
Learning Minimal Policies for Software Projects

TIM MENZIES, West Virginia University, WV, USA
and
JAMES KIPER, Miami University, Ohio, USA
and
JEREMY GREENWALD, MathWorks, USA
and
YING HU, Vancouver, BC, Canada
and
DAVID RAFFO, and and SIRI-ON SETAMANIT , Portland State University, OR,
USA

Blab blah

Categories and Subject Descriptors: aa [bb]: cc

General Terms: dd

Additional Key Words and Phrases: ee

Dr. Menzies is with the Lane Department of Computer Science, West Virginia University and can
be r eached at tim@menzies.us,
Dr. Kiper is with the Computer Science and Systems Analysis Department, School of Engineering
& Applied Science, Miami University, and can be reached at kiperjd@muohio.edu.
Ms. Hu is a software designer in Vancouver, British Columbia and can be reached at huying_ca.

@yahoo.com.
Mr. Greenwald, formerly with Computer Science at Portland State University, now works at
MATHWORKS jegreen@cecs.pdx.edu.
Dr. Raffo is a Associate Professor in the School of Business Administration, Portland State
University, and can be reached at raffod@sba.pdx.edu.
Ms. Setamanit is a graduate student at Portland State Universit. and can be reached at sirion@
pdx.edu.
The research described in this paper was carried out at Miami University, West Virginia University
and Portland State University under contracts and sub-contracts with NASA’s Software Assurance
Research Program. Reference herein to any specific commercial product, process, or service by
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United
States Government.
Download an earlier draft from http://menzies.us/pdf/07succinct.pdf.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-??00000?? $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 0??–0??.

2 · Menzies et.al.

1. INTRODUCTION

Consider a software manager using a software process model to control their project.
Exploring all the “what-ifs” within those models can be a daunting tasks. For
example, 20 binary decisions require, in the worst case, 220 > 1, 000, 000 what-
ifs. For another example, after interviewing the managers of three NASA systems
regarding their process options, we found that they were considering up to 109

options1.
In the 21st century, it is possible to use standard desktop machines to explore

a very large option space. Many businesses under-utilize their CPUs once staff go
home for the day. Those machines can be combined into a CPU farm which. If the
process models are not database or GUI intensive, then such a CPU farm can can
work through billions of options in an overnight run.

However, once all those options are created, they must be summarized. That
is, it is not enough to generate a multitude of alternatives, we must also select
the subset of the possible options that matter then most. This paper discusses a
summarization technology that exploits two naturally occuring properties of many
models: clumps and collars

The number of configuration possibilities within a model can be dauntingly large.
A model with 20 binary choices has 220 > 1, 000, 000 possible configurations, far
beyond the capability of human comprehension. Standard model comprehension
methods such as design of experiments have limited utility when the model is non-
continuous, very large, or contains noise.

Hence, since 2000, we have been exploring model comprehension using data min-
ers. After randomly sampling those configurations, running the resulting model,
scoring the output with some oracle, our data miners are used to configure options
that most improve model output [?; ?; ?; ?; ?; ?; ?; ?; ?; ?; ?; ?; ?; ?; ?]. This
paper synthesizes that prior work and presents new case studies. Originally, our
work was inspired by Bratko’s combination of qualitative modeling and data min-
ing [?]. We found that standard data miners may be inadequate for exploring model
configuration possibilities since they often yield results that are incomprehensible
to humans:

—Neural nets never generate a succinct generalization of their knowledge [?];
—The random search of genetic algorithms can produce models that are too com-

plex to understand [?];
—Most decision/regression tree learners such as C4.5 [?] or CART [?] execute in

local top-down search, with no memory between different branches. Hence, the
same concept can be needlessly repeated many times within the tree. Conse-
quently, such trees can be cumbersome, needlessly large, and difficult to under-
stand.

The detailed, complex and arcane output generated by standard data miners is
often superfluous. Firstly, many human experts can not (or will not) read complex
theories learned by a data miner. Secondly, numerous empirical and theoretical

1A COCOMO model with 12 unknowns was being analyzed; each unknown has up to 6 possible
values; 612 > 1, 000, 000, 000.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 3

results argue that, in the usual case, models are controlled by a handful of of key
variables. If data miners are restricted to just returning models containing those
keys, then the learned model will be very small indeed.

Thus, we propose a different kind of data miner to assist analysts in exploring
the configuration possibilities within their models. Traditional machine learners like
C4.5 generate classifiers that assign a class symbol to an example. Our preferred
method, called treatment learning generates just the differences in the key variables
among different outcomes.

The rest of this paper is structured as follows. The twin topics of model-based
SE and search-based SE are introduced. A special case of hard models are discussed
that are difficult to manage using standard methods. Evidence is then presented
that, often, the key variables that control a model are few in number. The problem
of hard models therefore can be reduced to just the problem of understanding the
key variables. This will motivate the design of the TAR2 treatment learner. Case
studies will then be presented showing that, in many domains, TAR2 finds a small
number of controlling variables. Such succinct controllers have many advantages:

—Smaller models are easier to explain (or audit).
—Miller has shown that models generally containing fewer variables have less vari-

ance in their outputs [?].
—The smaller the model, the fewer are the demands on interfaces (sensors and

actuators) to the external environment. Hence, systems designed around small
models are easier to use (less to do) and cheaper to build.

In short, for a certain class of hard modeling problems, the TAR2 treatment
learner can dramatically simplify the task of understanding the configuration pos-
sibilities within model-based SE. Hence, our conclusion will be that it is useful to
augment standard modeling methods with treatment learning. As to other modeling
problems, TAR2 is not indicated for low-dimensionality linear continuous models
built in domains that have no noise or other uncertainties, and where managers
have full control over all model inputs.

2. RELATED WORK

Traditional methods may not yield succinct control policies from software process
models. One such traditonal method is binary plotting; i.e. N model inputs are
plotted against some output score in N two-dimensional binary plots. The best
constraints on the inputs are those that select for the best output. However, if noise
in a models yields plots that are not smooth, then it becomes a time-consuming and
subjective task to examine N binary plots to detect regions of input parameters
that most improves the outputs. Also, binary plotting will not find conjunctions of
input constraints that contribute to better output. Further, as the dimensionality
of model input increases, the cognitive effort required to study the plots can become
prohibitively expensive.

Many researchers have developed impressive visual environments for decreasing
the cognitive overload associated with exploring a multi-dimensional space. Such
visualizations help analysts explore visual information, but they present their own
challenges. Nevertheless, there are still limits on how many dimensions can be

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Menzies et.al.

displayed (e.g. we have yet to see effective visualizations for more than a ten
dimensionality space). As the visualization environment grows more sophisticated,
some users find they have traded a data browsing problem with the new problem
of exploring the full range of the effects of all the controls.

When manual exploring of options fail, automatic methods can be applied. Op-
timization packages can be applied to data or the equations of a system to find
“sweet spots” that maximize the score resulting from model outputs. For example,
a canonical sensitivity analysis method [?] might be to compute eigenvectors of a
linear system in order to understand its long-term temporal behavior [?; ?]. Alter-
natively, using design of experiments [?], we might exercises an existing model to
shed light on the response surface of the model (DOE does identify gradients and
key parameters for a model).

While useful for some models, these automatic methods do not apply to all
models. For example, optimization methods can fail for non-linear models. Any
model with an “if” statement introduces a “cliff” where the effects of inputs on
outputs abruptly changes. For such models, there is no linear continuous solution
that applies either side of the “cliff”. Model uncertainty also complicates sensitivity
analysis. For example, the eigenvector technique described would yield spurious
results if the coefficients on the models are not known with certainty. Lastly, a
DOE analysis can be complicated by the dimensionality, noise, and visualization
problems described above.

When sensitivity experiments and DOE are not appropriate, other methods such
the cross-entropy method [?]; simulated annealing [?], tabu search [?], or genetic
algorithms [?] might be employed. All these methods have been used for search-
based software engineering XXX

More generally, traditional methods often assume total knowledge and total
control of the input space. This is often impractical. Consider, for example,
Mintzberg [?] study of how real-world decisions are made. He found:

—56 U.S. foremen who averaged 583 activities in an eight-hour shift (one every 48
seconds).

—160 British managers who worked for half an hour or more without interruption
only once every two days.

These empirical observations do not fit a traditional optimization model of decision
making were all options are systematically studied, organized, co-ordinated and
controlled. In hard modeling problems, human agents must make decisions using:

—limited time and computational ability;
—limited computational ability (or limited time for computation);
—limited knowledge about decision alternatives;
—uncertainty about possible outcomes of decisions
—uncertainty about pay-offs;
—no more than a partial ordering of preferences;
—limited information about probabilities of outcomes.

Herbert Simon [?] defined and explored such hard modeling problems using a data
structure called state space [?]. In terms of model-based SE, state space is the set of
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 5

options and option selection operators within a model. Further, in hard modeling
problems, large portions of the state space are uncertain. Simon argued that in such
state spaces, searching for optimal solutions is a spurious goal. Rather, agents can
only make just enough decisions that are just good enough. In Simon’s terminology,
such decisions are satisficing.

Our contribution to hard modeling is to comment that (1) satisficing solutions
can be achieved by ignoring certain irrelevant or redundant details within a model;
(2) surprisingly simple methods can find what irrelevancies to ignore. Treatment
learners propose “treatments”; i.e. constraints on a small subset of the model
inputs. The other inputs are left to vary at random. That is, apart from generating
very succinct solutions, treatment learning offers solutions that are stable despite
uncertainty in the non-treated variables.

3. COLLARS AND CLUMPS

This research assumes that many models can be controlled by a small number of
key variables which we call collars. Collars restrict the behavior of a model such
that their state space clumps; i.e. only small number of states are used at runtime.
If so, the output of a data miner could be simplified to constrain just the collar
variables that switch the system between a few clumps.

To visualize collars, imagine an execution trace spreading out across a program.
Initially, the trace is very small and includes only the inputs. Later, the trace
spreads wider as upstream variables effect more of the downstream variables (and the
inputs are the most upstream variables of all). At some time after the appearance
of the inputs, the variables hold a set of values. Some of these values were derived
from the inputs while others may be default settings that, as yet, have not been
affected by the inputs. The union of those values at time t is called the state st of
the program at that time.

Multiple execution traces are generated when the program is run multiple times
with different inputs. These traces reach different branches of the program. Those
branches are selected by tests on conditionals at the root of each branch. The
controllers of a program are the variables that have different settings at the roots
of different branches in different traces. Programs have collars when a handful
of the controllers in an early state st control the settings of the majority of the
variables seen in later states .

A related effect to collars is clumping. If a program has v variables with range
r, then the maximum number of states is rv. Programs clump when most of those
states are never used at runtime; i.e. |used|/ (rv) ≈ 0. Clumps can cause collars:

—The size of used is the cardinality cross product of the ranges seen in the con-
trollers.

—If that cardinality is large, many states will be generated and programs won’t
clump.

—But if that cross product is small, then the deltas between the states will be small
– in which case controlling a small number of collar variables would suffice for
selecting what states are reached at runtime.

There is much theoretical and empirical evidence for expecting that many models
often contain collars and clumps.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Menzies et.al.

3.1 Theoretical Evidence

With Singh [?], we have shown that collars are an expected property of Monte Carlo
simulations where the output has been discretized into a small number of output
classes. After such a discretization, many of the inputs would reach the same goal
state, albeit by different routes. The following diagram shows two possible distinct
execution paths within a Monte Carlo simulation both leading to the same goal;
i.e. a→ goal or b→ goal.

a1−→M1
a2−→M2

. . .
am−→Mm

 c−→ goali
d←−



N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Each of the terms in lower case in the above diagram represent a probability of some
event; i.e. 0 ≤ {ai, bi, c, d, goali} ≤ 1. For the two pathways to reach the goal, they
must satisfy the collar M or the larger collar N (each collar is a conjunction). As
the size of N grows, the product

∏N
j=1 bj decreases and it becomes less likely that

a random Monte Carlo simulation will take steps of the larger collar N .
The magnitude of this effect is quite remarkable. Under a variety of conditions,

the narrower collar is thousands to millions of times more likely. For example, when
|M | = 2 and N > M , the condition for selecting the larger collar is d

c ≥ 64; i.e.
the larger collar N will be used only when the d pathway is dozens of times more
likely than c. The effect is more pronounced as |M | grows; at |M | = 3 and N > M ,
the condition is d

c ≥ 1728; i.e. to select the larger collar N , the d pathway must be
thousands of times more likely than c (for more details, see [?]). That is, when the
output space is discretized into a small number of outputs, and there are multiple
ways to get to the same output, then a randomized simulation (e.g. a Monte Carlo
simulation) will naturally select for small collars.

While the mathematics may be arcane, the intuition is simple. Suppose all the
power goes out in a street of hotels. If all those hotels were designed by different
architects then their internal search spaces would be different (number of rooms
per floor, distance from each room to a flight of stairs, number of stairwells, etc).
After half an hour, some of the guests bumble around in the dark and get outside to
the street. Amongst the guests that have reached the street, there would be more
guests from hotels with simpler internal search spaces (fewer rooms per floor, less
distance from each room to the stairs, more stairwells).

As to clumping, Druzdel [?] observed this effect in a medical monitoring system.
The system had 525,312 possible internal states. However, at runtime, very few
were ever reached. In fact, the system remained in one state 52% of the time, and a
mere 49 states were used, 91% percent of the time. Druzdel showed mathematically
that there is nothing unusual about his application. If a model has n variables, each
with its own assignment probability distribution of pi, then the probability that the
model will fall into a particular state is p = p1p2p3...pn =

∏n
i=1 pi. By taking logs

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 7

of both sides, this equation becomes

ln p = ln
n∏

i=1

pi =
n∑

i=1

ln pi (1)

The asymptotic behavior of such a sum of random variables is addressed by the
central limit theorem. In the case where we know very little about a model, pi

is uniform and many states are possible. However, the more we know about the
model, the less likely it is that the distributions are uniform. Given enough variance
in the individual priors and conditional probabilities or pi, the expected case is that
the frequency with which we reach states will exhibit a log-normal distribution; i.e.
a small fraction of states can be expected to cover a large portion of the total
probability space; and the remaining states have practically negligible probability.

The assertion that many types of models display this clumping behavior is quite
important for the style of data mining (treatment learning) that we advocate. In
application to a clumping model with collars, Monte Carlo simulation, followed by
TAR2, suffices to summarize that model in an effective way:

—TAR2’s rules never need to be bigger than the collars. Hence, if the collars are
small, TAR2’s rules can also be small.

—If a model clumps, then, very quickly, a Monte Carlo simulation would sample
most of the reachable states. TAR2’s summarization of that simulation would
then include most of the important details of a model.

3.2 Empirical Evidence

Empirical evidence for clumps first appeared in the 1950s. Writing in 1959, Samuel
studied machine learning for the game of checkers [?]. At the heart of his program
was a 32-term polynomial that scored different configurations. For example, king
center control means that a king occupies one of the center positions. The program
learned weights for these variable coefficients. After 42 games, the program had
learned that 12 variables were important, although only 5 of these were of any real
significance.

Decades later, we can assert that deleting irrelevant variable has proven to be a
useful strategy in many domains. For example, Kohavi and John report experiments
on 8 real world datasets where, on average, 81% of the non-collar variables can be
ignored without degrading the performance of a model automatically learned from
the data [?].

If models contain collars, or if the internal state space clumps, then much of the
reachable parts of a program can be reached very quickly. This early coverage effect
has been observed many times. In a telecommunications application, Avritzer, Ros,
& Weyuker found that a sample of 6% of all inputs to this system covered 99% of all
inputs seen in about one year of operation (and a sample of just over 12% covered
99.9%) [?]. Further evidence for early coverage can be found in the mutation
testing literature. In mutation testing, some part of a program is replaced with a
syntactically valid, but randomly selected, variant (e.g. switching “less than” signs
to “greater than”). This method of testing is useful for getting an estimate of what
percentage of errors have been discovered by testing. Wong compared results using
X% of a library of mutators, randomly selected (X ∈{10,15,. . . 40,100}). Most of

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Menzies et.al.

what could be learned from the program could be learned using only X=10% of
the mutators; i.e. after a very small number of mutators, new mutators acted in
the same manner as previously used mutators [?]. The same observation has been
made elsewhere by Budd [?] and Acree [?].

If the space of possible execution pathways within a program are limited, then
program execution would be observed to clump since it could only ever repeat a few
simple patterns. Empirically such limitations have been observed in procedural and
declarative systems. Bieman and Schultz [?] report that 10 or fewer paths through
programs explored 83% of the du-pathways (a du-path is a set of statements in a
computer program from a definition to a use of a variable. This is one common
form of structural coverage testing.) Harrold [?] studied the control graphs of 4000
Fortran routines and 3147 C functions. Potentially, the size of a control graph may
grow as the square of the number of statements (in the case where every statement
was linked to every other statement.) This research found that, in these case studies,
the size of the control graph is a linear function of the number of statements. In an
analogous result, Pelánek reviewed the structures of dozens of formal models and
concluded that the internal structure of those models was remarkably simple: “state
spaces are usually sparse, without hubs, with one large SCC [strongly connected
component], with small diameter 2 and small SCC quotient”3 [?]. This sparseness of
state spaces was observed previously by Holtzmann where he estimate the average
degree of a vertex in a state space to be 2 [?].

Pelánek hypotheses that these “observed properties of state spaces are not the
result of the way state spaces are generated nor of some features of specification
languages but rather of the way humans design/model systems” [?]. Pelánek does
not expand on this, but we assert that generally SE models are simple enough to be
controlled by treatment learning since they were written by humans with limited
short-term memories [?] who have difficulty designing overly-complex models.

4. DATA MINING WITH COLLARS AND CLUMPS

The TAR2 treatment learner [?] is a data miner that is specialized for generating
models containing only collar variables. TAR2 finds the difference between classes.
Formally, the algorithm is a contrast set learner [?; ?] that uses weighted classes [?]
to steer the inference towards the preferred behavior. We call TAR2’s output
“treatments” since the minimal rules generated by the algorithm are similar to
medical treatment policies that try to achieve the most benefit, with the least
intervention. The core intuition of TAR2 is that it is unnecessary to search for the
collars– they will reveal themselves after some limited random sampling. To see
that, recall that collar variables control the settings in the rest of the system. Any
execution trace that reaches a goal must pass through the collars (by definition).
Therefore, to find the collars, all an algorithm needs to do is find the attribute
ranges with very different frequencies in traces that reach different goals.

Detecting collars via this sampling method is very simple to implement. Consider
a log of golf playing behavior shown in Figure 0??. This log contains four attributes

2The diameter of a graph (of a state space here) is the number of edges on the largest shortest
path between any two vertices.
3SCC quotient is a measure of the complexity of a graph.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 9

(outlook, temperature, humidity, wind) and 3 classes (none, some, lots) that con-
vey the amount of golf played. We recommend an exponential scoring system for
the classes, starting at two4. For example, our golfer could weight the classes in
Figure 0?? as none=2 (worst), some=4, lots=8 (best).

TAR2 seeks attribute ranges that occur frequently in the highly weighted classes
and rare in the lower weighted classes. Let a.r be some attribute range e.g. out-
look.overcast means that the outlook is for overcast skies. ∆a.r is a heuristic measure
of the worth of a.r to improve the frequency of the best class. ∆a.r uses the following
definitions:

X(a.r):. is the number of occurrences of that attribute range in class X; e.g.
in this data lots(outlook.sunny)=2 since there are 2 cases with outlook = sunny and
class = lots.

all(a.r):. is the total number of occurrences of that attribute range in all
classes; e.g. all(outlook.sunny)=5.

best:. the highest scoring class; e.g. best = lots;
rest:. the non-best class; e.g. rest = {none, some};
weight:. The weight of a class X is symbolized by $X;. (Thus, $best = 8.)

∆a.r is calculated as follows:

∆a.r =

P
X∈rest($best− $X) ∗ (best(a.r)−X(a.r))

all(a.r)

When a.r is outlook.overcast, then ∆outlook.overcast is calculated as follows:
lots→none︷ ︸︸ ︷

((8− 2) ∗ (4− 0))+

lots→some︷ ︸︸ ︷
((8− 4) ∗ (4− 0))

4 + 0 + 0
=

40
4

= 10

To build a treatment, TAR2 explores combinations of attribute ranges up to
some user-specified maximum size s (where the size s is the number of attribute
ranges in a conjunction of attributes). Given n attributes, the size of this search is

n!
s!(n−s)! . To make this search feasible, TAR2 must keep s small. Therefore, TAR2
first assesses each attribute range, in isolation, i.e., with s = 1. A preliminary
pass builds one singleton treatment for each attribute range. The attribute ranges
are then scored by the ∆ of these singleton treatments. Treatment generation is
constrained to just the attribute ranges with a score greater than a user-supplied
threshold (default value= 1; maximum useful value yet found= 7).

To apply a treatment, TAR2 rejects all example entries that contradict the con-
junction of the attribute ranges in the treatment. E.g., if the treatment was
humidity ≥ 85 ∧ windy = true, then 11 of the lines of Figure 0?? would be re-
jected. The ratio of classes in the remaining examples is compared to the ratio of
classes in the original example set (in the humidity and wind treatment just given,
this ratio would be 3/14). The best treatment is the one that most increases the
relative percentage of preferred classes. In our golf example, a single best treatment

4If the weights run, say, {bad=0,ok=1,good=2} then the difference from bad to ok scores the
same as ok to good. An exponentially weighting scheme, starting at two, finds greater and greater
rewards moving to better classes. For further details, see [?].

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Menzies et.al.

outlook temp(oF) humidity windy? class weight

sunny 85 86 false none 2
sunny 80 90 true none 2
sunny 72 95 false none 2

rain 65 70 true none 2
rain 71 96 true none 2

rain 70 96 false some 4
rain 68 80 false some 4
rain 75 80 false some 4

sunny 69 70 false lots 8
sunny 75 70 true lots 8

overcast 83 88 false lots 8
overcast 64 65 true lots 8
overcast 72 90 true lots 8
overcast 81 75 false lots 8

Fig. 1. A log of some golf-playing behavior.

no change outlook =
overcast

0
2
4
6

5 3 6
0
2
4
6

0 0 4

= none (worst)

= some

= lots (best)

Fig. 2. Finding treatments that can improve golf playing behavior. With no treatments, we only
play lots of golf in 6

5+3+6
= 57% of cases. However, assuming outlook=overcast, we play golf lots

of times in 100% of cases.

columns

domain # rows #
n
u
m

er
ic

#
d
is

cr
et

e

#class time(sec)

iris 150 4 0 3 < 1

wine 178 13 0 3 < 1

car 1,728 0 6 4 < 1

autompg 398 6 1 4 1

housing 506 13 0 4 1

pageblocks 5,473 10 0 5 2

cocomo 30,000 0 23 4 2

reacheness 25,000 4 9 4 3

circuit 35,228 0 18 10 4

reacheness2 250,000 4 9 4 23

pilot 30,000 0 99 9 86

Fig. 3. Runtimes for TAR2 on different domains. First 6 data sets come from the UC Irvine
machine learning data repository [?]; “cocomo” comes from a COCOMO software cost estimation
model [?]; “pilot” comes from the NASA Jet Propulsion Laboratory [?].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 11

was generated containing outlook=overcast. Figure 0?? shows the class distribu-
tion before and after that treatment. That is, if we select a vacation location with
overcast weather, then we should be playing lots of golf, all the time.

In practice, despite the n!
s!(n−s)! search, TAR2 scales well. Figure 0?? shows

TAR2’s runtime on 11 data sets with varying numbers of rows and columns. Run-
ning on a relatively slow machine (a 333 MHz Windows machine with 512MB of
ram), TAR2 terminated in tens of seconds, even on data sets with up to 250,000
rows, each with nearly 100 attributes.

5. CASE STUDIES

In theory, we expect that many models contain collars and clumps. If so, tools
like TAR2 should be able to find tiny treatments that control the behavior of the
models. This section tests that theory on several case studies.

5.1 Studying the CMM

The previous studied explored a numeric model where all the influences were pre-
cisely specified. This second case study takes a numeric model and adds a large
degree of uncertainty in the numerics. This second study shows that, even in pres-
ence of large degrees of uncertainty, TAR2 can still find useful treatments.

An important feature of this second study is that it analyzes a class of models
that can defeat standard methods. The model contains dozens of if-then rules; i.e.
it is neither linear nor continuous: small changes in the environment can lead to
“cliffs” where the model behavior changes abruptly. Also, the model contains non-
deterministic choices (see the rany operator, discussed below) and so its behavior
can be highly noisy.

This study uses a rule-based model of the costs and benefits model of CMM
level 2 (hereafter, CMM2) [?, p125-191]. We elected to study CMM2 since, in
our experience, many organizations can achieve at least this level. CMM2 is less
concerned with issues of (e.g.) which design pattern to apply, than with what
overall project structure should be implemented. Improving CMM2-style decisions
is important since in early software life cycle, many CMM2-style decisions affect
the resource allocation for the rest of the project.

CMM2 was encoded using the JANE propositional rule-based language [?]. JANE’s
rules take the form Goal if SubGoals such as the one shown in Figure 0??.

stableRequirements
if effectiveReviews
and requirementsUsed
and sEteamParticipatesInPlanning
and documentedRequirements
and sQAactivities
and (reviewRequirementChanges

rany softwareConfigurationManagement
rany baselineChangesControlled
rany workProductsIdentified
rany softwareTracking

).

Fig. 4. Part of CMM2, encoded in the JANE language.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Menzies et.al.

JANE is a backward chaining language: to prove a Goal, JANE tries to find
rules that prove each of the SubGoals. Each SubGoal contributes some Cost and
Chances to the Goal. JANE’s Chances define the extent to which a belief in one
vertex can propagate to another. Costs let an analyst model the common situation
where some of the Cost of some procedure is amortized by reusing its results many
times. Hence, the first time we use a proposition, we incur its Cost but afterwards,
that proposition is free of charge.

The Cost and Chances of a proposition are either provided by the JANE pro-
grammer or computed at runtime via a traversal of the rules:

—When searching X if not A, the Chances of X are 1-Chances(A) and Cost(X) =
Cost(A).

—When searching X if A and B and C, the Chances and Costs of X are (respec-
tively) the product of the chances and the sum of the costs of A,B,C.

—When searching X if A or B or C, then the Cost and Chances of X are taken
from the first member of A,B,C that is satisfied.

These and, or, not operators can be insufficient to capture the decision making
of business users. For examples, in our experience, business users select CMM2
options, often in a somewhat arbitrary manner. To model this, JANE includes a
rany operator (short for “random any”):

—The rany operator is like or except that (e.g.) X if A rany B rany C succeeds
if some random number of A,B,C (greater than one) succeeds. Unlike and, or
which explore their operands in a left-to-right order, rany explores its SubGoals
is a random order. If at least one succeeds, then the Cost and Chances of X
is the sum and product (respectively) of the Cost and Chances of the satisfied
members of A,B,C.

baselineAudits, base-
lineChangesControlled,
changeRequestsHandled,
changesCommunicated,
configurationItemStatus-

Recorded,
deviationsDocumented,

documentedDevelopment-
Plan,

documentedProjectPlan,
earlyPlanning,

formalReviewsAtMilestones,
goodUnitTesting,

identifiedWorkProducts,
periodicSoftwareReviews

planRevised,
requirementsReview,
requirementsUsed, re-

viewRequirementChanges,
risksTracked, SCMplan,

SCMplanUsed,
SElifeCycleDefined,

SEteamParticipatesIn-
Planning,

SEteamParticipatesOn-
Proposal,

SQAauditsProducts,
SQAplan, SQAplanUsed,

SQAreviewActivities,
workProductsIdentified

Fig. 5. Management actions in the CMM2 model. SQA= software quality assurance and SCM=
software configuration management)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 13

0
10
20
30
40
50
60
70

5 16 5 74
0

10
20
30
40
50
60
70

7 13 19 60
0

10
20
30
40
50
60
70

5 14 26 55
0

10
20
30
40
50
60
70

14 22 30 24
T1 T2 T3 baseline

worth=1.44 worth=1.31 worth=1.28 current worth = 1

KEY:
Top-to-bottom = least
desirable to most desirable.

= high cost, low
chances; i.e. a very
bad software
project

= low cost, low
chances

= high cost, high
chances

= low cost, high
chances; i.e. a good
software
project

Fig. 6. Ratios of different software project types seen in four situations.

Rany is useful when searching for subsets that contribute to some conclusion.
For example, the JANE rule in Figure 0?? offers several essential features of sta-
bleRequirements plus several optional factors relating to monitoring change in evolv-
ing projects – the essential features are and-ed together while the optional factors
are rany-ed together.

Figure 0?? includes 11 propositions. Our model of CMM2, written in JANE, has
55 propositions (range = {t, f}). Of those 55 propositions, 27 were identified by
our users as actions that could be changed by managers (see Figure 0??).

Apart from rany, JANE supports one other mechanisms for exploring the space
of possibilities within CMM2. When defining Costs and Chances, the programmer
can supply a range and a skew. For example:

goodUnitTesting and cost = 1 to +5

defines the cost of goodUnitTesting as being somewhere in the range 1 to 5, with
the mean skewed slightly towards 5 (denoted by the “+”).

Similarly, while all the Chances values were based on expert judgment, their
precise value is subjective. Hence, each such Chances value X was altered to be a
range

chances = 0.7*X to 1.3*X

During a simulation, the first time a Cost or Chance is accessed, it is assigned
randomly according to the range and skew. The assignment is cached so that all
subsequent accesses use the same randomly generated value. After each simula-
tion, the cache is cleared. After thousands of simulations, JANE can sample the
“what-if” behavior resulting from different assignments within the range and many
different rany choices.

Data from 2000 simulations was passed from the CMM2 model to TAR2. Each
simulation was classified into one of four classes:

—class=0: High cost, low chance;
—class=1: Low cost, low chance;

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Menzies et.al.

T1:. requirementsUsed.Cost=lower and
not periodicSoftware-Reviews and
formalReviewsAtMilestones.Cost=lower

T2:. requirementsUsed.Cost=lower and
goodUnitTesting.Cost=middle and
formalReviewsAtMilestones.Cost=lower

T3:. goodUnitTesting.Cost=lower and
periodicSoftwareReviews.Cost=middle and
formalReviewsAtMilestones.Cost=lower

Fig. 7. The three best treatments found in the CMM2 model.

—class=2: High cost, high chance;
—class=3: Low cost, high chance.

That is, our preferred projects are cheap and highly likely while expensive, low
odds projects are to be avoided.

Figure 0?? shows three sets of actions learned by TAR2. The right-hand-side
histogram shows the baseline distributions seen in the 2000 simulations. The other
histograms show how those ratios change after applying the treatments learned by
TAR2; The worth of each option is a reflection of the proportion of good and bad
projects, compared to the baseline, i.e. (worth(baseline) = 1). Note that as worth
increases, the proportion of preferred projects also increases.

Figure 0?? shows the three best treatments (T1, T2, T3) found using this tech-
nique (and Figure 0?? compared the effects of these treatments to the untreated
examples). Note that the values of each attribute are reported using the tags no,
lower, middle, or upper. In treatment learning, continuous attribute ranges are
divided into N-discrete bands based on percentile positions. For N=3, we can name
the bands lower, middle, upper for the lower, middle, and upper 33% percentile
bands.

In Figure 0??, the treatments are advising to lower the cost of:

—Using requirements: This could be accomplished by (e.g.) sharing them around
the development team in some search-able hypertext format

—Performing formal reviews at milestones: This could be accomplished by (e.g.)
using ultra-lightweight formal methods such as proposed by Leveson [?].

—Performing good unit testing: This could be accomplished by (e.g.) hiring better
test engineers.

An interesting feature of Figure 0?? is what is missing:

—None of the treatments proposed adjusting the Chances of any action. In this
study, changing Cost will suffice.

—Of the 27 actions listed in in Figure 0??, only the four underlined actions appear
in the top three treatments. That is, management commitment to undertake 27-
4=23 of the actions is less useful than changing on formalReviewsAtMilestones,
goodUnitTesting, periodicSoftwareReviews, and requirementsUsed

—The value not in T1 is a recommendation against periodicSoftwareReviews (plus
lowering the costs of using requirements and formal reviews at milestones). Note

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 15

that if periodicSoftwareReviews are conducted, T3 is saying that there is no ap-
parent need to reduce the cost of such reviews.

More generally, in a result consistent with the prior studies, despite the uncer-
tainties introduced by rany and the cost/chances ranges, TAR2 found a small
number of CMM2 process options that have a significant impact on the project.

Note that the conclusions of Figure 0?? are not general to all software projects.
The Chances values used in this study came from some local domain knowledge
about the likelihood that process change A will effect process change B. The Cost
values were domain-specific as well. In other organizations, with different work
practices and staff, those Chances and Cost values could be very different.

6. CASE STUDY 2: REQUIREMENT OPTIMIZATION

This example illustrates the application of treatment learning on requirement op-
timization via an iterative learning cycle.

Planning for the optimal attainment of requirements is an important early life
cycle activity. Such planning is difficult when dealing with competing require-
ments, limited resources, and the incompleteness of information available at re-
quirements time. The pilot study discussed here is an evaluation of a promising
piece of research-quality spacecraft technology. The purpose of the evaluation is to
identify the risks that would arise in maturing this technology to flight readiness,
and what mitigation could be identified to address those risks in a cost-effective
manner.

6.1 The Requirement Interaction Model

For the pilot study, NASA experts built a real-world model developed in the De-
fect Detection and Prevention (DDP) framework [?]. The model is a network
connecting 32 requirements, 69 risks and 99 mitigations. Risks are quantitatively
related to requirements, to indicate how much each risk, should it occur, impacts
each requirements. Mitigations are quantitatively related to risks, to indicate how
effectively each mitigation, should it be applied, reduces each risk. A set of mit-
igations achieves benefits, but incurs costs. The main purpose of the model is to
facilitate the judicious selection of a set of mitigations, attaining requirements in a
cost-effective manner. This kind of requirements analysis seeks to maximize bene-
fits (i.e., our coverage of the requirements) while minimizing the costs of the risk
mitigation actions. Optimizing in this manner is complicated by the interactions
inside the model - a requirement may be impacted by multiple risks, a risk may
impact multiple requirements, an action may mitigate multiple risks, and a risk
may be mitigated by multiple actions.

6.2 The Iterative Learning Cycle

Our approach is to follow the iterative cycle of simulation, summarization and de-
cision shown in figure 0??. The requirements interaction model is used to grow
dataset representing the space of options, treatment learner summarizes the data
and gives critical decision alternatives (e.g., the control variables and their cor-
responding settings), the domain experts review the alternatives and make final
decisions. This way, experts make more effective use of their skill and knowledge

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Menzies et.al.

Requirements
Interaction Model

Treatment
Learner

Human experts

Critical decision
alternatives

Critical decision
selection

Data examples

.

iterative
cycle

Fig. 8. The iterative cycle of Simulation/Summarization/Decision.

by focusing their attention on the relatively small number of most critical decision
alternatives. Repeating this cycle leads the iterative approach to the optimal (or
near optimal) decision within the options space.

6.2.1 Baseline Simulation. The model was initially executed by selecting risk
mitigations at random. This generated 30,000 instances of combinations from the
99 risk mitigations actions. Each instance of the combinations was evaluated by
the numerical cost and benefit values automatically computed based on domain
data. The study needs to identify the optimal solutions that attain high bene-
fit(approximately 250) while remaining a relative low cost limit(around $600,000).
The option space is huge: 299 ≈ 1030 sets of decisions are to be explored. Figure
0?? shows the initial output of the cost-benefit distribution from the model. The
wide spread dots indicate a large variance in the possible cost and benefit ranges.

0

50

100

150

200

250

300

400,000 700,000 1,000,000

B
en

ef
it

Cost

Fig. 9. Initial result from executing the model of pilot domain.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 17

score < $600K [$600K, $650K) [$650K, $700K) > $700K

high 25% 16 14 11 7

mid high 25% 15 12 8 4

mid low 25% 13 9 5 2

low 25% 10 6 3 1

Table I. Balanced score combination of cost and benefit values

6.2.2 Combining Cost and Benefit Values. TAR2 takes dataset containing one
single discrete class attribute. We must combine the cost and benefit values into
a single score before applying TAR2 on the simulation data. This domain-specific
process was proceeded as follows:

—Partitioning cost value into 4 regions: below $600,000 (most desirable region);
$600,000 to $649,999; $650,000 to $699,999; at or above $700,000 (least desirable
region).

—Partitioning benefit value by subdividing it into quartiles, i.e., putting the lowest
25% of the benefit figures into the lowest benefit range, the next 25% into the
next, etc.

—Ranking the 16 possible pairings of cost and benefit according to a balanced
scheme which yielded a combined score of “goodness”. The scheme is shown in
table 0??.

6.2.3 Learning Iterations. We used TAR2 as a knowledge acquisition tool to
summarize the simulation dataset. After ran it on the examples, a set of treatments
was discovered and the best was selected by the domain experts. We then imposed
the treatments on the model, i.e., some mitigations were to be performed and some
were not; others were kept random. Simulating the constrained model again gave us
another example set. The whole process was repeated, each run of TAR2 resulted
in a new set of constraints, which were then imposed on the model before the
next simulation. After five iterations, TAR2 found 30 out of 99 decisions (6 per
run. 6 was the maximum size for which it successfully terminated) that significantly
effected the cost/benefit distribution. Figure 0?? shows the model output following
the 5th iteration. Compared to figure 0??, the variation among the cost-benefit
figures is relatively small. Since the model represents human experts’ estimates, the
computed cost-benefit figures should not be misinterpreted to have high precision.
At the point where the figures are so tightly clustered, it is appropriate to stop.

The entire series is shown in 0??. The first percentile matrix (called round 0)
summarizes figure 0??. The round 4 corresponds to the dot plotting in figure 0??,
in which a compact set of points concentrated at the upper end of the benefit range
(around 250), and at a cost of approximately $6000. From round 0 to round 4,
the variance was reduced and the mean values improved.

6.3 Compared to Simulated Annealing

Parallel to treatment learning, a simulated annealing algorithm (SA) was also ap-
plied to the same requirement analysis task [?]. Simulated Annealing is a commonly
used search algorithm for optimization problem. It combines random selection and
hill climbing to find global maxima. In particular, it does a random walk, choosing

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Menzies et.al.

0

50

100

150

200

250

300

400,000 700,000 1,000,000
B

en
ef

it

Cost

Fig. 10. Result from executing the model of pilot domain when it was constrained by treatments
after the 5th iteration.

neighbors at random and deciding at random whether to visit that neighbor. The
randomness is a function of a “temperature” variable. When T = ∞, it chooses
neighbors at random; in the limit as T approaches zero, it chooses only neigh-
bors that improve the value. If the temperature is reduced slowly enough, this
guarantees to find the global optimal result.

Figure 0?? compares TAR2 and simulated annealing. At each round X (shown
on the x-axis), simulated annealing or TAR2 was used to extract key decisions from
a log of runs of the model. A new log is generated, with the inputs constrained
to the key decisions found between round zero and round X. Further rounds of
learning continue until the observed changes on costs and benefits stabilizes. The
comparisons show that:

—As seen in Figure 0??, simulated annealing and TAR2 terminate in (nearly) the
same cost-benefit zone.

—Simulated annealing did so using only 40% of the data needed by TAR2;
—However, while TAR2 proposed constraints on 33% of the mitigations, each SA

solution specifies whether a mitigation should be taken or not for all 99 miti-
gations. Hence there was no apparent way to ascertain which of them are the
most critical decisions. This loses the main advantage of TAR2; i.e. no drastic
reduction in the space of options.

7. TAR3

TAR3 is a nondeterministic version of the TAR2 data miner [?] that exploits
narrow funnels to learn very small theories. This section argues that TAR3 is
simple, compentent, fast, scalable and a stable nondeterministic analysis method.
Further, TAR3 can be used to detect when nondeterminism is unsafe.

7.1 An Introduction to TAR3

Given some oracle that scores each state, it is possible to learn some assignments
to the funnel variables that improve the average score. Better yet, if the funnels are
narrow (few in number) then those experiments won’t take long and the required
assignments will only be few in number. The key is to find the funnel variables and
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 19

round 0:

Cost
Benefit 400K 600K 800K1,000K Totals

250 6 15 5 26

200 1 22 27 4 54

150 1 6 5 1 13

100 3 3 6

50 1% 1

Totals 2 38 50 10 100

round 1:

Cost
Benefit 400K 600K 800K1,000K Totals

250 7 45 13 65

200 12 22 1 35
150
100
50

Totals 19 67 14 100

round 2:

Cost
Benefit 400K 600K 800K1,000K Totals

250 9 8 7 24

200 18 58 76
150
100
50

Totals 27 66 7 101

round 3:

Cost
Benefit 400K 600K 800K1,000K Totals

250 9 70 11 90

200 3 7 10
150
100
50

Totals 12 77 11 100

round 4:

Cost
Benefit 400K 600K 800K1,000K Totals

250 1 81 17 99

200 1 1
150
100
50

Totals 1 82 17 100

Fig. 11. Percentile matrices showing four rounds of treatment learning for the pilot study.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Menzies et.al.

550000

750000

950000

BaselineOne Two Three Four Five Final

Round

costs

tar2
sa

150

200

250

300

Baseline One Two Three Four Five Final

Round

benefits

tar2
sa

Fig. 12. Comparison of TAR2 and simulated annealing.

outlook temp(oF) humidity windy? class score
rain 85 86 false none -1
rain 65 70 true none -1

overcast 71 96 true none -1
.

overcast 83 88 false lots 1
overcast 64 65 true lots 1
overcast 72 90 true lots 1
overcast 81 75 false lots 1

.

Fig. 13. Data on some recreational activities where playing lots of golf scores higher than playing
none golf.

this is very simple: just look for a small number of variable assignments that have
very different distributions assocaited with the different scores.

TAR3 is a nondeterministic search for combinations of variable assignments that
most improve, or lift, the expected score. TAR3 inputs a log of data observations
D of the behavior of a system such as Figure 0??. Each behavior d∈D is scored by
some oracle: e.g. see the last column of Figure 0??.

TAR3 begins by discretizing all numeric variables into R distinct ranges. Discrete
ranges for the score are called the classes and each class scores a number value
$class; i.e. the mean value of that range. Next, a baseline is computed from the
weighted sum of the frequency of each class range times the mean score of that
class; i.e.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 21

-5 0 5 10

lif
t1

/li
ft

C

attribute ranges, sorted by lift1 scores

lift1(outlook=overcast)= 10
lift1(outlook=rain)= -2

Lift1
LiftC

Fig. 14. Lift and cumulative lift.

R : number of discretized ranges for numeric
variables; default=5

D : dataset of examples; dataset is of size |D|;
each example is scored, e.g. Figure 0??;
these scores will be divided into R ranges;
class(R) is the highest scoring class.

ENOUGH : minimum ratio of class(R) required for any
treatment

VARIABLES : a set of size |V| listing the variables used in
D;

inputs: N : maximum number of treatments to return;
default=10

MAXSIZE : maximum size of each treatment; default=4
MAXTRIALS : build this many treatments before pausing

to check if anything new has been found;
default=100

MAXFUTILE : stop after this number of pauses if nothing
new found; default=5

outputs: array of constraints (each constraint is a conjunction of vari-
able assignments)

1 do R quartile discretization of all numeric variables
2 if the score is numeric then do R quartile discretizations of scores fi
3 for {v=r} ∈ range(VARIABLES)

lift1[{v=r}]← lift({v=r}) /*see “lift1” in Figure 0??*/
4 compute the cumulative distribution liftC from lift1 /*see “liftC” in Figure 0??*/
5 TREATMENTS← ∅
6 futile← 0
7 repeat
8 some← best← ∅
9 MAXTRIALS timesRepeat

10 do rx← ∅
11 size← 1 to MAXSIZE, picked at random
12 size timesRepeat rx← rx ∪ ({v=r} selected at random from liftC)
13 rx.lift=lift(rx) /*calculated using Equation 0?? */
14 if |rx ∩ class(R)| ≥ (|D ∩ class(R)|∗ENOUGH)

then some← some ∪ rx
done /* MAXTRIALS repeats */

15 best← the N top lifters of some
16 if TREATMENTS contains every member of best

then futile← futile + 1
else futile← 0

TREATMENTS←the N top lifters of (TREATMENTS ∪ best)
fi

17 until (futile ≥ MAXFUTILE)
18 return TREATMENTS sorted on lift

Fig. 15. TAR3

baseline =
X

c∈classes

$c ∗ |d ∈ D ∧ d.class = c|

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Menzies et.al.

desired
completed
family size
normal
=[0..2]
AND

industrial
Capital
Output
Ratio
=[3..5] 20

30

40

50

60

70

80

90

1900 1950 2000 2050 2100

A
ve

ra
ge

 L
ife

 E
xp

ec
ta

nc
y

(A
ge

)

Time (Year)

Life Expectancy

Original Life Expectancy
Treated Life Expectancy

Figure 0??.A: part of the World
model.

Figure 0??.B:
TAR3’s
learnt treat-
ments.
Contains
two tests.

Figure 0??.C: World pop-
ulation 1900 to 2100. The
unmarked line is the baseline
from the original simulation
and the line with dots shows
a resimulation after applying
the treatments of Figure 0??.B.

Figure 0??.D: A de-
cision tree learnt by
the J4.8 leaner [?].
Contains over 200
tests.

Fig. 16. Output from TAR3, using data generated from the Limits to Growth
Model.

After that, the effect of each assignment (denoted v = r), is determined by
comparing the baseline to the weighted sum of all the classes in examples consistent
with the assignment:

lift =
X

c∈classes

$c ∗ |d ∈ D ∧ d.class = c ∧ (assignment ∧ d) 6`⊥ |
baseline

(2)

The lift of a single assignment is denoted lift1. If lift is more or less than
one then the assignment v = r improves or degrades (respectively) the expected
score. For example, in Figure 0??, outlook=overcast occurs more frequently when
we playing lots of golf and outlook=raining occurs more frequently when we play
none golf. Hence, when we compute their lift1 scores in Figure 0??, we see that
outlook=overcast has a lift1 value larger than 0 and much larger than outlook=rain.

The TAR3 algorithm returns treatments (i.e. assignments to the narrow funnel
variables) by selecting assignments nondeterministically from liftC, i.e. the cumu-
lative lift1 distribution shown in Figure 0??. The distribution weights the selection
process such that assignments with higher lifts tend to be selected more often.

After the discretizations and construction of liftC, the algorithm (shown in Fig-
ure 0??) attempts MAXTRIALS times to find some good treatments (see line 9 in
Figure 0??). Each treatment contains a nondeterministically selected number of
assignments (up to a user-supplied MAXSIZE value- see line 11). Each treatment
is scored using Equation 0?? (at line 13). In order to avoid over-fitting, a treatment
is ignored if it doesn;t select for ENOUGH of the highest scoring class (see line 14).

After MAXTRIALS attempts, the algorithms selects the N treatments with high-
est lifts. This process is repeated till no new treatments are found after MAXFU-
TILE number of repeats (see lines 16,17).

7.2 TAR3 is Competent

Hu [?] describes numerous studies with TAR3 and datasets from the standard UCI
data mining data sets [?] plus some software engineering domains In the usual case,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 23

TAR3 generated treatments that greatly changed the distribution of classes in a
data set. See [?] for more details.

Other researchers have found TAR3 to be competent at controlling a simulation.
Figure 0??.A shows part of the Limits to Growth model of global economy [?].
This model studies the effects of the world’s exponentially growing population and
economy. The full model contains 295 variables and over 100 nodes (for space
reasons, only a small portion of that model is shown in Figure 0??.A). MIT faculty
studied this model for several years to find factors that prevented global population
over-shoot and collapse. TAR3 found the same factors (shown in Figure 0??.B)
in a 30 minute run. Most of that time was spent generating the example data
from the model- the learning only took seconds. To check TAR3’s conclusions,
another simulation was conducted where the inputs were constrained according to
TAR3’s recommendation. The results are shown in Figure 0??.C) [?]: average life
expectancy in the year 2100 increased from 30 to 80 years and appears to be stable
from that time onwards.

7.3 TAR3 is Simple

Due to the simplicity of the random search, Figure 0?? is easy to implement. For
some years now we have been building data miners. With one exception5, TAR3
is the simplest data miner we have every built. Before implementation, we had
thought we would need to tune various aspects of the algorithm after extensive ex-
perimentation. For example, TAR3’s discretizaion policy (see line 1 of Figure 0??)
seemed overly-simplistic and we expected that it would have to be replaced (perhaps
with a state-of-the-art entrophy-based supervised discretization policy [?]). Howe-
vere, TAR3 proved to be so competent that we were never motivated to revisit its
design.

TAR3 is not only simple to build, but it learns very simple theories. Standard
data miners are not funnel-aware and can build uncessarily large theories using
less-influencial variables. On the other hand, a learner which that assumes narrow
funnels can generate far smaller theories than other approaches. For example,
when the Limits to Growth simulation data was given to a standard decision tree
learner, the result was a decision tree with hundreds of tests (see Figure 0??.D).
Such large trees are harder to understand than the small treatment found by TAR3
(e.g. Figure 0??.B).

The Limits to Growth model is not the only dataset where TAR3’s nondetetr-
ministic search yielded a more concise summary of a domain than traditional ap-
proaches. In Hu’s work with dozens of examples from the standard UCI data
mining data sets [?], treatments of MAXSIZE≤ 4 were sufficient to effect major
changes in the distributions of classes [?]. For example, Figure 0?? and Figure 0??
compares what a decision tree learner and a treatment learner can learn from the
same data set. The data set in those figures comes from Boston housing informa-
tion. It contains 506 examples of houses with approximately the same number of

5Our experience is that Naive Bayes classifiers for discrete attributes are simpler to describe
and build than TAR3 [?]. Very simple discretization methods allow their extension to numeric
attributes [?]. However, such classifiers don’t offer succinct generalizations of a data set so we
prefer TAR3.

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Menzies et.al.

t

lstat=<11.66

lstat>11.66

high

medlow

medhigh

low

rm=<6.54

rm>6.54

dis=<1.5106

dis>1.5106 lstat=<7.56

lstat>7.56

ptratio=<19.6

ptratio>19.6

rm=<6.142

rm>6.142

indus=<10.01

indus>10.01

tax>256

tax=<256

age=<26.3

age>26.3

crim=<0.13158

crim>0.13158

rad=<1

rad>1

zn=<17.5

zn>17.5

dis=<3.9454

dis>3.9454

ptratio=<17.4

ptratio>17.4
dis>3.9342

dis=<3.9342 tax=<233

tax>233

rm=<5.99

rm>5.99

age=<26.3

age>26.3

rm=<6.319

rm>6.319

age=<52.6

age>52.6

rm>7.061

rm=<7.061

lstat=<5.39

lstat>5.39

rad>4

rad=<4

indus>6.41

indus=<6.41

rm>6.678

rm=<6.678

age=<22.3

age>22.3

rad=<1

rad>1

crim=<0.06162

crim>0.06162

nox=<0.435

nox>0.435

lstat=<8.43

lstat>8.43

indus=<2.97

indus>2.97
ptratio=<17

ptratio>17
b=<381.32

b>381.32

lstat=<16.21

lstat>16.21

indus=<4.15

indus>4.15

zn>45

zn=<45 rm=<5.878

rm>5.878

b=<240.52

b>240.52

b=<109.85

b>109.85

chas=<0

chas>0

zn=<21

zn>21

lstat=<14.37

lstat>14.37

indus=<4.95

indus>4.95

rad=<4

rad>4

crim=<1.27346

crim>1.27346

dis=<1.5331

dis>1.5331

lstat=<14.19

lstat>14.19

lstat=<14.67

lstat>14.67

ptratio=<19.1

ptratio>19.1

b=<382.44

b>382.44 dis=<2.4329

dis>2.4329

b=<394.23

b>394.23b=<366.15

b>366.15

age=<59.7

age>59.7

nox>0.585

nox=<0.585

chas>0

chas=<0

age=<49.3

age>49.3

lstat>22.6

lstat=<22.6

crim=<0.22212

crim>0.22212

rad=<5

rad>5

dis=<2.4786

dis>2.4786

Fig. 17. A decision tree learnt by J4.8 [?] decision tree learner from the same data set as
Figure 0??. Classes (right-hand-side), top-to-bottom, are “high”, “medhigh”, “medlow”, and
“low”.

“high”, “medhigh”, “medlow”, and “low” houses (the symbol denotes their median
value in $1000’s). A decision tree, learnt via standard methods, needs hundreds
of tests in order to distinguish these classes (see Figure 0??). However, a little
meta-knowledge about class preferences and some nondeterministic search yields
a much smaller result. After TAR3 is told that houses score a value, highest to
lowest, “high”, “medhi”, “medlow”, “low” (respectively), it learnt the treatment:

12.6 ≤ ptratio < 16 ∧ 6.7 ≤ rooms < 9.78

Figure 0?? shows that this simple output is a powerful predictor for “high”
quality houses. This treatment selects a subset of the houses with 97% “high”
quality houses (and this treatment is also seen in all sub-samples of a 10-way cross
validation).
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 25

 0

 25

 50

 75

 100

low medlow medhigh high

pe
rc

en
ta

ge

ratios of different classes

after
before

Fig. 18. Ratio of different housing types seen before and after applying a TAR3 treatment. Results
from same data as used in Figure 0??.

7.4 TAR3 is Fast and Scalable

TAR3 has been carefully benchmarked against TAR2, a deterministic version of
the sames algorithm [?]. TAR2 first prunes all assignments with a left1 less than
user-specified “promising” value. Next, all the combinations of size MAXSIZE of
the remaining assignments are explored [?]. In a result consistent with narrow
funnels, TAR3’s partial nondeterministic search found nearly the same treatments
(identical in all cases but one) as TAR2’s complete deterministic search.

Other benchmarks show that TAR3 is faster than TAR2, particularly on larger
data sets. Further, TAR2’s runtimes increase exponentially on MAXSIZE, while
TAR3’s runtimes increase linearly on number of examples |D| and number of vari-
ables |V| [?].

7.5 TAR3 is Stable

One concern with a nondeterministic search is that it can generate different so-
lutions every time it runs. Paradocially, the reverse if often true: the behaviour
of a nondeterministic algorithm can actually be more stable than a deterministic
algorithm.

It is is easy to see why this might be so. In order to determine a boundary on
a deterministic algorithm, it is standard procedure to construct inputs for which
the algorithm runs poorly. A nondeterminisitc algorithm algorithms can be viewed
as a probability distribution on a set of deterministics algorithms. Motwani and
Raghavan [?] argue that a nondeterministic methods are less susceptible to problem
variations than deterministic methods. While it may be possible to construct an
input that foils one (or a small fraction) of the available deterministic algorithms,
it is difficult to find inputs that detect a randomly chosen algorithm.

Certain data mining algorithms are unstable; i.e. minor variations in the order of
the input examples can significantly effect the generated theory. Many data mining
algorithms depend on this instability. Proponents of bagging and boosting [?; ?]
repeatedly sub-sample the available data to generate ensembles of theories. The
ensemble is then polled to reach a consensus opinion.

TAR3, in constrast, only returns stable treatments. The tool reports only the
treatments found in the majority of a 10-way cross-validation; i.e. are stable across

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Menzies et.al.

multiple random sub-samples of a dataset. One reason for this stability might be
the Motwani and Raghavan explanation offered above: TAR3’s random search is
less suceptible to variations in the input data. Another possibility is that TAR3
does not generate very detailed summaries of the input data. Recall from the above
that TAR3 generally returns treatments with less than MAXSIZE≤ 4 tests while a
decision tree learner might return a tree with hundreds of tests (recall Figure 0??).
Hence, minor details that vary across sub-samples could change the output of a
decision tree learner while being ignored by TAR3.

7.6 TAR3 and Checking for Unsafe Nondeterminism

Our thesis is that deterministic analysis is more safe than a nondeterministic one
if a nondeterministic random sampling yields as much information as a complete
deterministic search. In some systems, making choices at random, will survey as
mmuch of the system as a complete search. Those systems are the ones with
narrow funnels since they contain only a few key choice points (the assignments to
the funnel variables).

TAR3 is designed to failure if a small number of outstandingly influencial vari-
ables do not reveal themselves to a nondeterministic search. The only way the
nondeterministic search of Figure 0?? will work is if a few variable settings are
highly correlated with different states of the system.

In practice, TAR3 has worked very well on all our test domains suggesting that
narrow funnels are not uncommon. Nevertheless, if TAR3 fails to find influencial
variables that would be an indicator that nondeterminism is inappropriate for the
current domain,

8. CASE STUDY: THE PILOT DOMAIN AGAIN

The above studies dealt with small to medium sized datasets. This section describes
an experiment with a very large dataset in which TAR3’s treatments, while similar,
were not identical.

We have discussed the “pilot” case in requirement optimization domain (see chap-
ter 3). To compare both the performance and experimental results, we ran TAR2
and TAR3 on the same “pilot” domain again. The model used this time is a revised
version of the original one, which contains fewer details. The data set obtained af-
ter simulation has 58 attributes instead of 99. Each example is also evaluated by
a pair of cost and benefit figures. According to the domain experts, we combined
cost and benefit into a single attribute using the same balanced scheme but with
different dividing thresholds. The combination resulted in 16 classes representing
16 levels of “goodness”.

Figure 0?? shows the initial cost-benefit distribution from the baseline simulation.
The data points are widely spread across the possible cost and benefit ranges.
Further, most low cost points correspond to low benefit level and high benefit
points have high cost values. The desired low-cost high-benefit points are very few:
less than 3% of the entire data.

We followed the same incremental learning approach as discussed in the last
chapter, namely the following steps:

(1) Ran TAR2 and TAR3 on the baseline (initial simulation) data, and generated
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 27

0

500

1000

1500

2000

2500

3000

3500

 0 1000000 2000000 3000000 4000000

B
en

ef
it

Cost($)

baseline

Fig. 19. The cost-benefit distribution of the initial simulation from the pilot domain.

two set of treatments.

(2) The top ranked treatment was chosen from each treatment set. For the pur-
pose of comparison, we didn’t ask domain experts to examine the individual
treatments, we simply chose the top one.

(3) We then imposed the 2 chosen treatments (1 from TAR2, 1 from TAR3) on the
model respectively; simulated it again and got another 2 sets of data examples.

(4) Step 1-3 were repeated until the resulting distribution was so tightly clustered
that domain experts agreed to stop.

8.1 Comparison of the Cost-Benefit Distribution

Figure 0?? shows cost-benefit distribution after the 5th iteration of TAR2. Com-
pared to figure 0??, the variation is relatively small. Most of the data points are
grouped at the upper-left corner of the graph, indicating a tight cluster of low-cost
high-benefit results. Figure 0?? is the result from TAR3 experiments following the
4th iteration. The two graphs are visually the same, indicating very similar results.

8.2 Comparison of the Best 3 Class Distribution

For a closer comparison, table 0?? records the best 3 class distribution of each
round. The best 3 out of total 16 classes correspond to a region of desired zone in
which domain experts interested. TAR2 reaches the stopping point after 5 rounds,
fixing total 19 attributes; TAR3 reaches the stopping point after 4 rounds, fixing
total 20 attributes. At the stopping point, both TAR2 and TAR3 achieved a sim-
ilar class distribution. Further learning didn’t offer significant improvement (i.e.,
further distribution improvement is less than 5%).

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Menzies et.al.

0

500

1000

1500

2000

2500

3000

3500

 0 1000000 2000000 3000000 4000000

B
en

ef
it

Cost($)

TAR2 Final

Fig. 20. The cost-benefit distribution from executing the model of pilot domain when it was
constrained after the 5th iteration of TAR2.

0

500

1000

1500

2000

2500

3000

3500

 0 1000000 2000000 3000000 4000000

B
en

ef
it

Cost($)

TAR3 Final

Fig. 21. The cost-benefit distribution from executing the model of pilot domain when it was
constrained after the 4th iteration of TAR3.

8.3 Comparison of Each Round

At the beginning of this experiment, TAR2 and TAR3 started from the same point
(i.e. the first baseline data) and came up with different treatments. They later
followed their own path toward the final destination. Figure 0?? compares their
performance on each round in terms of the mean and standard deviation of the cost
figure. Each round, TAR3 achieved lower mean cost and smaller deviation, allowing
it to reach the stopping point one iteration earlier. Figure 0?? compares the benefit
figure. Again, TAR3’s deviation is smaller at each round. It is interesting to notice
the dip in the TAR2 curve, which indicates a slowing down of the progress. But it
eventually catches up in round 4 and round 5.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 29

TAR2 baseline run1 run2 run3 run4 run5

size(Rx) 0 4 4 4 4 3

Class14 3% 33% 68% 22% 7% 2%
Class15 0% 1% 7% 38% 19% 5%
Class16 0% 0% 4% 28% 74% 93%

Total 3% 34% 79% 88% 100% 100%

TAR3 baseline run1 run2 run3 run4 run5

size(T) 0 6 6 5 4 —–

Class14 3% 47% 50% 11% 0% —–
Class15 0% 2% 19% 27% 7% —–
Class16 0% 1% 13% 60% 93% —–

Total 3% 50% 82% 98% 100% —–

Table II. Comparison of the best 3 class distributions for TAR2 and TAR3 experiments.

 500000

1000000

1500000

2000000

2500000

3000000

baseline One Two Three Four Five

C
os

t

Round

TAR2 Cost
TAR3 Cost

Fig. 22. The mean and standard deviation of cost at each round.

8.4 Comparison of the Final Treatments

TAR2 gave a final treatment of size 19 after 5 iterations, TAR3’s final treatment is
of size 20 after 4 iterations. Although in each run, they generated quite different
treatments, the combined final treatments are almost the same. Table 0?? com-
pares the two final sets attribute by attribute, showing that they have 18 items in
common.

8.5 Comparison of Runtimes

The data size we used is 20, 000 examples × 58 attributes at each round. Table
0?? compares their runtimes. For reference reasons, column 3 and 5 list the size of
best treatment found at that round. The average runtimes of TAR3 is only 1

5 to 1
3

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Menzies et.al.

 500

 1000

 1500

 2000

 2500

 3000

baseline One Two Three Four Five

B
en

ef
it

Round

TAR2 Benefit
TAR3 Benefit

Fig. 23. The mean and standard deviation of benefit at each round.

No. Attribute TAR2 TAR3 No. Attribute TAR2 TAR3

1 [P63=N] X X 12 [P1310=Y] X X
2 [P70=N] X X 13 [P529=N] X X
3 [P72=N] X X 14 [P544=N] X X
4 [P73=Y] X X 15 [P551=N] X X
5 [P74=N] X X 16 [P555=Y] X X
6 [P126=Y] X X 17 [P575=N] X
7 [P135=N] X X 18 [P960=N] X
8 [P137=N] X X 19 [P1047=N] X X
9 [P145=Y] X 20 [P1260=Y] X X
10 [P154=Y] X X 21 [P1287=N] X X
11 [P166=N] X X Total 19 20

Table III. Comparison of the final treatments found by TAR2 and TAR3, respectively.

TAR2’s runtime. That is, TAR3 ran much faster even with larger treatment size.

Round TAR2(sec) size(T) TAR3(sec) size(T) TAR3/TAR2

1 1243 4 320 6 25.8%

2 1170 4 348 6 29.7%

3 927 4 235 5 25.3%

4 650 4 126 4 19.4%

5 103 3 — — —

Table IV. Comparison of the runtimes of each round.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 31

8.6 Summary

From the above case study, we have the following observations:

—In this domain, TAR3 achieved a better class distribution than TAR2 each run,
and generated a slightly larger treatment.

—Their own path ended up with a similar yet not identical solution, both in terms
of the cost-benefit distribution and the treatment produced.

—TAR2 reached the same final distribution after more runs, but with total less
attributes fixed (i.e., the size of the final treatment is smaller in TAR2’s case).

—In this domain, TAR3’s runtime is much shorter than TAR2, average 1
5 to 1

3
TAR2’s runtime.

9. CONCLUSION

The algorithmic evaluation on TAR2 pointed out situations where its runtimes can
grow exponentially. Our solution to this problem is a better learner TAR3. By
adopting random sampling together with other strategies, TAR3 has made ma-
jor improvement in algorithmic efficiency. Experiments have shown that on the
datasets where TAR2 is exponential, TAR3 runs in linear time. We have also
conducted extensive comparison to survey the stability of TAR3’s treatments. It
has been seen that TAR3 usually returns identical treatments as TAR2 on small
to medium datasets. On high dimensional dataset, TAR3 followed a faster path
to goal. The resulting distribution is better, while the final treatment is slightly
different.

Specifically, the key idea to treatment learning is the confidence1 evaluation of
individual attributes. A different search strategy should not change results but only
affect efficiency. The sampling method brings in a certain degree of randomness.
Still, we have shown that the controlling method we implemented is effective in
practice. Given that confidence1 distribution represents the probability an item
could be picked up in the treatment, there could be other ways to control the
random process: For example, some functions could added to the distribution when
computing the CDF value.

9.1 Discussion

The iterative treatment learning on the pilot study has successfully arrived at a
near-optimal attainment of requirements. By identifying only one-third of the
mitigations (30 out of 99), we are able to significantly narrow the widely spread
cost/benefit distribution.

This case study also demonstrated an incremental use of TAR2: At each iteration,
users are presented with list of treatments that have most impact on a system. They
select some of theses and the results are added to a growing set of constraints for a
model simulator. This approach has two advantages: Firstly, it narrows down the
solutions one step at a time, giving a clear statement on which attributes are most
important; Secondly, the domain experts found this approach user-friendly, since it
provided the opportunities for them to inject their knowledge into the process, and
allowed them to focus on only a small number of the most critical alternatives.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Menzies et.al.

9.2 Other Case Studies

Treatment learning has been applied to spacecraft design to find how to cover more
requirements, reduce risk, at the least cost [?; ?]. It has also been applied to
software process control using:

—A Chung-Mypolopous soft-goal graph to find better coverage of the non-functional
requirements [?].

—COCOMO effort and risk models models to find options selecting for lower effort
and fewer risks [?];

—COCOMO effort, risk, and defect prediction models models to find project op-
tions selecting for lower effort and fewer threats and lower defects [?];

—Qualitative inference diagrams to find requirements selecting for higher qual-
ity [?].

—The NASA SILAP model (that selects V&V tasks in order to most lower risks) [?];

Treatment learning has also been applied to:

—Finite state machines to find topologies that reduce the CPU cost of applying
formal methods [?; ?].

—Models of the global economy so study methods of extending human life ex-
pectancy [?];

—Maximizing whiskey production [?];

In all the case studies explored by TAR2, the same three observations were made:

—Treatment learning can find very small treatments, even for seemingly complex
models;

—These treatments can be far smaller that models generated by standard data
miners.

—Despite uncertainties or variabilities in the model, TAR2 was able to find effective
treatments that selected for preferred model output (but the less uncertainty or
model variability, the smaller the variance in TAR2’s predicted output for the
treated model).

10. CONCLUSION

Understanding model configuration options means understanding how input choices
affect output scores. That understanding is complex for a certain class of hard mod-
els; i.e. those with high dimensionality models that are non-linear, non-continuous
and built in domains with much noise or other uncertainties, and where managers
have limited control over all model inputs.

Hard modeling problems may defeat standard methods. Visualization can’t han-
dle very large dimensionality. Analytical methods such as an eigenvector study
offer spurious results if the parameters of the variables are uncertain. Other stan-
dard automatic methods may be defeated by “cliffs” in non-linear models where the
association between inputs and outputs changes abruptly. Data mining methods
can handle non-linear models and scale to very large dimensionality. Sadly, data
mining techniques like neural nets, genetic algorithms, C4.5 and CART can yield
models that are incomprehensible to humans.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Learning Control Policies · 33

TAR2 is a special kind of data miner that produces very succinct output. It as-
sumes that within models there exists a small number of key variables that control
the rest. There is much evidence for this assumption. The mathematics of clumps
and collars promises that models naturally contain structures that greatly restrict
the space of possible model behaviors. TAR2 is a data miner designed to exploit
such collars and clumps. It is a minimal contrast set learner that returns a “treat-
ment”; i.e. a minimal, most influential set of deltas between different classes of
outcome. The case studies in this paper show that a minimal list of the differences
between concepts can be much smaller than a detailed description of all aspects of
a concept. For models where TAR2 can generate succinct summaries, its algorithm
can significantly improved searched-based methods of data mining.

TAR2 addresses the hard modeling problems (discussed in §0??) as follows:

—TAR2 offers minimal constraints on the input space and tracks the effects of
those constraints, while letting all the other variables vary randomly. Hence, its
proposed solutions are not brittle to changes outside the treatments.

—Since it only references a subset of the model inputs, it is a dimensionality re-
duction tool. In this report, we offered examples where TAR2 reasoned over
100-variable inputs spaces. Elsewhere, we have run it on data sets with over
250 variables. In all cases seen to date, it reduces those spaces to a handful of
variables.

—Such small solutions are easier to explain and audit than solutions using all model
inputs.

—Further, when managers do not have the budget or authority to control all model
input variables, TAR2 can offer them a minimal set which they can use to focus
their resources.

—TAR2 has been applied to models with large amounts of noise. For example,
in a TAR2-style analysis, we often explore what happens to the solutions when
the variance on the model variables increases. Such studies return statements
of the form “the solutions offered by this analysis hold for variances up to the
following critical threshold values, after which we do not know how to control
this domain”.

Treatment learning is not indicated for low-dimensionality linear continuous mod-
els built in domains that have no noise or other uncertainties, and where managers
have full control over all model inputs. Other reasons not to use our tools include
when where there is no need to explain or audit models, where reducing model
variance is not valuable, and there exists budgets for building and using maximal
models.

As to further work, there is no reason to polarize the SE modeling field into “tra-
ditional methods” vs “treatment learning”. Much could be achieved by combining
the two techniques. For example, many of the methods described in §0?? suffered
from the curse of dimensionality. TAR2 could be used as a fast dimensionality
reduction tool that could focus a data visualization environment or a sensitivity
analysis on the parts of the inputs space that are most crucial. Ideally, that focus-
ing need not wait till the simulation terminates. In incremental treatment learning,
TAR2 offers feedback during a simulation run into order the guide the simulator

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Menzies et.al.

into regions of interest. Before TAR2 can be deployed in that manner, it must be
optimized so that it can run fast enough to keep up with the simulator. Currently,
we are exploring stochastic methods for that optimization.

June 30, 2007

ACM Journal Name, Vol. V, No. N, Month 20YY.

