
JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 1

Exploiting Models in Software Engineering
James Kiper,Member, IEEE Computer Society,Tim Menzies,Member, IEEE Computer Society,

and Jeremy Greenwald,

Abstract— The use of models is a methodology that has
proven its utility and effectiveness in many aspects of software
engineering. Models in requirements engineering allow software
developers to explore trade spaces more effectively. In software
designs, software engineers have modeled static and dynamic
structure of a system. Modeling checking, as with, for example.,
Spin, has greatly extended the ability of developers to verify
various properties of software systems.

However, building a useful model can be intellectually difficult.
It often requires the cooperation of users, clients, and software
engineers who speak various technical languages. Creating and
validating such a model is a time-consuming, albeit important,
process. Given the cost of model building, it is vital that each
model be exploited as fully as possible.

In this paper, we illustrate how clear, succinct conclusions can
be quickly extracted from a model by adopting a particular style
of inference – minimal contrast set learning.

Index Terms— model-driven software engineering, contrast set
learning

I. I NTRODUCTION

T HIS demo file is intended to serve as a “starter file”
for IEEE journal papers produced under LATEX using

IEEEtran.cls version 1.6b and later. [1] and [2] May all your
publication endeavors be successful.

mds
November 18, 2002

A. Subsection Heading Here

Subsection text here.
1) Subsubsection Heading Here:Subsubsection text here.

II. M ODELING IN SOFTWARE ENGINEERING

Software engineering is modeling. At each phase of the
software life cycle, we produce artifacts that are, in fact,
models. To be explicit, by the termmodel, we mean ”elements
describing something (for example, a system, bank, phone, or
train) built for some purpose that is amenable to a particular
form of analysis, such as

• Communication of ideas between people and machines
• Completeness checking
• Race condition analysis
• Test case generation
• Viability in terms of indicators such as cost and estima-

tion
• Standards
• Transformation into an implementation”

[3]

Contact information: kiperjd@muohio.edu, timm@cs.pdx.edu,
jegreen@cs.pdx.edu .

III. A S ATURATION EFFECT

IV. RELATED WORK: SATURATION ELSEWHERE

V. CONTRAST SET LEARNING

A. Contrast Set Learning with Tar2

VI. CASE STUDIES

VII. C ONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] A. Avritzer and E. J. Weyuker, “The automatic generation of load test
suites and the assessment of the resulting software,”IEEE Trans. on
Software Engineering, vol. 21, no. 9, pp. 705–716, September 1995.

[2] T. Menzies and Y. Huf, “Data mining for very busy people,”IEEE
Computer, vol. 36, no. 11, pp. 22–29, November 2003, available from
http://menzies.us/pdf/03tar2.pdf.

[3] S. Mellor, A. Clark, and T. Futagamii, “Model-driven development - guest
editor’s introduction,”IEEE Software, vol. 20, no. 5, pp. 14– 18, Sept.-
Oct. 2003.

PLACE
PHOTO
HERE

James Kiper James Kiper is Associate Dean for
Research and Graduate Studies in the School of
Engineering and Applied Science, and Professor of
Computer Science at Miami University where he has
been for the past twenty years. His research interest
are in the area of software engineering...

PLACE
PHOTO
HERE

Tim MenziesTim Menzies is an Associate Professor
in the Lane Department of Computer Science at West
Virginia University. He is also ...

Jeremy Greenwald Jeremy Greenwald is a graduate student in the Depart-
ment of Computer Science at Portland State University.


