 (STRIPS-style, Nilsson & Fikes 1971)

12

Abdundance of Negative
Complexity Results

I. Domain-independent planning: PSPACE-
complete or worse

(Chapman 1987; Bylander 1991; Backstrom 1993)

II. Domain-dependent planning: NP-complete or
worse

(Chenoweth 1991; Gupta and Nau 1992)

III. Approximate planning: NP-complete or worse
(Selman 1994)

13

Practice

Traditional domain-independent planners
can generate plans of only a few steps.

Prodigy, Nonlin, UCPOP, ...

Practical systems minimize or eliminate search
by employing

complex search control rules, hand-tailored
to the search engine and the particular
search space
(Sacerdoti 1975, Slaney 1996, Bacchus 1996)

pre-compiling entire state-space to a
reactive finite-state machine
(Agre & Chapman 1997, Williams & Nayak 1997)

Scaling remains problematic when state space
is large or not well understood!

14

Progression

• Planning as first-order theorem proving
(Green 1969)

computationally infeasible

• STRIPS (Fikes & Nilsson 1971)

very hard

• Partial-order planning
(Tate 1977, McAllester 1991, Smith & Peot 1993)

can be more efficient, but still hard
(Minton, Bresina, & Drummond 1994)

• Proposal: planning as propositional reasoning

15

Approach

SAT encodings are designed so that plans
correspond to satisfying assignments

Use recent efficient satisfiability procedures
(systematic and stochastic) to solve

Evaluation performance on benchmark
instances

16

SATPLAN

axiom

schemas instantiated

propositional

clauses

satisfying

model
plan

mapping

length

problem

description

SAT

engine(s)

instantiate

interpret

17

SAT Encodings

Propositional CNF: no variables or quantifiers

Sets of clauses specified by axiom schemas

fully instantiated before problem-solving

Discrete time, modeled by integers

state predicates: indexed by time at which
they hold

action predicates: indexed by time at which
action begins
each action takes 1 time step

many actions may occur at the same step

fly(Plane, City1, City2, i) ! at(Plane, City2, i +1)

18

Solution to a Planning Problem

A solution is specified by any model (satisfying
truth assignment) of the conjunction of the
axioms describing the initial state, goal state,
and operators

Easy to convert back to a STRIPS-style plan

19

Satisfiability Testing Procedures

Systematic, complete procedures

Depth-first backtrack search
(Davis, Putnam, & Loveland 1961)

unit propagation, shortest clause heuristic

State-of-the-art implementation: ntab
(Crawford & Auton 1997)

and many others! See SATLIB 1998 / Hoos & Stutzle.

Stochastic, incomplete procedures

GSAT (Selman et. al 1993)

Current fastest: Walksat (Selman & Kautz 1993)

greedy local search + noise to escape local minima

20

Walksat Procedure

Start with random initial assignment.

Pick a random unsatisfied clause.

Select and flip a variable from that clause:

With probability p, pick a random variable.

With probability 1-p, pick greedily
a variable that minimizes the number of unsatisfied

clauses

Repeat to predefined maximum number flips;
 if no solution found, restart.

21

Planning Benchmark Test Set

Extension of Graphplan benchmark set

Graphplan faster than UCPOP (Weld 1992) and
Prodigy (Carbonell 1992) on blocks world and
rocket domains

logistics - complex, highly-parallel transportation
domain, ranging up to

14 time slots, unlimited parallelism

2,165 possible actions per time slot

optimal solutions containing 150 distinct
actions

Problems of this size (10^18 configurations) not
previously handled by any state-space planning
system

22

Solution of Logistics Problems

0.01

0.1

1

10

100

1000

10000

100000

rocket.a rocket.b log.a log.b log.c log.d

lo
g

 s
o

lu
ti

o
n

 t
im

e

Graphplan

 ntab

walksat

23

What SATPLAN Shows

A general propositional theorem prover can be
competitive with specialized planning systems

Surpise:

“Search direction” does not appear to
matter. (Traditional planners generally

 backward chain from goal state.)

Fast SAT engines
stochastic search - walksat

large SAT/CSP community sharing ideas and code

specialized engines can catch up, but by then, new
general technique

24

II. Current Themes in Sat Solvers

25

SAT Solvers

Stochastic local search solvers (walksat)

when they work, scale well

cannot show unsat

fail on certain domains

must use very simple (fast) heuristics

Systematic solvers (Davis Putnam Loveland style)

complete

fail on (often different) domains

might use more sophisticated (costly) heuristics

often to scale badly

Can we combine best features of each approach?

26

Background

Combinatorial search methods often exhibit

a remarkable variability in performance. It is

 common to observe significant differences

 between:

- different heuristics

- same heuristic on different instances

- different runs of same heuristic with
 different seeds (stochastic methods)

27

Preview of Strategy

We’ll put variability / unpredictability to our
advantage via randomization / averaging.

28

Cost Distributions

Backtrack-style search (e.g. Davis-
Putnam) characterized by:

I Erratic behavior of mean.I Erratic behavior of mean.

II Distributions have II Distributions have ““heavy tailsheavy tails””..

29

30

31

32

Heavy-Tailed Distributions

…… infinite variance infinite variance …… infinite mean infinite mean

Introduced by Pareto in the 1920’s

--- “probabilistic curiosity.”

Mandelbrot established the use of
heavy-tailed distributions to model
real-world fractal phenomena.

Examples: stock-market, earth-
quakes, weather,...

33

Decay of Distributions

Standard --- Exponential Decay

 e.g. Normal:

Heavy-Tailed --- Power Law Decay

 e.g. Pareto-Levy:

34Standard Distribution

(finite mean & variance)

Power Law Decay

Exponential Decay

35

How to Check for “Heavy Tails”?

Log-Log plot of tail of distribution

should be approximately linear.

Slope gives value of

 infinite mean and infinite variance infinite mean and infinite variance

 infinite varianceinfinite variance

36

37

38

Heavy Tails

Bad scaling of systematic solvers can be
caused by heavy tailed distributions

Deterministic algorithms get stuck on particular
instances

but that same instance might be easy for a
different deterministic algorithm!

Expected (mean) solution time increases
without limit over large distributions

39

Randomized Restarts

Solution: randomize the systematic solver

Add noise to the heuristic branching
(variable choice) function

Cutoff and restart search after a fixed
number of backtracks

Provably Eliminates heavy tails

In practice: rapid restarts with low cutoff can
dramatically improve performance

 (Gomes and Selman 1997, 1998)

40

Rapid Restart on LOG.D

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
c

k
tr

a
c

k
s

)

Note Log Scale: Exponential speedup!

41

SATPLAN Results

0.01

0.1

1

10

100

1000

10000

rocket.a rocket.b log.a log.b log.c log.d

Graphplan

BB-walksat

BB-rand-sys

Handcoded-walksat

42

Overall insight:Overall insight:

Randomized tie-breaking with

rapid restarts gives powerful

bactrack-style search strategy.

(sequential / interleaved / parallel)

Related analysis: Luby & Zuckerman 1993; Alt & Karp 1996.

43

Heavy-Tailed Distributions
in Other Domains

Quasigroup Completion Problem

Graph Coloring

Logistic Planning

Circuit Synthesis

 Gomes, Selman, and Crato 1997 - Proc. CP97;

 Gomes, Selman, McAloon, and Tretkoff 1998 - Proc AIPS98;

 Gomes, Kautz, and Selman 1998 - Proc. AAAI98.

44

Deterministic

Logistics Planning 108 mins. 95 sec.

Scheduling 14 411 sec 250 sec

(*) not found after 2 days

Scheduling 16 ---(*) 1.4 hours

Scheduling 18 ---(*) ~18 hrs

Circuit Synthesis 1 ---(*) 165sec.

Circuit Synthesis 2 ---(*) 17min.

Sample Results Random Restarts

R
3

Gomes, Kautz, Selman 1998

45

SAT Solvers: Themes, cont.

 Randomization (as discussed)

 Hybrid solvers --- Algorithm Portfolios

 (Hogg & Hubermann 1997; Gomes & Selman 1997)

Using LP relaxations (Warners & van Maaren 1998)

Between 2SAT / 3SAT:

 Mixture can behave as pure 2SAT!

 (Kirkpatrick, Selman, et al. 1996 / 1998)

46

47

48

SAT Solvers: Recent Theory

 Minimal size of search tree

 (Beame, Karp, et al. 1998)

Better worst-case: less than O(2^n)

 backtrack style: O(2^(0.387n))

 (Schiermeyer 1997; Paturi, et al. 1998)

 local search: O(2^(c.n)) with c < 1

 (Hirsch, 1998)

49

IV. Current Themes in Encodings

50

Add Declarative Domain Knowledge

Efficient representations and (randomized) SAT
engines extend the range of domain-
independent planning

Ways for further improvement:

Better general search algorithms

Incorporate (more) domain dependent
knowledge

51

Kinds of Knowledge

* About domain itself

a truck is only in one location

airplanes are always at some airport

* About good plans

do not remove a package from its destination location

do not unload a package and immediate load it again

X About how to search

plan air routes before land routes

work on hardest goals first

52

Expressing Knowledge

Such information is traditionally incorporated in
the planning algorithm itself

or in a special programming language

Instead: use additional declarative axioms

Problem instance: operator axioms + initial
and goal axioms + heuristic axioms

Domain knowledge " constraints on search
and solution spaces

Independent of any search engine strategy

53

Logical Status of Heuristics

1. Entailed by operator axioms: conflicts and
derived effects

fly(plane,d1,i) and fly(plane,d2,i) conflict

2. Entailed by operators + initial state axioms:
state invariants

a truck is at only one location

3. Entailed by operators + initial + goal + length:
optimality conditions

do not return a package to a location

4. New constraints on problem instance:
simplifying assumptions

Once a truck is loaded, it should immediately move

54

Axiomatic Form

Invariant: A truck is at only one location

at(truck,loc1,i) & loc1 " loc2 !
¬ at(truck,loc2,i)

Optimality: Do not return a package to a location

at(pkg,loc,i) & ¬ at(pkg,loc,i+1) & i<j !
¬ at(pkg,loc,j)

Simplifying: Once a truck is loaded, it should
immediately move

¬ in(pkg,truck,i) & in(pkg,truck,i+1) &
at(truck,loc,i+1) !

¬ at(truck,loc,i+2)

55

Questions

Does it work?

Additional axioms might just blow up instance
with redundant information

Is effect independent of search engine?

Can we predict the most useful level of heuristic
axioms?

What is relation of difficulty to problem size?

56

Experiment: Logistics

h1: Optimality conditions

Once a package leaves a location, it never returns

h2, h3: Simplifying assumptions

A package is never in any city other than its origin
or destination cities

rules out solutions where packages are transferred
between airplanes in an intermediate city

Once a vehicle is loaded, it should immediately
move

rules out solutions where vehicles are loaded
incrementally

h4: More optimality conditions

A package never leaves its destination city

57

ntab solution of logistics

0.1

1

10

100

1000

10000

100000

none h1 h2 h3 h4

lo
g

 n
o

rm
a

li
z
e

d
 s

o
lu

ti
o

n
 t

im
e

log.a

log.b

log.c

58

Answers

Does it work?

YES, 10 to 100+ times speedup

Is effect independent of search engine?

YES, same heuristics best for systematic and stochastic
engines --- but needs more investigation

Can we predict the most useful level of heuristic axioms?

USUALLY point at which problem size is minimized after
simplification by unit propagation (40% - 70% reduction)

59

How to Generate Control
Knowledge --- Automatically

Polytime preprocessing

Try to add “obvious” inferences (McAllester, Crawford)

Compilation

Fix operators and initial or goal state, generate tractable
equivalent theory (Kautz & Selman)

Learning strategies (Minton, Kambhampati, Etzioni, Weld, Smith)

Use automatic type inference to derive invariants.

 (Fox & Long --- STAN system 1998; Rintanen 1998;

 Koehler & Nebel --- IPP system 1998)

60

Encodings: Themes cont.

Add declarative control knowledge (as discussed)

Robustness

 Small change in original formulation, small

 change in encoding.

Add numeric information / “soft constraints”
 Weighted MAXSAT?

More compact encodings.

 E.g. causal.

61

Conclusions

Discussed current state-of-the-art in propositional

 reasoning and search.

Shift to 10,000+ variables and 10^6 clauses has

 opened up new applications.

Methodology: Find compact SAT encoding;

 Use off-the-shelf SAT Solver.

 Analogous to LP and MIP approaches.

62

Conclusions, cont.

 Example: AI planning / SATPLAN system

 One order of magnitude improvement (last 3yrs):

 10 step to 200 step plans

 Need two more:

 up to 20,000 step ...

 Discussed themes in SAT Sovers / Encodings

 Heavy-tails / Randomization / Declarative domain knowledge

