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Models in software engineering allow developers to define, but not necessarily explore,
the space of design options. Building a useful model, understanding all its interactions,
can be intellectually difficult- particularly for large non-linear discrete models. We show
theoretically and empirically that our TAR2 minimal contrast set learner can generate
very succinct conclusions from seemingly complex spaces. Treatment learning is indicated
for high-dimensionality non-linear, non-continuous models built in domains with noise
or other uncertainties; where managers do not have full control over all model inputs;
where there is a requirement to explain or audit models; when reducing model variance
is valuable, and there does not exist a budget for building and using maximal models.
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1. Introduction

Consider a software manager using a software process model to control their project.
Exploring all the “what-ifs” within those models can be a daunting tasks. For exam-
ple, 20 binary decisions require, in the worst case, 220 > 1, 000, 000 what-ifs. After
interviewing the managers of three NASA systems regarding their process options,
we found that they were exploring up to 109 optionsa.

In the 21st, it is possible to use standard desktop machines to explore a very
large option space. Many businesses under-utilize their CPUs once staff go home for
the day. Those machines can be combined into a CPU farm which. If the process
models are not database or GUI intensive, then such a CPU farm can can work
through billions of options in an overnight run.

However, once all those options are created, they must be summarized. That
is, it is not enough to generate a multitude of alternatives, we must also select the
subset of the possible options that matter then most. Traditional methods may not
yield such succinct solutions. For example, in binary plotting, N model inputs are
plotted against some output score in N two-dimensional binary plots. The best
constraints on the inputs are those that select for the best output. However, if noise
in a models yields plots that are not smooth, then it becomes a time-consuming and
subjective task to examine N binary plots to detect regions of input parameters
that most improves the outputs. Also, binary plotting will not find conjunctions of
input constraints that contribute to better output. Further, as the dimensionality of
model input increases, the cognitive effort required to study the plots can become
prohibitively expensive.

Many researchers have developed impressive visual environments for decreasing
the cognitive overload associated with exploring a multi-dimensional space. Such
visualizations help analysts explore visual information, but they present their own
challenges. Nevertheless, there are still limits on how many dimensions can be dis-
played (e.g. we have yet to see effective visualizations for more than a ten dimension-
ality space). As the visualization environment grows more sophisticated, some users
find they have traded a data browsing problem with the new problem of exploring
the full range of the effects of all the controls.

When manual exploring of options fail, automatic methods can be applied. Op-
timization packages can be applied to data or the equations of a system to find
“sweet spots” that maximize the score resulting from model outputs. For example,
a canonical sensitivity analysis method [1] might be to compute eigenvectors of a
linear system in order to understand its long-term temporal behavior [2, 3]. Alter-
natively, using design of experiments, we might exercises an existing model to shed
light on the response surface of the model (DOE does identify gradients and key
parameters for a model).

aA COCOMO model with 12 unknowns was being analyzed; each unknown has up to 6 possible
values; 612 > 1, 000, 000, 000.



March 26, 2009 14:0 WSPC/INSTRUCTION FILE one-v6

4 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

While useful for some models, these automatic methods do not apply to all
models. For example, optimization methods can fail for non-linear models. Any
model with an “if” statement introduces a “cliff” where the effects of inputs on
outputs abruptly changes. For such models, there is no linear continuous solution
that applies either side of the “cliff”. Model uncertainty also complicates sensitivity
analysis. For example, the eigenvector technique described would yield spurious
results if the coefficients on the models are not known with certainty. Lastly, a
DOE analysis can be complicated by the dimensionality, noise, and visualization
problems described above.

More generally, traditional methods tacitly assume total knowledge and to-
tal control of the input space. This is often impractical. Consider, for example,
Mintzberg [4] study of how real-world decisions are made. He found:

• 56 U.S. foremen who averaged 583 activities in an eight-hour shift (one
every 48 seconds).

• 160 British managers who worked for half an hour or more without inter-
ruption only once every two days.

These empirical observations do not fit a traditional optimization model of decision
making were all options are systematically studied, organized, co-ordinated and
controlled. In hard modeling problems, human agents must make decisions using:

• limited time and computational ability;
• limited computational ability (or limited time for computation);
• limited knowledge about decision alternatives;
• uncertainty about possible outcomes of decisions
• uncertainty about pay-offs;
• no more than a partial ordering of preferences;
• limited information about probabilities of outcomes.

Herbert Simon [5] defined and explored such hard modeling problems using a data
structure called state space [6]. In terms of model-based SE, state space is the set of
options and option selection operators within a model. Further, in hard modeling
problems, large portions of the state space are uncertain. Simon argued that in such
state spaces, searching for optimal solutions is a spurious goal. Rather, agents can
only make just enough decisions that are just good enough. In Simon’s terminology,
such decisions are satisficing.

Our contribution to hard modeling is to comment that (1) satisficing solutions
can be achieved by ignoring certain irrelevant or redundant details within a model;
(2) surprisingly simple methods can find what irrelevancies to ignore. Treatment
learners propose “treatments”; i.e. constraints on a small subset of the model in-
puts. The other inputs are left to vary at random. That is, apart from generating
very succinct solutions, treatment learning offers solutions that are stable despite
uncertainty in the non-treated variables.
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The rest of this paper is structured as follows. The twin topics of model-based
SE and search-based SE are introduced. A special case of hard models are discussed
that are difficult to manage using standard methods. Evidence is then presented
that, often, the key variables that control a model are few in number. The problem
of hard models therefore can be reduced to just the problem of understanding the
key variables. This will motivate the design of the TAR2 treatment learner. Case
studies will then be presented showing that, in many domains, TAR2 finds a small
number of controlling variables. Such succinct controllers have many advantages:

• Smaller models are easier to explain (or audit).
• Miller has shown that models generally containing fewer variables have less

variance in their outputs [7].
• The smaller the model, the fewer are the demands on interfaces (sensors and

actuators) to the external environment. Hence, systems designed around
small models are easier to use (less to do) and cheaper to build.

In short, for a certain class of hard modeling problems, the TAR2 treatment
learner can dramatically simplify the task of understanding the configuration pos-
sibilities within model-based SE. Hence, our conclusion will be that it is useful to
augment standard modeling methods with treatment learning. As to other modeling
problems, TAR2 is not indicated for low-dimensionality linear continuous models
built in domains that have no noise or other uncertainties, and where managers
have full control over all model inputs.

2. Modeling and Search

Anthropologists argue that the ability to build abstract models is what gives homo
sapiens their competitive edge. In his article “What Models Mean” [8], Seidewitz
describes the interactions and relationships among the concepts of a model. He
asserts that “a model’s meaning has two aspects: the model’s relationship to what’s
being modeled and to other models derivable from it. Carefully considering both
aspects can help us to understand how to use models to reason about the systems
we build ...” These are the aspects of a model’s meaning on which we focus in
model-based software engineering.

Model-based software engineering (SE) is becoming increasingly important.
Sendall and Kozacaynski argue that increasing productivity and reduced time-to-
market for software products can accrue when “using concepts closer to the problem
domain ...” via modeling [9]. Hailpern and Tarr observe that model-driven develop-
ment “imposes structure and common vocabularies so that artifacts are useful for
their main purpose in their particular stage in the life cycle.” [10]

The utility of model-based SE is widely acknowledged. For example, the Ob-
ject Management Group (OMG) has recently adopted a model-driven architecture
framework with goals of “portability, interoperability and reusability through archi-
tectural separation of concerns.” [11] Also, Microsoft has been developing a Software
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Factory concept that leverages models with the goal of automation of the software
development process [12]. And, at Lockheed Martin, engineers have developed an
integrated modeling method called Model Centric Software Development that uses
“automated generation of partial implementation artifacts,” reverse engineering to
integrate legacy assets, and model verification and checking [13]

The importance of models and the model-driven approach is not limited to
software design and UML. Many tools exist for modeling such as distributed agent-
based simulations [14], discrete-event simulation [15–19], continuous simulation (also
called system dynamics) [20, 21], state-based simulation (which includes petri net
and data flow approaches) [22–24], hybrid-simulation (that combines discrete event
simulation and systems dynamics) [25–27], logic-based and qualitative-based meth-
ods [28, chapter 20] [29], and rule-based simulations [30]. One can find models used
in the requirements phase (see the DDP method and tool [31] which are a risk-
based approach and visual tool to support requirements engineering), refactoring
of designs using patterns [32], software integration [33], model-based security [34],
and performance assessment [35].

Model are useful since humans can review/audit/improve an explicit represen-
tation of their systems. But as models grow in complexity, it becomes difficult for a
manual analysis to reveal all their subtleties. Hence, many researchers propose sup-
port environments to help explore the increasingly complex models that engineers
are developing. Gray, at al, [36] have developed the Constraint-Specification Aspect
Weaver (C-Saw) that uses aspect-oriented approaches [37] to help engineers in the
process of model transformation. Cai and Sullivan [38] describe a formal method
and tool called Simon that “supports interactive construction of formal models, de-
rives and displays design structure matrices ... and supports simple design impact
analysis.” Other tools of note are lightweight formal methods such as ALLOY [39]
and SCR [40] as well as various UML tools that allow for the execution of life cycle
specifications (e.g. the CADENA scenario editor [41]).

Recently, AI has been successful applied to model-based SE. For example, Whit-
tle uses deductive learners to generate lower-level UML designs (state charts) from
higher-level constructs (use case diagrams) [42]. More generally, the field of search-
based SE augments model-based SE with meta-heuristic techniques, like genetic
algorithms, simulated annealing, etc., to explore a model. Such heuristic methods
are hardly complete but, as Clarke et.al. [43] remark: “...software engineers face
problems which consist, not in finding the solution, but rather, in engineering an
acceptable or near optimal solution from a large number of alternatives.” [43].

Search-based SE is most often used to optimizing software testing [44–47] but it
has had application in numerous other areas. With Feather, we have used search-
based SE for requirements analysis [31]. Other researchers [48, 49] use genetic al-
gorithms to examine ways of modularizing software [43] or developing effort esti-
mators [50–52]. In all, Rela [53] lists 123 publications where search-based methods
have been applied to the above applications as well as automatic synthesis of soft-
ware defect predictors; assisting in component design; developing multiprocessor
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schedules; re-engineering old systems into a better one; and searching for compiler
optimizations.

To use a search-based approach, software engineers have to reformulate their
problem by:

• Finding a representation of the problem that can be symbolically manipu-
lated (e.g. simulated or mutated). Such representations always exist with
model-based SE.

• Defining a fitness function (a.k.a. “utility function”” or “objective func-
tion”); i.e. an “oracle” that scores a model configuration. Current model-
based SE methods rarely offer such a function (exception: formal methods
that generate temporal constraints). In our experience, generating such a
fitness function is usually possible, albeit requiring days of work with the
domain experts [54].

• Determining an appropriate set of manipulation operators to select future
searches based on the prior searches [55].

Data mining is one way to implement automatic manipulation operators. A data
miner searches through the space of possible concepts for a combination of concepts
that describes some target theory [56]. Given, say, the output from a Monte Carlo
simulation of a model, a 21st century data miner can sift through gigabytes of data
looking for the core concepts that most select for preferred output.

3. “Hard Modeling” Problems

Before describing our research into data mining for automatically generating ma-
nipulation operators, we must motivate why we don’t use traditional methods. As
argued in the section, we seek constraints to model inputs that are satisficing (so,
not necessary optimal), stable in the face of uncertainty, automatically generated,
that reduce cognitive overload, and which work for large non-linear and noisy mod-
els. Such constraints are called “solutions to hard modeling problems”.

Traditional methods may not yield such solutions. For example, one simple tra-
ditional method is binary plotting. After sampling the model, all model inputs might
be plotted against the output score in two-dimensional binary plots. The best con-
straints on the inputs are those that select for the best output. However, if noise in
a models yields plots that are not smooth, then it becomes a time-consuming and
subjective task to examine binary plots to detect a region of input parameters that
most improves the outputs. Also, studying binary plotting will not find conjunc-
tions of multiple input constraints that contribute to better output. Further, as the
dimensionality of model input increases, the cognitive effort required to study the
plots can become prohibitively expensive.

Many researchers have developed impressive visual environments for decreas-
ing the cognitive overload associated with exploring a multi-dimensional space. For
example, Figure 1 shows a tool developed at IBM that augments a standard three-
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dimensional display with visual cues relating to higher-dimensional data; e.g., sup-
plementary dimensions are shown bottom right; blue circles around the axle show
circular motion information; and a color key, shown bottom left, indicates how colors
in the display relate to density information [57].

Such visualizations help analysts explore visual information, but they present
their own challenges. There are still limits on how many dimensions can be displayed
(e.g. we have yet to see effective visualizations for more than a ten dimensionality
space). Also, note how the tool shown in Figure 1 contains numerous controls that
allow analysts to change various visualization options. As the visualization environ-
ment grows more sophisticated, some users find they have traded a data browsing
problem with the new problem of exploring the full range of the effects of all the
controls.

When manual exploring of options fail, automatic methods can be applied. Op-
timization packages can be applied to data or the equations of a system to find
“sweet spots” that maximize the score resulting from model outputs. Related meth-
ods include sensitivity analysis [1] and design of experiments (DOE) methods [58] A
canonical sensitivity analysis method might be to compute eigenvectors of a linear
system in order to understand its long-term temporal behavior [2,3]. As for design of
experiments, DOE exercises an existing model and helps shed light on the response
surface of the model. DOE does identify gradients and key parameters for a model.

While useful for some models, these automatic methods do not apply to all
models. For example, optimization methods can fail for non-linear models. Any
model with an “if” statement introduces a “cliff” where the effects of inputs on
outputs abruptly changes. For such models, there is no linear continuous solution

Fig. 1. A visualization tool for scientific data. From [57].
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that applies either side of the “cliff”. Model uncertainty also complicates sensitivity
analysis. For example, the eigenvector technique described would yield spurious
results if the coefficients on the models are not known with certainty. Lastly, a
DOE analysis can be complicated by the dimensionality, noise, and visualization
problems described above.

Our own view on hard modeling is that is that exists a “loophole” in search
problems that can make hard problems far easier to manage. We call this loophole
“collars and clumps”.

4. Collars and Clumps

This research assumes that many models can be controlled by a small number of
key variables which we call collars. Collars restrict the behavior of a model such
that their state space clumps; i.e. only small number of states are used at runtime.
If so, the output of a data miner could be simplified to constrain just the collar
variables that switch the system between a few clumps.

To visualize collars, imagine an execution trace spreading out across a program.
Initially, the trace is very small and includes only the inputs. Later, the trace spreads
wider as upstream variables effect more of the downstream variables (and the inputs
are the most upstream variables of all). At some time after the appearance of the
inputs, the variables hold a set of values. Some of these values were derived from the
inputs while others may be default settings that, as yet, have not been affected by
the inputs. The union of those values at time t is called the state st of the program
at that time.

Multiple execution traces are generated when the program is run multiple times
with different inputs. These traces reach different branches of the program. Those
branches are selected by tests on conditionals at the root of each branch. The
controllers of a program are the variables that have different settings at the roots of
different branches in different traces. Programs have collars when a handful of the
controllers in an early state st control the settings of the majority of the variables
seen in later states .

A related effect to collars is clumping. If a program has v variables with range
r, then the maximum number of states is rv. Programs clump when most of those
states are never used at runtime; i.e. |used|/ (rv) ≈ 0. Clumps can cause collars:

• The size of used is the cardinality cross product of the ranges seen in the
controllers.

• If that cardinality is large, many states will be generated and programs
won’t clump.

• But if that cross product is small, then the deltas between the states will be
small – in which case controlling a small number of collar variables would
suffice for selecting what states are reached at runtime.

There is much theoretical and empirical evidence for expecting that many models
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often contain collars and clumps.

4.1. Theoretical Evidence

With Singh [59], we have shown that collars are an expected property of Monte Carlo
simulations where the output has been discretized into a small number of output
classes. After such a discretization, many of the inputs would reach the same goal
state, albeit by different routes. The following diagram shows two possible distinct
execution paths within a Monte Carlo simulation both leading to the same goal; i.e.
a→ goal or b→ goal.

a1−→M1
a2−→M2

. . .
am−→Mm


c−→ goali

d←−



N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Each of the terms in lower case in the above diagram represent a probability of
some event; i.e. 0 ≤ {ai, bi, c, d, goali} ≤ 1. For the two pathways to reach the goal,
they must satisfy the collar M or the larger collar N (each collar is a conjunction).
As the size of N grows, the product

∏N
j=1 bj decreases and it becomes less likely

that a random Monte Carlo simulation will take steps of the larger collar N .
The magnitude of this effect is quite remarkable. Under a variety of conditions,

the narrower collar is thousands to millions of times more likely. For example, when
|M | = 2 and N > M , the condition for selecting the larger collar is d

c ≥ 64; i.e.
the larger collar N will be used only when the d pathway is dozens of times more
likely than c. The effect is more pronounced as |M | grows; at |M | = 3 and N > M ,
the condition is d

c ≥ 1728; i.e. to select the larger collar N , the d pathway must be
thousands of times more likely than c (for more details, see [59]). That is, when the
output space is discretized into a small number of outputs, and there are multiple
ways to get to the same output, then a randomized simulation (e.g. a Monte Carlo
simulation) will naturally select for small collars.

While the mathematics may be arcane, the intuition is simple. Suppose all the
power goes out in a street of hotels. If all those hotels were designed by different
architects then their internal search spaces would be different (number of rooms per
floor, distance from each room to a flight of stairs, number of stairwells, etc). After
half an hour, some of the guests bumble around in the dark and get outside to the
street. Amongst the guests that have reached the street, there would be more guests
from hotels with simpler internal search spaces (fewer rooms per floor, less distance
from each room to the stairs, more stairwells).

As to clumping, Druzdel [60] observed this effect in a medical monitoring system.
The system had 525,312 possible internal states. However, at runtime, very few were
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ever reached. In fact, the system remained in one state 52% of the time, and a mere
49 states were used, 91% percent of the time. Druzdel showed mathematically that
there is nothing unusual about his application. If a model has n variables, each
with its own assignment probability distribution of pi, then the probability that the
model will fall into a particular state is p = p1p2p3...pn =

∏n
i=1 pi. By taking logs

of both sides, this equation becomes

ln p = ln
n∏

i=1

pi =
n∑

i=1

ln pi (1)

The asymptotic behavior of such a sum of random variables is addressed by the
central limit theorem. In the case where we know very little about a model, pi

is uniform and many states are possible. However, the more we know about the
model, the less likely it is that the distributions are uniform. Given enough variance
in the individual priors and conditional probabilities or pi, the expected case is that
the frequency with which we reach states will exhibit a log-normal distribution;
i.e. a small fraction of states can be expected to cover a large portion of the total
probability space; and the remaining states have practically negligible probability.

The assertion that many types of models display this clumping behavior is quite
important for the style of data mining (treatment learning) that we advocate. In
application to a clumping model with collars, Monte Carlo simulation, followed by
TAR2, suffices to summarize that model in an effective way:

• TAR2’s rules never need to be bigger than the collars. Hence, if the collars
are small, TAR2’s rules can also be small.

• If a model clumps, then, very quickly, a Monte Carlo simulation would sam-
ple most of the reachable states. TAR2’s summarization of that simulation
would then include most of the important details of a model.

4.2. Empirical Evidence

Empirical evidence for clumps first appeared in the 1950s. Writing in 1959, Samuel
studied machine learning for the game of checkers [61]. At the heart of his program
was a 32-term polynomial that scored different configurations. For example, king
center control means that a king occupies one of the center positions. The program
learned weights for these variable coefficients. After 42 games, the program had
learned that 12 variables were important, although only 5 of these were of any real
significance.

Decades later, we can assert that deleting irrelevant variable has proven to be a
useful strategy in many domains. For example, Kohavi and John report experiments
on 8 real world datasets where, on average, 81% of the non-collar variables can be
ignored without degrading the performance of a model automatically learned from
the data [62].

If models contain collars, or if the internal state space clumps, then much of
the reachable parts of a program can be reached very quickly. This early coverage
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effect has been observed many times. In a telecommunications application, Avritzer,
Ros, & Weyuker found that a sample of 6% of all inputs to this system covered
99% of all inputs seen in about one year of operation (and a sample of just over
12% covered 99.9%) [63]. Further evidence for early coverage can be found in the
mutation testing literature. In mutation testing, some part of a program is replaced
with a syntactically valid, but randomly selected, variant (e.g. switching “less than”
signs to “greater than”). This method of testing is useful for getting an estimate of
what percentage of errors have been discovered by testing. Wong compared results
using X% of a library of mutators, randomly selected (X ∈{10,15,. . . 40,100}). Most
of what could be learned from the program could be learned using only X=10% of
the mutators; i.e. after a very small number of mutators, new mutators acted in
the same manner as previously used mutators [64]. The same observation has been
made elsewhere by Budd [65] and Acree [66].

If the space of possible execution pathways within a program are limited, then
program execution would be observed to clump since it could only ever repeat a few
simple patterns. Empirically such limitations have been observed in procedural and
declarative systems. Bieman and Schultz [67] report that 10 or fewer paths through
programs explored 83% of the du-pathways (a du-path is a set of statements in a
computer program from a definition to a use of a variable. This is one common
form of structural coverage testing.) Harrold [68] studied the control graphs of 4000
Fortran routines and 3147 C functions. Potentially, the size of a control graph may
grow as the square of the number of statements (in the case where every statement
was linked to every other statement.) This research found that, in these case studies,
the size of the control graph is a linear function of the number of statements. In an
analogous result, Pelánek reviewed the structures of dozens of formal models and
concluded that the internal structure of those models was remarkably simple: “state
spaces are usually sparse, without hubs, with one large SCC [strongly connected
component], with small diameter b and small SCC quotient”c [69]. This sparseness
of state spaces was observed previously by Holtzmann where he estimate the average
degree of a vertex in a state space to be 2 [70].

Pelánek hypotheses that these “observed properties of state spaces are not the
result of the way state spaces are generated nor of some features of specification
languages but rather of the way humans design/model systems” [69]. Pelánek does
not expand on this, but we assert that generally SE models are simple enough to be
controlled by treatment learning since they were written by humans with limited
short-term memories [71] who have difficulty designing overly-complex models.

bThe diameter of a graph (of a state space here) is the number of edges on the largest shortest
path between any two vertices.
cSCC quotient is a measure of the complexity of a graph.



March 26, 2009 14:0 WSPC/INSTRUCTION FILE one-v6

Learning Satisficing Control Policies 13

5. Data Mining with Collars and Clumps

The TAR2 treatment learner [72, 73] is a data miner that is specialized for gener-
ating models containing only collar variables. TAR2 finds the difference between
classes. Formally, the algorithm is a contrast set learner [74, 75] that uses weighted
classes [76] to steer the inference towards the preferred behavior. We call TAR2’s
output “treatments” since the minimal rules generated by the algorithm are similar
to medical treatment policies that try to achieve the most benefit, with the least
intervention. The core intuition of TAR2 is that it is unnecessary to search for the
collars– they will reveal themselves after some limited random sampling. To see
that, recall that collar variables control the settings in the rest of the system. Any
execution trace that reaches a goal must pass through the collars (by definition).
Therefore, to find the collars, all an algorithm needs to do is find the attribute
ranges with very different frequencies in traces that reach different goals.

Detecting collars via this sampling method is very simple to implement. Consider
a log of golf playing behavior shown in Figure 2. This log contains four attributes
(outlook, temperature, humidity, wind) and 3 classes (none, some, lots) that convey
the amount of golf played. We recommend an exponential scoring system for the
classes, starting at twod. For example, our golfer could weight the classes in Figure 2
as none=2 (worst), some=4, lots=8 (best).

TAR2 seeks attribute ranges that occur frequently in the highly weighted classes
and rare in the lower weighted classes. Let a.r be some attribute range e.g. out-
look.overcast means that the outlook is for overcast skies. ∆a.r is a heuristic mea-
sure of the worth of a.r to improve the frequency of the best class. ∆a.r uses the
following definitions:

X(a.r): is the number of occurrences of that attribute range in class X; e.g.
in this data lots(outlook.sunny)=2 since there are 2 cases with outlook =
sunny and class = lots.

all(a.r): is the total number of occurrences of that attribute range in all classes;
e.g. all(outlook.sunny)=5.

best: the highest scoring class; e.g. best = lots;
rest: the non-best class; e.g. rest = {none, some};
weight: The weight of a class X is symbolized by $X;. (Thus, $best = 8.)

∆a.r is calculated as follows:

∆a.r =

P
X∈rest($best− $X) ∗ (best(a.r)−X(a.r))

all(a.r)

dIf the weights run, say, {bad=0,ok=1,good=2} then the difference from bad to ok scores the
same as ok to good. An exponentially weighting scheme, starting at two, finds greater and greater
rewards moving to better classes. For further details, see [77].
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When a.r is outlook.overcast, then ∆outlook.overcast is calculated as follows:
lots→none︷ ︸︸ ︷

((8− 2) ∗ (4− 0))+

lots→some︷ ︸︸ ︷
((8− 4) ∗ (4− 0))

4 + 0 + 0
=

40
4

= 10

outlook temp(oF) humidity windy? class weight

sunny 85 86 false none 2
sunny 80 90 true none 2
sunny 72 95 false none 2

rain 65 70 true none 2
rain 71 96 true none 2

rain 70 96 false some 4
rain 68 80 false some 4
rain 75 80 false some 4

sunny 69 70 false lots 8
sunny 75 70 true lots 8

overcast 83 88 false lots 8
overcast 64 65 true lots 8
overcast 72 90 true lots 8
overcast 81 75 false lots 8

Fig. 2. A log of some golf-playing behavior.

To build a treatment, TAR2 explores combinations of attribute ranges up to some
user-specified maximum size s (where the size s is the number of attribute ranges in
a conjunction of attributes). Given n attributes, the size of this search is n!

s!(n−s)! . To
make this search feasible, TAR2 must keep s small. Therefore, TAR2 first assesses
each attribute range, in isolation, i.e., with s = 1. A preliminary pass builds one
singleton treatment for each attribute range. The attribute ranges are then scored
by the ∆ of these singleton treatments. Treatment generation is constrained to just
the attribute ranges with a score greater than a user-supplied threshold (default
value= 1; maximum useful value yet found= 7).

no change outlook =
overcast

0
2
4
6

5 3 6
0
2
4
6

0 0 4

= none (worst)

= some

= lots (best)

Fig. 3. Finding treatments that can improve golf playing behavior. With no treatments, we only
play lots of golf in 6

5+3+6
= 57% of cases. However, assuming outlook=overcast, we play golf lots

of times in 100% of cases.

To apply a treatment, TAR2 rejects all example entries that contradict the
conjunction of the attribute ranges in the treatment. E.g., if the treatment was
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# columns

domain # rows #
n
u
m

er
ic

#
d
is

cr
et

e

#class time(sec)

iris 150 4 0 3 < 1

wine 178 13 0 3 < 1

car 1,728 0 6 4 < 1

autompg 398 6 1 4 1

housing 506 13 0 4 1

pageblocks 5,473 10 0 5 2

cocomo 30,000 0 23 4 2

reacheness 25,000 4 9 4 3

circuit 35,228 0 18 10 4

reacheness2 250,000 4 9 4 23

pilot 30,000 0 99 9 86

Fig. 4. Runtimes for TAR2 on different domains. First 6 data sets come from the UC Irvine
machine learning data repository [78]; “cocomo” comes from a COCOMO software cost estimation
model [79]; “pilot” comes from the NASA Jet Propulsion Laboratory [80].

humidity ≥ 85 ∧ windy = true, then 11 of the lines of Figure 2 would be rejected.
The ratio of classes in the remaining examples is compared to the ratio of classes
in the original example set (in the humidity and wind treatment just given, this
ratio would be 3/14). The best treatment is the one that most increases the relative
percentage of preferred classes. In our golf example, a single best treatment was
generated containing outlook=overcast. Figure 3 shows the class distribution before
and after that treatment. That is, if we select a vacation location with overcast
weather, then we should be playing lots of golf, all the time.

In practice, despite the n!
s!(n−s)! search, TAR2 scales well. Figure 4 shows TAR2’s

runtime on 11 data sets with varying numbers of rows and columns. Running on a
relatively slow machine (a 333 MHz Windows machine with 512MB of ram), TAR2
terminated in tens of seconds, even on data sets with up to 250,000 rows, each with
nearly 100 attributes.

6. Case Studies

In theory, we expect that many models contain collars and clumps. If so, tools like
TAR2 should be able to find tiny treatments that control the behavior of the models.
This section tests that theory on several case studies.

6.1. Inspection Policies

The first case study contrasts treatment learning with traditional learners. It will
be seen that treatments are dramatically smaller, and more understandable, than
the model learned by standard data miners.
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projects
approved

functional
specification

high-level
design

FS inspection

low-level
design

HLD 
inspection

code
dev

LLD
inspection

code
inspection

unit
test

development
complete

functional
test

unit test
complete

system
test

field
 support and
maintenance

release to
customers

Fig. 5. High-level block diagram of a discrete event model of one company’s software process.

Figure 5 offers a high-level view of a quantitative software process model [81]. At
each phase of that process, inspections are conducted of the functional specification
(FS), high-level design (HLD), low-level design (LLD), and the code (CODE). Raffo
modeled these phases, and the inspections using a StatemateTM state-based simu-
lation model and an ExtendTM discrete event model containing 30+ process steps
with two levels of hierarchy. Some of the inputs to the simulation model included
productivity rates for various processes; the volume of work (i.e. KSLOC); defect
detection and injection rates for all phases; effort allocation percentages across all
phases of the project; rework costs across all phases; parameters for process overlap;
the amount and effect of training provided; and resource constraints.

Model outputs are the development expense (person months), product quality
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(number of high severity defects) and project duration (calendar months) which are
combined as follows:

utility = 40 ∗ (14− quality) + 320 ∗ (70− expense) +
640 ∗ (24− duration)

(2)

The justification for this style of utility function is discussed in detail in [81]. In
summary, this function was created after extensive debriefing of the business users.

The model has been extensively validated. The model’s process diagrams, model
inputs, model parameters and outputs were reviewed by members of the software en-
gineering process group as well as senior developers and managers. In other studies,
the model was used to accurately predict the performance of several past releases of
the project. Finally, in special case studies, the model was used to predict unantic-
ipated special cases. Specifically, when predicting the impact of developing overly
complex functionality, the model predicted that development would take approxi-
mately double the normal development schedule. Initially rejected by management,
it was later found that this model’s predictions corresponded quite accurately with
the company’s actual experience.

In this example, we will use the model to assess different software inspection
policies. For each phase of Figure 5, four types of inspections can potentially be
applied. These four types are listed below, sorted by their cost and effectiveness.
For example, full Fagan inspections are most expensive and find the most issues. At
the other end of the scale, doing no inspections is cheapest but finds no issues:

F: A full Fagan inspection [82] is a seven step process with pre-determined roles
for inspection participants. For the company studied by Raffo, the defect de-
tection capabilitye of their full Fagan inspections was TR(0.35, 0.50, 0.65)f .
Such studies use between 4 and 6 staff, plus the author of the artifact being
inspected.

B: A baseline inspection is a continuation of current practice at the com-
pany under study. The baseline inspection at this company was essen-
tially a poorly performed Fagan inspection, Historical records show that
these baseline inspections have varying defect detection capabilities of
{min,mode, max} = {0.13, 0.21, 0.30}.

W: Walk through inspections conducted informally by an outside consultant.
Historical records show that these inspections have a defect detection ca-
pability of TR(0.07, 0.15, 0.23).

N: No inspection;

Each type of inspection can be performed at each phase; i.e. there are 44 possible
inspection polices. A data set for TAR2 was prepared by running each configuration
50 times; i.e. 50 ∗ 44 = 12800 samples. Each run was then tagged with its utility,

eDefect detection capability is the percentage of defects that are latent in the artifact that is being
inspected that are detected.
fTR(a, b, c) denotes a triangular distribution with minimum, mode, max of a, b, c respectively.
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Fig. 6. Utility frequency in 12800 samples, before and after treatment.

using Equation 2. These utilities were discretized into four classes, of approximately
equal frequency:

• class1 : value of Equation 2 < 9843
• class2 : 9843 ≤ value of Equation 2 < 10698
• class3 : 10698 ≤ value of Equation 2 < 11664
• class4 : 11664 ≤ value of Equation 2 ≤ 14755

The before bar chart in Figure 6 shows the frequency of these classes in the un-
treated model. Note that many (40%) of the samples generate the lowest class1
utility.

TAR2 was then applied to learn treatments that distinguish the desired class4
utilities from the rest. The best treatment generated by the algorithm was very
small only recommended changing one of the inspection processes; i.e.

hidesign 12 = F

The after bar chart of Figure 6 shows the effect of imposing this treatment
of hidesign 12=Fg (full Fagan inspections for high-level designs) onto the simu-
lator. The treated model is much improved: it generates zero class1 and class2
outputs and, in 80% of cases, generates class4 outputs. Further, the improvement
was achieved without having to control the inspection policies in the other phases.

If we were not concerned with finding minimal solutions, TAR2 would have
been called again on data generated from the inspection model, after the inputs
have been constrained to hidesign 12=F. This iterative process could repeat until
it was shown that further constraints did not improve the output. Such interactive

gIn this data set, each attribute is labeled with its column number so hidesign 12 appears in the
twelfth column the input.
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C4.5 and CART are iterative dichotomization learners that seek the best attribute
value splitter that most simplifies the data that fall into the different splits. Each
such splitter becomes a root of a tree. Sub-trees are generated by calling iterative
dichotomization recursively on each of the splits.
CART is defined for continuous target concepts and its splitters strive to reduce the
standard deviation of the data that falls into each split. C4.5 is defined for discrete
class classification and uses an information-theoretic measure to describe the diversity
of classes within a data set.
A leaf generated by CART stores the average value of the class selected by the branch
while a leaf generated by C4.tree stores the most frequency class. Hence, C4.5 is called
a decision tree learner while CART is called a regression tree.

Fig. 7. About C4.5 and CART

treatment learning has been applied on other models (e.g. see [80]). However, for
the sake of exposition, the execution of this model is not explored further.

In terms of the discussion in §3, an important feature of to hidesign 12=F is that
it is stable despite uncertainty in other parameters. Despite large scale variation of
all other parameters in this model, this treatment yielded the effect seen in Figure 6.
In terms of supporting commercial practices, this is a very useful result. Large
corporations may have little impact on their satellite organizations or contractors.
Hence, they often have to carefully select what policies to implement across the
company. In terms of Equation 2, the treatment learned in this example representing
the least action that offers the most reward.

Also, in terms of advocating treatment learning, the most important feature of
this example is what is missing. To learn its treatments, TAR2 imported samples
with 51 variables (50 inputs and one utility score). It then generated treatments,
the best of which, used only one of the inputs. Other data miners, such as C4.5 and
CART (described in Figure 7), are far less succinct. For example, Figure 8 show the
results of passing the inspection model data to C4.5 [83]. Figure 9 and Figure 10
pass shows the output from the CART and linear regression learners:

• C4.5 and CART use the iterative dichotimzation algorithm described in
Figure 7.

• Linear regression tries to fit one straight line through the observed val-
ues. The line offers a set of predicted values and the distance from these
predicted values to the actual values is a measure of the error associated
with that line. Linear regression tools such as the least squares regression
package search for a line that minimizes that sum of the squares of the
error.

• C4.5 predicts for discrete class symbols (e.g. class1, class2, class3, class4)
so this algorithm used the same data as TAR2.

• Linear regression and CART make numeric predictions. These algorithms
used the TAR2 data with the classN symbols replaced by raw numerics of
Equation 2.
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A comparison of the output from TAR2, C4.5 (in Figure 8), and results from
CART and linear regression (in Figure 9 and Figure 10) demonstrate that standard
methods of summarizing data (linear regression, decision trees, regression trees) can
generate much larger theories than treatment learning. The reason for this is very
simple. Theories learned from iterative dichotomization describe the features that
separate all of the target variables. However, treatments just describe the minimal
deltas between preferred and undesirable targets.

Another advantage of treatment learning is that it is much easier to derive ac-

corErr gg50 <= 72: class1
corErr gg50 > 72
| corErr gg50 <= 154
| | spec gg2 = b
| | | hiDist gg13 = 0
| | | | corErr gg11 <= 17: class1
| | | | corErr gg11 > 17: class2
| | | hiDist gg13 = tr
| | | | corErr gg31 <= 18: class1
| | | | corErr gg31 > 18
| | | | | inspEff gg19 <= 33.742185: class1
| | | | | inspEff gg19 > 33.742185: class2
| | spec gg2 = f
| | | corErr gg21 <= 22
| | | | detCap gg38 <= 0.563188
| | | | | inspDur gg10 <= 117.043523
| | | | | | corErr gg50 <= 120: class1
| | | | | | corErr gg50 > 120
| | | | | | | inspDur gg40 <= 292.445892: class2
| | | | | | | inspDur gg40 > 292.445892: class1
| | | | | inspDur gg10 > 117.043523: class1
| | | | detCap gg38 > 0.563188: class2
| | | corErr gg21 > 22: class2
| | spec gg2 = n
| | | inspEff gg29 <= 336.924853: class2
| | | inspEff gg29 > 336.924853: class1
| | spec gg2 = w
| | | corErr gg11 <= 3: class1
| | | corErr gg11 > 3
| | | | corErr gg11 <= 4
| | | | | inspEff gg9 <= 32.423212: class2
| | | | | inspEff gg9 > 32.423212
| | | | | | inspDur gg10 <= 35.939846
| | | | | | | detCap gg8 <= 0.110608: class2
| | | | | | | detCap gg8 > 0.110608: class1
| | | | | | inspDur gg10 > 35.939846: class2
| | | | corErr gg11 > 4
| | | | | detCap gg8 <= 0.145107
| | | | | | inspEff gg9 <= 49.227938: class1
| | | | | | inspEff gg9 > 49.227938
| | | | | | | detCap gg8 <= 0.131955: class2
| | | | | | | detCap gg8 > 0.131955: class1
| | | | | detCap gg8 > 0.145107
| | | | | | inspEff gg9 <= 33.741217: class1
| | | | | | inspEff gg9 > 33.741217: class2
| corErr gg50 > 154
| | detCap gg8 <= 0.618237: class2
| | detCap gg8 > 0.618237
| | | inspDur gg30 <= 137.500433: class3
| | | inspDur gg30 > 137.500433: class2

Fig. 8. A decision tree learned via C4.5.
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policy=NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| policy=NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW, FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| | policy=WNNN,NWNN,FNNW,FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,

NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| | | _detCap_8 <= 0.431 : 6940
| | | _detCap_8 > 0.431 : 8180
| | policy=WNNN,NWNN,FNNW,FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,

NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| | | _detCap_8 <= 0.491 :
| | | | _inspDur_10 <= 94 : 8780
| | | | _inspDur_10 > 94 : 7860
| | | _detCap_8 > 0.491 : 9320
| policy=NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| | policy=BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 : 9750
| | policy=BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 : 10300
policy=NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| policy=NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| | _detCap_38 <= 0.418 : 10700
| | _detCap_38 > 0.418 : 11400
| policy=NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| | _corErr_50 <= 155 : 11900
| | _corErr_50 > 155 :
| | | policy=NNNF,BFFF <= 0.5 : 12400
| | | policy=NNNF,BFFF > 0.5 :
| | | | _detCap_38 <= 0.519 : 12500
| | | | _detCap_38 > 0.519 : 13600

Fig. 9. A regression tree learned by CART from data generated from the Figure 5 model. In
this figure, and Figure 10, policies are denoted as a four-part sequence describing the inspection
policy at each phase. For example, “FFFN” denotes using no inspections for code but full Fagan
inspections for all earlier phases.

utility = 7370
+ 1220policy=WNNN,NWNN,FNNW,FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,

NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 258policy=FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW, FNNF,

NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 640policy=NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 505policy=NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
- 190policy=WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 206policy=BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
- 177policy=WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 890policy=NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
- 296policy=NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 545policy=NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 640policy=WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 459policy=NNWF,BBBB,FFFF,NNNF,BFFF - 143policy=BBBB,FFFF,NNNF,BFFF
+ 835policy=NNNF,BFFF - 142_spec_2=n,b + 27_spec_2=b + 3690_detCap_8
- 135_inspEff_9 - 7320_inspDur_10 - 64400_corErr_11 - 760_detCap_18
- 134_inspEff_19 - 7310_inspDur_20 - 64300_corErr_21 - 9100_detCap_28
- 134_inspEff_29 - 7320_inspDur_30 - 64300_corErr_31 + 6170_detCap_38
- 134_inspEff_39 - 7320_inspDur_40 - 64400_corErr_41

+ 21500_inspEff_48 + 1.17e6_inspDur_49 + 64400_corErr_50

Fig. 10. Linear regression learned from data generated from the Figure 5 model.

tions from treatments than from the standard methods shown in Figures 8, 10, 9.
To be sure, decision trees can be analyzed to find branch values that most selected
for preferred classes while most discarding undesired classes (the initial TAR2 pro-
totype was such a post-processor). However, TAR2 achieves the same result directly
without the need to interface to another learner.
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6.2. Studying the CMM

The previous studied explored a numeric model where all the influences were pre-
cisely specified. This second case study takes a numeric model and adds a large
degree of uncertainty in the numerics. This second study shows that, even in pres-
ence of large degrees of uncertainty, TAR2 can still find useful treatments.

An important feature of this second study is that it analyzes a class of models
that can defeat standard methods. The model contains dozens of if-then rules; i.e.
it is neither linear nor continuous: small changes in the environment can lead to
“cliffs” where the model behavior changes abruptly. Also, the model contains non-
deterministic choices (see the rany operator, discussed below) and so its behavior
can be highly noisy.

This study uses a rule-based model of the costs and benefits model of CMM level
2 (hereafter, CMM2) [84, p125-191]. We elected to study CMM2 since, in our expe-
rience, many organizations can achieve at least this level. CMM2 is less concerned
with issues of (e.g.) which design pattern to apply, than with what overall project
structure should be implemented. Improving CMM2-style decisions is important
since in early software life cycle, many CMM2-style decisions affect the resource
allocation for the rest of the project.

CMM2 was encoded using the JANE propositional rule-based language [85].
JANE’s rules take the form Goal if SubGoals such as the one shown in Figure 11.

stableRequirements
if effectiveReviews
and requirementsUsed
and sEteamParticipatesInPlanning
and documentedRequirements
and sQAactivities
and (reviewRequirementChanges

rany softwareConfigurationManagement
rany baselineChangesControlled
rany workProductsIdentified
rany softwareTracking

).

Fig. 11. Part of CMM2, encoded in the JANE language.

JANE is a backward chaining language: to prove a Goal, JANE tries to find
rules that prove each of the SubGoals. Each SubGoal contributes some Cost and
Chances to the Goal. JANE’s Chances define the extent to which a belief in one
vertex can propagate to another. Costs let an analyst model the common situation
where some of the Cost of some procedure is amortized by reusing its results many
times. Hence, the first time we use a proposition, we incur its Cost but afterwards,
that proposition is free of charge.

The Cost and Chances of a proposition are either provided by the JANE pro-
grammer or computed at runtime via a traversal of the rules:

• When searching X if not A, the Chances of X are 1-Chances(A) and
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Cost(X) = Cost(A).
• When searching X if A and B and C, the Chances and Costs of X are

(respectively) the product of the chances and the sum of the costs of A,B,C.
• When searching X if A or B or C, then the Cost and Chances of X are

taken from the first member of A,B,C that is satisfied.

These and, or, not operators can be insufficient to capture the decision making
of business users. For examples, in our experience, business users select CMM2
options, often in a somewhat arbitrary manner. To model this, JANE includes a
rany operator (short for “random any”):

• The rany operator is like or except that (e.g.) X if A rany B rany C
succeeds if some random number of A,B,C (greater than one) succeeds.
Unlike and, or which explore their operands in a left-to-right order, rany

explores its SubGoals is a random order. If at least one succeeds, then the
Cost and Chances of X is the sum and product (respectively) of the Cost

and Chances of the satisfied members of A,B,C.

Rany is useful when searching for subsets that contribute to some conclusion.
For example, the JANE rule in Figure 11 offers several essential features of sta-
bleRequirements plus several optional factors relating to monitoring change in evolv-
ing projects – the essential features are and-ed together while the optional factors
are rany-ed together.

Figure 11 includes 11 propositions. Our model of CMM2, written in JANE, has
55 propositions (range = {t, f}). Of those 55 propositions, 27 were identified by

baselineAudits, base-
lineChangesControlled,
changeRequestsHandled,
changesCommunicated,
configurationItemStatus-

Recorded,
deviationsDocumented,

documentedDevelopment-
Plan,

documentedProjectPlan,
earlyPlanning,

formalReviewsAtMilestones,
goodUnitTesting,

identifiedWorkProducts,
periodicSoftwareReviews

planRevised,
requirementsReview,
requirementsUsed, re-

viewRequirementChanges,
risksTracked, SCMplan,

SCMplanUsed,
SElifeCycleDefined,

SEteamParticipatesIn-
Planning,

SEteamParticipatesOn-
Proposal,

SQAauditsProducts,
SQAplan, SQAplanUsed,

SQAreviewActivities,
workProductsIdentified

Fig. 12. Management actions in the CMM2 model. SQA= software quality assurance and SCM=
software configuration management)
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KEY:
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able to most desirable.

= high cost, low chances; i.e. a very bad software project

= low cost, low chances

= high cost, high chances

= low cost, high chances; i.e. a good software project

Fig. 13. Ratios of different software project types seen in four situations.

our users as actions that could be changed by managers (see Figure 12).
Apart from rany, JANE supports one other mechanisms for exploring the space

of possibilities within CMM2. When defining Costs and Chances, the programmer
can supply a range and a skew. For example:

goodUnitTesting and cost = 1 to +5

defines the cost of goodUnitTesting as being somewhere in the range 1 to 5, with
the mean skewed slightly towards 5 (denoted by the “+”).

Similarly, while all the Chances values were based on expert judgment, their
precise value is subjective. Hence, each such Chances value X was altered to be a
range

chances = 0.7*X to 1.3*X

During a simulation, the first time a Cost or Chance is accessed, it is assigned
randomly according to the range and skew. The assignment is cached so that all
subsequent accesses use the same randomly generated value. After each simulation,
the cache is cleared. After thousands of simulations, JANE can sample the “what-if”
behavior resulting from different assignments within the range and many different
rany choices.

Data from 2000 simulations was passed from the CMM2 model to TAR2. Each
simulation was classified into one of four classes:

• class=0: High cost, low chance;
• class=1: Low cost, low chance;
• class=2: High cost, high chance;
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T1: requirementsUsed.Cost=lower and
not periodicSoftware-Reviews and
formalReviewsAtMilestones.Cost=lower

T2: requirementsUsed.Cost=lower and
goodUnitTesting.Cost=middle and
formalReviewsAtMilestones.Cost=lower

T3: goodUnitTesting.Cost=lower and
periodicSoftwareReviews.Cost=middle and
formalReviewsAtMilestones.Cost=lower

Fig. 14. The three best treatments found in the CMM2 model.

• class=3: Low cost, high chance.

That is, our preferred projects are cheap and highly likely while expensive, low
odds projects are to be avoided.

Figure 13 shows three sets of actions learned by TAR2. The right-hand-side
histogram shows the baseline distributions seen in the 2000 simulations. The other
histograms show how those ratios change after applying the treatments learned by
TAR2; The worth of each option is a reflection of the proportion of good and bad
projects, compared to the baseline, i.e. (worth(baseline) = 1). Note that as worth
increases, the proportion of preferred projects also increases.

Figure 14 shows the three best treatments (T1, T2, T3) found using this technique
(and Figure 13 compared the effects of these treatments to the untreated examples).
Note that the values of each attribute are reported using the tags no, lower, middle,
or upper. In treatment learning, continuous attribute ranges are divided into N-
discrete bands based on percentile positions. For N=3, we can name the bands
lower, middle, upper for the lower, middle, and upper 33% percentile bands.

In Figure 14, the treatments are advising to lower the cost of:

• Using requirements: This could be accomplished by (e.g.) sharing them
around the development team in some search-able hypertext format

• Performing formal reviews at milestones: This could be accomplished by
(e.g.) using ultra-lightweight formal methods such as proposed by Leve-
son [86].

• Performing good unit testing: This could be accomplished by (e.g.) hiring
better test engineers.

An interesting feature of Figure 14 is what is missing:

• None of the treatments proposed adjusting the Chances of any action. In
this study, changing Cost will suffice.

• Of the 27 actions listed in in Figure 12, only the four under-
lined actions appear in the top three treatments. That is, manage-
ment commitment to undertake 27-4=23 of the actions is less use-
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ful than changing on formalReviewsAtMilestones, goodUnitTesting,
periodicSoftwareReviews, and requirementsUsed

• The value not in T1 is a recommendation against periodicSoftwareReviews
(plus lowering the costs of using requirements and formal reviews at mile-
stones). Note that if periodicSoftwareReviews are conducted, T3 is saying
that there is no apparent need to reduce the cost of such reviews.

More generally, in a result consistent with the prior studies, despite the un-
certainties introduced by rany and the cost/chances ranges, TAR2 found a small
number of CMM2 process options that have a significant impact on the project.

Note that the conclusions of Figure 14 are not general to all software projects.
The Chances values used in this study came from some local domain knowledge
about the likelihood that process change A will effect process change B. The Cost

values were domain-specific as well. In other organizations, with different work prac-
tices and staff, those Chances and Cost values could be very different.

6.3. Other Case Studies

Treatment learning has been applied to spacecraft design to find how to cover more
requirements, reduce risk, at the least cost [80, 87]. It has also been applied to
software process control using:

• A Chung-Mypolopous soft-goal graph to find better coverage of the non-
functional requirements [88].

• COCOMO effort and risk models models to find options selecting for lower
effort and fewer risks [79];

• COCOMO effort, risk, and defect prediction models models to find project
options selecting for lower effort and fewer threats and lower defects [89];

• Qualitative inference diagrams to find requirements selecting for higher
quality [90].

• The NASA SILAP model (that selects V&V tasks in order to most lower
risks) [91];

Treatment learning has also been applied to:

• Finite state machines to find topologies that reduce the CPU cost of ap-
plying formal methods [92,93].

• Models of the global economy so study methods of extending human life
expectancy [94];

• Maximizing whiskey production [95];

In all the case studies explored by TAR2, the same three observations were made:

• Treatment learning can find very small treatments, even for seemingly com-
plex models;
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• These treatments can be far smaller that models generated by standard
data miners.

• Despite uncertainties or variabilities in the model, TAR2 was able to find
effective treatments that selected for preferred model output (but the less
uncertainty or model variability, the smaller the variance in TAR2’s pre-
dicted output for the treated model).

7. Conclusion

Understanding model configuration options means understanding how input choices
affect output scores. That understanding is complex for a certain class of hard mod-
els; i.e. those with high dimensionality models that are non-linear, non-continuous
and built in domains with much noise or other uncertainties, and where managers
have limited control over all model inputs.

Hard modeling problems may defeat standard methods. Visualization can’t han-
dle very large dimensionality. Analytical methods such as an eigenvector study offer
spurious results if the parameters of the variables are uncertain. Other standard
automatic methods may be defeated by “cliffs” in non-linear models where the as-
sociation between inputs and outputs changes abruptly. Data mining methods can
handle non-linear models and scale to very large dimensionality. Sadly, data mining
techniques like neural nets, genetic algorithms, C4.5 and CART can yield models
that are incomprehensible to humans.

TAR2 is a special kind of data miner that produces very succinct output. It as-
sumes that within models there exists a small number of key variables that control
the rest. There is much evidence for this assumption. The mathematics of clumps
and collars promises that models naturally contain structures that greatly restrict
the space of possible model behaviors. TAR2 is a data miner designed to exploit
such collars and clumps. It is a minimal contrast set learner that returns a “treat-
ment”; i.e. a minimal, most influential set of deltas between different classes of
outcome. The case studies in this paper show that a minimal list of the differences
between concepts can be much smaller than a detailed description of all aspects of
a concept. For models where TAR2 can generate succinct summaries, its algorithm
can significantly improved searched-based methods of data mining.

TAR2 addresses the hard modeling problems (discussed in §3) as follows:

• TAR2 offers minimal constraints on the input space and tracks the effects of
those constraints, while letting all the other variables vary randomly. Hence,
its proposed solutions are not brittle to changes outside the treatments.

• Since it only references a subset of the model inputs, it is a dimensionality
reduction tool. In this report, we offered examples where TAR2 reasoned
over 100-variable inputs spaces. Elsewhere, we have run it on data sets with
over 250 variables. In all cases seen to date, it reduces those spaces to a
handful of variables.

• Such small solutions are easier to explain and audit than solutions using all



March 26, 2009 14:0 WSPC/INSTRUCTION FILE one-v6

28 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

model inputs.
• Further, when managers do not have the budget or authority to control all

model input variables, TAR2 can offer them a minimal set which they can
use to focus their resources.

• TAR2 has been applied to models with large amounts of noise. For example,
in a TAR2-style analysis, we often explore what happens to the solutions
when the variance on the model variables increases. Such studies return
statements of the form “the solutions offered by this analysis hold for vari-
ances up to the following critical threshold values, after which we do not
know how to control this domain”.

Treatment learning is not indicated for low-dimensionality linear continuous
models built in domains that have no noise or other uncertainties, and where man-
agers have full control over all model inputs. Other reasons not to use our tools
include when where there is no need to explain or audit models, where reducing
model variance is not valuable, and there exists budgets for building and using
maximal models.

As to further work, there is no reason to polarize the SE modeling field into “tra-
ditional methods” vs “treatment learning”. Much could be achieved by combining
the two techniques. For example, many of the methods described in §3 suffered from
the curse of dimensionality. TAR2 could be used as a fast dimensionality reduction
tool that could focus a data visualization environment or a sensitivity analysis on
the parts of the inputs space that are most crucial. Ideally, that focusing need not
wait till the simulation terminates. In incremental treatment learning, TAR2 offers
feedback during a simulation run into order the guide the simulator into regions of
interest. Before TAR2 can be deployed in that manner, it must be optimized so that
it can run fast enough to keep up with the simulator. Currently, we are exploring
stochastic methods for that optimization.
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