
0018-9162/06/$20.00 © 2006 IEEE February 2006 59P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

Widespread awareness of the problems associated with
earlier UML versions, coupled with growing interest in
MDD, raised expectations that the UML 2.0 architects
would produce a version that consisted of a significantly
reduced set of modeling concepts for concisely and con-
veniently describing a wide variety of applications. It was
also anticipated that this version would have precise
semantics that would facilitate the automation needed
to move MDD beyond the realm of existing computer-
aided software engineering tools. Some expected UML
2.0 architects to produce a modeling language silver bul-
let, or at least a close approximation.

Those unfamiliar with the inner workings of a com-
munity-driven language standardization effort found
the size and complexity of the UML 2.0 standard sur-
prising. Indeed, the end result seems at odds with the
forces that initially motivated this major revision. From
a detractor’s viewpoint, the numerous modeling con-
cepts, poorly defined semantics, and lightweight exten-
sion mechanisms that UML provides make learning and
applying it in an MDD environment difficult.

These real problems must be addressed, but we should
not be surprised that this first-generation modeling lan-
guage is far from perfect. As some UML 2.0 architects
point out, we are still in the “infancy of modeling lan-
guage design.”2 We need constructive criticism of UML
to drive the process of evolving MDD-related knowl-

The Object Management Group initiated the Unified Modeling Language 2.0 effort to

address significant problems in earlier versions.While UML 2.0 improves over earlier

versions in some aspects, its size and complexity can present a problem to users, tool

developers, and OMG working groups charged with evolving the standard.

Robert B. France, Sudipto Ghosh, and Trung Dinh-Trong
Colorado State University

Arnor Solberg
SINTEF

E xperience indicates that effective complexity
management mechanisms automate mundane
development tasks and provide strong support
for separation of concerns. For example, current
high-level programming languages and inte-

grated development environments provide abstractions
that shield developers from intricate lower-level details
and offer automated support for transforming abstract
representations of source code into faithful machine-
executable forms.

Advances in software development and information
processing technologies have resulted in attempts to build
more complex software systems. These systems have high-
lighted the inadequacies of the abstractions provided by
modern high-level programming languages. This has led
to a demand for languages, methods, and technologies
that raise the abstraction level at which software systems
are conceived, built, and evolved. The Object Manage-
ment Group (OMG) has responded to this demand with
the UML version 2.01 and the Model Driven Architecture
(MDA) initiative (www.omg.org/mda).

The problems initially targeted by the architects of the
UML 2.0 standard included the apparent bloat in ear-
lier UML versions and the lack of well-defined semantics.
During the standard’s development, the requirements
evolved to include support for model-driven develop-
ment (MDD), particularly the MDA approach to MDD.

Model-Driven Development
Using UML 2.0: Promises
and Pitfalls

60 Computer

edge. In this sense, UML 2.0 can play an important role
as an explicit form of modeling experience that stake-
holders can dissect, analyze, and critique.

Advocates point out that UML 2.0 reflects best mod-
eling practices and experience. They tout the following
major improvements:

• Better support for the notion of UML as a family of
languages through the use of profiles and semantic
variation points that mark the
parts of UML intentionally left
without semantics to accommo-
date user-defined ones.

• Improved modeling expressive-
ness, including improved model-
ing of business processes, support
for modeling reusable classifiers,
and support for modeling the architectures of dis-
tributed, heterogeneous systems.

• Integration of the Action Semantics that develop-
ers can use to define the models’ runtime semantics
and provide the semantic precision required to
analyze models and translate them into imple-
mentations.

Overzealous promotion of UML and associated MDD
technologies can be as harmful as unfair criticisms. Such
promotion can raise user expectations to a currently
unattainable level. By cutting through the hype sur-
rounding UML 2.0, we hope to provide some insights
into how well it can support MDD.

UML 2.0
The UML 2.0 standard contains a large set of model-

ing concepts that are related in complex ways. In defend-
ing the size and complexity of UML 2.0, its architects
point out that the language is intended to support mod-
eling in a variety of domains. To cope with this com-
plexity, designers organized the standard into four parts:

• Infrastructure—defines base classes that provide the
foundation for UML modeling constructs;

• Superstructure—defines the concepts that developers
use to build UML models;

• Object constraint language—defines the language
used for specifying queries, invariants, and operation
specifications in UML models; and

• Diagram interchange—defines an extension to the
UML metamodel that supports storage and ex-
change of information pertaining to the layout of
UML models.

The UML 2.0 Superstructure describes the standard’s
externally visible parts—the concepts used to describe
systems. To manage complexity, the Superstructure con-
cepts are organized into language units. A language unit

is used to model systems from a particular viewpoint.
For example, the Interactions language unit is used to
model interactions among behavioral elements, while
the Activities language unit is used to describe applica-
tion workflows.

In addition, some of the more complex language units
are organized into increments, with one increment adding
detail to a smaller increment. For example, the Activities
language unit consists of the following activity incre-

ments: Fundamental, Structured, and
Complete Structured Activities.
Structuring UML 2.0 into relatively
independent language units lets users
pick only the appropriate parts to
learn and understand.

The relative novelty of UML mod-
eling can require users to understand

most if not the entire language before determining what
models are appropriate for their environments. It is a
mistake, however, to view the standard as a textbook
description of UML. It specifies the concepts indepen-
dently of the methods and technologies that will use the
language. Tool developers, methodologists, and UML
textbook writers are the standard’s intended readers. We
know of no books that comprehensively cover UML 2.0,
but expect these will appear soon now that the Super-
structure standard has been finalized.

UML 2.0 VIEWPOINTS
UML provides good support for separating concerns

by letting users model systems from four viewpoints:

• Models produced from the static structural view-
point describe the system’s structural aspects. Class
models are examples of descriptions produced using
this viewpoint.

• Developers use the interaction viewpoint to pro-
duce sequence and communication models that
describe the interactions among a set of collabo-
rating instances.

• The activity viewpoint is used to create models that
describe the flow of activities within a system.

• The state viewpoint is used to create state machines
that describe behavior in terms of transitions among
states.

These viewpoints are not completely orthogonal:
Concepts used in one viewpoint often depend on con-
cepts used in another. For example, participants in an
interaction must have their classifiers defined in a static
structural model. Such dependencies are specified in the
UML metamodel, and tools can use them to determine
information consistency across system views.

The UML 2.0 metamodel’s size and complexity pose
a potential pitfall in this respect. Tool developers and
methodologists face a difficult challenge when trying to

UML 2.0 can play an
important role as an explicit

form of modeling experience.

identify all the specified dependencies among concepts.
Further, determining whether the metamodel captures
all required dependencies is difficult. Tools that query
and navigate the metamodel will help developers use it
effectively.

Developers of complex systems might want the ability
to model systems from user-defined viewpoints. UML 2.0
currently does not provide mechanisms for creating mod-
els using such viewpoints other than
those defined in the language. Work
on UML-based aspect-oriented mod-
eling (AOM) attempts to provide
some support for describing systems
from user-defined perspectives.3 An
aspect model describes a system from
a user-defined viewpoint. The model
is a slice of a UML system model that
contains only information pertinent
to the viewpoint.

Developers use AOM techniques to produce a design
model that consists of aspect models and a base model.
Aspect models are composed with the base model to pro-
duce an integrated view of the design. AOM requires
tools for creating multiple, possibly overlapping dia-
grams of a particular type—for example, class dia-
grams—and for composing diagrams of the same type.
Commercial versions of these tools currently do not exist.

TAILORING UML 2.0
UML 2.0’s designers use semantic variation points to

acknowledge that a variety of useful semantics can be
associated with some UML concepts. For example,
semantic variation points are used to tackle the poorly
defined notion of aggregation found in earlier UML ver-
sions. Papers critiquing earlier versions of the aggrega-
tion concept4,5 identify a variety of semantics that can
be associated with the relationships between the whole
and parts in an aggregation structure, particularly rela-
tionships in weak aggregation structures. UML 2.0
counters this problem by not associating specific seman-
tics to weak aggregation. It also avoids specifying how
parts of an aggregate are created.

Examples of other semantic variation points in UML
2.0 include the following:

• semantics associated with the reception of events in
state machines,

• the means by which the system delivers messages to
recipients during an interaction, and

• how use case extension points are defined.

Semantic variation points support the notion of UML
as a family of languages. UML 2.0 makes the user respon-
sible for defining and communicating appropriate seman-
tics plugged into variation points. It does not provide
default semantics or a list of possible variations, nor does

it formally constrain the semantics that can be plugged
into variation points. This can lead to pitfalls such as users
assigning semantics inconsistent with the semantics of
related concepts or failing to communicate particular
semantics to model readers and tools that analyze models.
This can lead to misinterpretation and improper model
analysis. Users must have knowledge of possible varia-
tions that can be plugged in to tailor the UML 2.0 seman-

tics appropriately.
Semantic variation points support

a form of tailoring-in-the-small.
In contrast, profiles support tailor-
ing-in-the-large. A UML profile
describes how UML model elements
are extended to support usage in
a particular modeling context. For
example, a profile can be used to
define a UML variant suited for

modeling Enterprise JavaBeans applications.
In a profile, UML model elements are extended using

stereotypes that define additional element properties. The
properties defined in an extension introduced by a stereo-
type must not contradict the properties associated with the
model element. A profile can introduce new constraints
and define additional attributes in classes, but it cannot
introduce new classes of model elements or remove exist-
ing classes of elements. For this reason, profiles are con-
sidered lightweight extension mechanisms. Profile ex-
amples include the OMG’s UML Profile for Schedulability,
Performance, and Time, and the SysML profile for system
modeling (www.uml.org/#UMLProfiles).

Unfortunately, the UML 2.0 profile mechanism does
not provide a means for precisely defining semantics
associated with extensions. For this reason, developers
cannot use profiles in their current form to develop
domain-specific UML variants that support the formal
model manipulations required in an MDD environment.

When UML does not provide the base elements for mod-
eling domain-specific concepts, developers can use exten-
sion mechanisms to change the UML metamodel. These
heavyweight mechanisms use the Meta-Object Facility
(MOF) to define the metamodel for the UML variant.

Several tool vendors are developing technologies that
support the development of domain-specific modeling
languages through heavyweight extensions. Language
engineers will use these technologies to develop MDD
environments that consist of domain-specific modeling
languages and supporting application development
tools. The application of these technologies will place
the burden of language development on users.

STRUCTURAL MODELING CONCEPTS
Class modeling concepts are the most widely used

UML concepts. Some development projects create only
class models. UML 2.0 provides some minor but notable
changes to class modeling concepts. One improvement in

February 2006 61

UML 2.0 makes the user
responsible for defining and
communicating appropriate

semantics plugged into
variation points.

62 Computer

Figure 1 shows an example of structured classes. The
structured class Car consists of two parts: W:Wheel and
e:Engine. The part W consists of two wheels, while e con-
sists of an engine that is an instance of the structured class
Engine. The axle connector links these parts. The class
Engine has a port named p that implements a provided
interface named Powertrain, and which requires opera-
tions described in the required interface named power.

Ports let developers construct structured classifiers
independently of the environments in which they will
be used. The environments need only know and con-
form to the interaction constraints the ports impose.
Detailed knowledge about the internal structure of these
classifiers is not needed to use them.

When using classifiers with ports, developers will
encounter a lack of guidance on how to map these clas-
sifiers to implementations. The major programming lan-
guages do not provide direct support for implementing
ports. Developers thus must transform models with
ports to equivalent models without ports before imple-
menting their models. For example, one approach treats
ports as classes with a strong aggregation relationship
with their classifiers.

BEHAVIORAL MODELING CONCEPTS
A good MDD language should have precise opera-

tional semantics. This eases the transformation of mod-
els to implementations and enables the development of
technologies for animating and testing models.

The runtime semantics informally described in the
UML 2.0 standard are intended to facilitate the devel-
opment of tools that execute UML models. The seman-
tics are based on the assumption that the root cause of
behavior in a model is an action executed by an active
object, where an active object is one with its own thread
of control. Actions form the basic behavior units that
UML behavioral diagrams describe. These actions
always execute in the context of some object. For exam-
ple, method bodies can be described as a sequence of
actions using an activity model.

To define an executable UML model, the language
must describe actions precisely. UML 2.0 accomplishes
this by incorporating concepts defined by the Action
Semantics, which identifies actions and describes their
effects. For example, it defines actions for creating and
deleting objects and links and for getting and setting
attribute values. UML 2.0 Action Semantics does not
specify a concrete syntax for actions. Researchers and
methodologists have defined different surface action lan-
guages, including the action semantics language (ASL;
www.kc.com/download/index.php) and Java-Like Action
Language (www.cs.colostate.edu/~trungdt/uml_testing/
tool).

The Action Semantics does not significantly raise the
level of abstraction above that provided by program-
ming languages. Writing a method body using an action

the class diagram notation is the introduction of a new
association navigability marker. The new notation lets
developers distinguish when a navigation is explicitly
prohibited from when a design decision has not been
made to allow or disallow navigation. An X at an asso-
ciation end indicates that navigation via that association
end is prohibited; lack of an adornment—an arrowhead
or an X—indicates that no decision has yet been made
with respect to navigation at the association end.

To better support software architecture modeling and
to support reuse of classifiers in multiple environments,
UML 2.0 introduces the structured classifier and port
concepts. A structured classifier has an internal struc-
ture described by a structure of parts. A part specifies a
collection of instances. For example, a structured class
has an internal structure that is a configuration of
objects. A composite structure diagram describes a struc-
tured classifier’s internal structure.

A structured classifier can be associated with ports rep-
resenting points of interactions with the classifier. A port
can be associated with provided and required interfaces
that specify interactions supported by the port. Provided
interfaces specify the incoming communications that the
classifier or its constituent parts handle, while the
required interfaces specify the communications the clas-
sifier sends out. The provided interfaces thus determine
the services the classifier provides through a port while
the required interfaces determine the services the classi-
fier expects the environment to provide.

If an instance of a classifier handles incoming com-
munications through a port directly, the port is referred
to as a behavior port. Alternatively, the constituent parts
of the instance can handle incoming communications.

When the system creates an instance of a classifier with
ports, it also creates instances of the ports. A port
instance, also called an interaction point, creates a real-
ization of its provided interfaces, which can constrain
the interactions that occur across the port. For example,
a realization can require that the interactions adhere to
a protocol.

Figure 1. UML 2.0 example of a structured class, taken from the
UML 2.0 Superstructure specification.The class Car consists of
two parts: W:Wheel and e: Engine.The part W consists of two
wheels and e consists of an engine, an instance of the
structured class Engine, which has a port named p that
implements an interface named Powertrain.

Car

p

p

e: EngineW: Wheel [2]

Engine

axle

Powertrain

Power

language that does not provide a level of abstraction
above primitive actions can require as much effort as
writing the method body in some programming lan-
guage. Defining action languages that use the primitive
actions to build higher-level constructs that significantly
raise the abstraction level for describing behavior will
significantly enhance UML 2.0’s ability to support MDD.

Sequence and activity diagrams have been significantly
changed in UML 2.0. Sequence diagram changes were
driven by the significant experience gained developing
the Message Sequence Diagram (MSD) standard lan-
guage. MSDs have been used for decades in the telecom-
munications industry. The standard has evolved to the
point that it has formalized and documented semantics.
Notable improvements to sequence diagrams include
the ability to

• name and refer to fragments of interactions, and
• decompose lifelines of participants with internal

structure into interactions that describe how their
internal parts interact in the context of the sequence
diagram.

UML 2.0 also introduces a new diagram type, the
Interaction Overview Diagram, which shows the flow
relationships among fragments and sequence diagrams.

Despite these improvements, it is still difficult to
describe some scenarios using sequence diagrams. In
particular, modeling scenarios that involve iterative or
recursive interactions on collections of participants is
problematic because lifelines are static: If a lifeline
appears in a sequence diagram loop fragment, it refers
to the same participant across the iterations. If the sys-
tem accesses a different participant in the collection in
each iteration, the participants must be explicitly repre-
sented as separate lifelines.

Figure 2 describes a scenario in which an Engine
object sends rotate() messages to a collection consisting
of two Wheels. In this case, the problem is not readily
apparent because there are only two wheels. The prob-
lem becomes apparent in the cases where the number of
wheels in the collection is large or can vary. Some users
get around this problem by using the informally defined
dynamic lifelines shown in Figure 3: w[i] is a dynamic
lifeline set to w1 in the first iteration, then to w2 in the
second iteration. This improvised notation is more con-
cise and intuitive, but often the semantics associated
with the dynamic lifelines are imprecisely defined.

Sequence diagrams describe only the interactions
between instances. Developers can use state machine
models and activity diagrams to describe how partici-
pants in an interaction respond to messages sent to them.
State machines in UML 2.0 resemble state machines in
the previous version and have been used as the basis for
executable variants of UML.6 Using them to completely
describe the behavior of reactive systems is appropriate,

but describing the behavior of information systems and
other system types using only states and transitions can
contribute to accidental complexity.

Activity diagrams provide a more appropriate vehicle
for defining behaviors in information systems. Previous
UML versions treated activity diagrams as a specialized
form of state machines. Activity diagrams now have a
Petri-net-like flow semantics to better support modeling
of activity flows.

An activity diagram is a graph of nodes, where a node
represents an action, data store, or control flow element.
Tokens flowing across edges that connect actions deter-
mine when the actions are executed. Rules that deter-
mine how tokens flow in an activity diagram have been
defined in the standard. Unlike previous versions of
activity diagrams, subflows can be stopped without stop-
ping other flows. This lets developers model activity
flows that could not be modeled previously. More
importantly, activity diagrams can now be used to
describe method bodies procedurally. This paves the way
for developing tools that animate and test models.

TESTING UML DESIGNS
In MDD, models provide the basis for understanding

system behavior and generating implementations. The

February 2006 63

Figure 2. A loop modeled using UML 2.0 notation. Here, an
Engine object broadcasts a rotate() message to a collection
consisting of two Wheels.

SD operate

: Engine w2: Wheelw1: Wheel

operate()
rotate()

rotate()

Figure 3. A loop modeled using a dynamic lifeline. Here, w[i] is a
dynamic lifeline set to w1 in the first iteration, then to w2 in the
second iteration.

SD operate

: Engine w[i]: Wheel

operate()

Loop

rotate()
[i = 1; i < 3; i++]

64 Computer

ability to animate models can help developers better
understand modeled behavior, while testing models can
help uncover errors before developers transform the
models into implementations.

Both novices and experienced developers will benefit
from the visualization of modeled behavior that model
animators provide. Model animation can give quick visual
feedback to novice modelers, helping them identify im-
proper use of modeling constructs. Experienced modelers
can use model animation to better understand the designs
that other developers create.

Models must be validated so that faults do not pass
downstream to implementations. Currently, developers
evaluate UML design models using
walk-throughs, inspections, and other
informal types of largely manual
design-review techniques. Manual
review of large UML designs can be
tedious and error-prone. Existing for-
mal verification techniques can be
applied, but few of them scale to large
system models. The runtime seman-
tics associated with UML 2.0 models pave the way for
the development of systematic model testing techniques
that exercise executable models using test inputs.7,8

We have developed a prototype tool called the UML
Animator and Tester UMLAnT,9 which uses information
from UML class, sequence, and activity models to ani-
mate and test UML design models. During testing, the
UMLAnT prototype displays sequence diagrams that cap-
ture messages exchanged between objects. It also displays
object diagrams that describe the configurations created
as tests are executed.

Developers can use UMLAnT to generate test inputs
from a UML design’s class and sequence models. A set of
test criteria defines test objectives and is used by the tool
to assess the adequacy of test input sets. The tool gener-
ates an executable form of the design model from the
class and activity models. A model is tested by applying
test inputs to the executable form. The tests include sev-
eral checks to determine test failures. For example,
UMLAnT can determine when object configurations pro-
duced during execution violate constraints stated in a
class model and when operation postconditions remain
unsatisfied after the operations are executed. UMLAnT’s
animation feature can be used to debug faulty models.
Object state and message sequence information produced
during animation can help in locating faults in models.

THE UML “METAMUDDLE”
Developers of model transformations and other MDD

mechanisms that manipulate models often work at the
metamodel level. For example, developers frequently
express model transformations as mappings between meta-
model elements. Further, MDD technologies sometimes
extend metamodels and define new language constructs to

better support domain-specific modeling and modeling of
product families. Developers of UML-based MDD tech-
nologies must therefore have a good understanding of the
UML metamodel. However, the complexity of the current
UML 2.0 metamodel can make understanding, using,
extending, and evolving the metamodel difficult.

In practice, developers use only a small subset of the
diagram types that UML provides. Not all the concepts
available in a diagram type are used for modeling an
application or product family. Thus, developers seldom
need to have full knowledge of the UML metamodel to
specify model transformations.

Unlikely as it seems, this raises a problem: The task
of identifying and extracting the
required subset of concepts from
the UML metamodel must cur-
rently be performed by manually
navigating through the “metamud-
dle.” To illustrate this, consider the
task of extracting a simple view
of the UML 2.0 metamodel that
focuses only on the relationships

among concepts used to create basic sequence models.
An examination of the UML metamodel reveals that the
required information is scattered across the metamodel.

The Interactions language unit is organized into a
number of related packages. For example, the Basic
Interaction package has direct dependencies on the Basic
Behaviors, Basic Actions, and Internal Structures. These
packages have further dependencies on other packages
described elsewhere in the 1,000-plus-page Super-
structure specification. Tracing dependencies through
these packages to extract the metamodel substructure
that describes basic sequence models is tedious.

The UML 2.0 specification does not present a conve-
nient overview of interaction models. For example, we
would expect that the relationship between message
ends and lifelines would be easy to identify. Surprisingly,
deriving this simple relationship requires navigating
through several associations and inheritance hierarchies.
Figure 4 shows a snapshot of the work involved in find-
ing the simple interaction metamodel.

The shaded boxes indicate the interaction concepts of
interest. The other concepts must be navigated through
to derive the required relationships. In some cases, find-
ing the derived relationships requires moving through
inheritance hierarchies that span packages. For example,
lifeline inherits from NamedElement, which is defined
in another package described elsewhere in the Super-
structure document.

USING THE UML METAMODEL
The problem of extracting a metamodel view of basic

sequence models gives some insight into why the task of
defining transformations using the UML metamodel is cur-
rently tedious and error-prone. These problems can be alle-

The UML 2.0 specification
does not present

a convenient overview
of interactions models.

viated by providing simplified metamodel views for each
UML 2.0 model type. These views should describe only
the concepts and relationships that appear in the models.

A more flexible and useful solution would provide
tools that developers can use to query the metamodel
and extract specified views from it. Query/extraction
tools should be capable of extracting simple derived rela-
tionships between concepts and more complex views
that consist of derived relationships among many con-
cepts. Metamodel users can apply such tools to better
understand the UML metamodel and to obtain views
for specifying patterns and transformations. UML archi-
tects can use these tools to help determine the impact
of changes to the UML and to check that the changes
are made consistently across the UML metamodel.

Such tools can be developed using existing technology.
UML tools that have basic facilities for accessing internal
representations of the UML metamodel can be extended
with query and extraction capabilities. Metamodeling
tools, such as those developed by Xactium (www.
xactium.com) and Adaptive Software (www.adaptive.
com), and the megamodeling tools advocated by Jean
Bézivin (www.sciences.univ-nantes.fr/lina/atl/contrib/
bezivin),10 have some of these capabilities. Another tool
that can ease the task of using the UML metamodel is one
that takes a UML model and produces a metamodel view
that describes its structure. Developers can use such a tool
to support compliance checking of models manipulated
by transformations. For example, they can use the tool to
check that source, target, and transformation models con-
form to their respective metamodels.

Evolving the complex UML 2.0 metamodel will be a
challenge. It is expected that UML will change, and thus

the standard’s maintainers will be faced with assessing
the impact of suggested changes, making changes con-
sistently across the metamodel, and verifying the con-
sistency and soundness of the changed metamodel. To
better manage the evolution of the UML metamodel, we
propose using AOM techniques to organize the meta-
model into aspect models. For example, the following
aspects can be defined:

• views for each of the diagram types in UML 2.0 that
contain only the concepts visualized in diagrams;
and

• views of abstract concepts reflecting language and
UML-specific concerns such as namespace manage-
ment, element typing, element connectivity, and exe-
cution semantics.

Each aspect model presents an uncluttered view of how
the UML metamodel treats a concern. The aspect models
need to be composed to produce an integrated view of the
metamodel. Aspect treatment of the metamodel lets a
developer make changes in a single aspect or create a new
aspect, and then compose it with other aspects to deter-
mine the impact of the change on the metamodel. Using a
composition mechanism also helps ensure that changes
are consistently made across the metamodel. A prototype
composition mechanism for UML class diagrams that can
be used for this purpose has been developed.11

The purely structural nature of the UML 2.0 meta-
model can hinder attempts at providing practical sup-
port for manipulating models. Specifying behavior at
the metalevel can ease model manipulation tasks such
as model transformation and model composition.

February 2006 65

Figure 4. Finding the simple UML interactions metamodel.The shaded boxes indicate the interaction concepts of interest.
Users must navigate through the other concepts to derive the required relationships.

*

*

*
*

*

+/owned
Element

+/owner
0..1

Element
(from Kernel)

+/ownedComment

0..1

Comment
(from Kernel)

NamedElement
(from Kernel)

name: String
visibility: VisibilityKind

Operation
(from Kernel)

Signal
(from Communications)

+/signature

TypeElement
(from Kernel)

Type
(from Kernel)

0..1

+/type

ConnectableElement
(from InternalStructures)

ConnectorEnd
(from InternalStructures)

*

1

+/represents
0..1

*

1 *

1 * SendSignalEvent

ValueSpecification

2..*

Connector
(from InternalStructures) 0..1

*

+argument*

SendOperationEvent

0..1 0..1

0..1 0..1

+send
Event

+receive
Event

MessageEnd

Message
/messageKind: MessageKind
messageSort: MessageSort

MessageEvent
(from Communications)

Event
(from Communications)

1

1

+start +finish

MessageOccurrence
Specification

Execution
Specification

ExecutionOccurrence
Specification

Occurrence
SpecificationLifeline

66 Computer

Operations in metamodels can describe and constrain
how models are manipulated in MDD environments.
Also, adding metaoperations for transforming related
modeling concepts among different UML diagram types
can ease consistency checks across different views and
better support transformation between model types. In
addition, metaoperations can be used to define stan-
dardized transformations that are based on relationships
defined in the UML metamodel. For example, such
metaoperations can be used to transform interaction
models to class models based on the relationships
between the Lifeline concept and the Class concept.

F or UML 2.0 to support MDD, a framework that
includes extensive facilities for tailoring the language
and for manipulating models is needed. Many com-

mercial UML tools claim to support MDD. The better
ones tend to have limited support for defining and using
UML model transformations and tend to restrict their
users to a particular implementation platform. This is
probably the best that can be done now.

UML 2.0’s size and complexity present a problem not
only to UML-based MDD tool developers but also to
OMG working groups charged with evolving the stan-
dard. It will be extremely difficult to evolve UML 2.0
using only manual techniques. Evolving the standard can
involve making changes to concepts that are scattered
across the metamodel, verifying that the required changes
are incorporated consistently across the metamodel,
determining the impact that a change will have on other
metamodel elements, and ensuring that the changes do
not result in a metamodel that defines inconsistent or
nonsensical language constructs. The metamodel needs
to be restructured to ease evolution, and tools should be
developed to help navigate the metamodel.

Evolving UML so that it better supports MDD will
require at least addressing the problems we have iden-
tified and developing technologies that support practi-
cal development and use of profiles and use of the
metamodel for managing and manipulating models.

UML’s role in enabling MDD should not be under-
valued. Ongoing UML-related research in academia and
industry has added and will continue to add to the MDD
knowledge base. We expect that UML will be the gene-
sis of future MDD languages. �

References
1. The Object Management Group, Unified Modeling Language:

Superstructure, Version 2.0, OMG document formal/05-07-
04, 2004.

2. B. Henderson-Sellers et al., “UML—The Good, the Bad or the
Ugly? Perspectives from a Panel of Experts,” Software and
System Modeling, Feb. 2005, pp. 4-13.

3. R.B. France et al., “An Aspect-Oriented Approach to Design

Modeling,” IEE Proc. Software, special issue on Early Aspects:
Aspect-Oriented Requirements Eng. and Architecture Design,
Aug. 2004, pp. 173-185.

4. B. Henderson-Sellers and F. Barbier, “Black and White Dia-
monds,” Proc. UML99, LNCS 1723, Springer-Verlag, 1999,
pp. 530-565.

5. M. Saksena, R. France, and M. Larrondo-Petrie, “A Charac-
terization of Aggregation,” Int’l J. Computer Systems Science
& Eng., vol. 14, no. 6, 1999, pp. 363-371.

6. S. Mellor and M. Balcer, Executable UML: A Foundation for
Model-Driven Architecture, Addison-Wesley, 2002.

7. A. Andrews et al., “Test Adequacy Criteria for UML Design
Models,” J. Software Testing, Verification and Reliability, vol.
13, no. 2, 2003, pp. 95-127.

8. T. Dinh-Trong et al., “A Tool-Supported Approach to Test-
ing UML Design Models,” Proc. 10th IEEE Int’l Conf. Eng.
Complex Computer Systems (ICECC05), IEEE Press, 2005,
pp. 519-528.

9. T. Dinh-Trong et al., “UMLAnT: An Eclipse Plugin for Ani-
mating and Testing UML Designs,” to appear in Proc. Eclipse
Technology eXchange Workshop, Conf. Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA),
ACM Press, 2006.

10. J. Bézivin, F. Jouault, and P. Valduriez, “On the Need for Meg-
amodels”; www.sciences.univ-nantes.fr/lina/atl/www/papers/
OOPSLA04/bezivin-megamodel.pdf

11. Y.R. Reddy et al., “Directives for Composing Aspect-Oriented
Design Class Models,” to appear in Trans. Aspect-Oriented
Software Development, 2006.

Robert B. France is a professor in the Computer Science
Department at Colorado State University. His research
interests include model-driven development, aspect-oriented
development, and formal methods. He received a PhD in
computer science from Massey University, New Zealand.
Contact him at france@cs.colostate.edu.

Sudipto Ghosh is an assistant professor in the Computer
Science Department at Colorado State University. His
research interests include software testing, aspect-oriented
development, and component-based development. He
received a PhD in computer science from Purdue University.
Contact him at ghosh@cs.colostate.edu.

Trung Dinh-Trong is a doctoral student at Colorado State
University. His research interests include software testing,
software processes, and software modeling. He received an
MS in computer science from Colorado State University.
Contact him at trungdt@cs.colostate.edu.

Arnor Solberg is a research scientist at SINTEF. His research
interests include model-driven development, quality of ser-
vice, and aspect-oriented development. He is currently pur-
suing a PhD in computer science at the University of Oslo,
Norway. Contact him at arnor.solberg@sintef.no.

