
April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Learning Satisficing Control Policies for Software Projects

Tim Menzies

Lane Department of Computer Science and Electrical Engineering
West Virginia University,
Morgantown, WV 26501

tim@menzies.us

James Kiper

Computer Science & Software Engineering Department
School of Engineering & Applied Science, Miami University

Oxford, OH 45056
kiperjd@muohio.edu

Jeremy Greenwald

Computer Science, Portland State University
jegreen@cecs.pdx.edu

Ying Hu

Software designer in Vancouver, British Columbia
huying .@yahoo.com

David Raffo

School of Business Administration, Portland State University
raffod@sba.pdx.edu

Siri-on Setamanit

Portland State University
sirion@pdx.edu

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Models in software engineering allow developers to define, but not necessarily explore, the
space of design options. Building a useful model and understanding all its interactions,
can be intellectually difficult - particularly for large, non-linear, discrete models. We show
theoretically and empirically that our TAR2 minimal contrast set learner can generate
very succinct conclusions from complex spaces.

Keywords: software process modeling, contrast set learning, treatment learning

1

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

2 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

1. Introduction

Anthropologists argue that the ability to build abstract models is what gives homo
sapiens their competitive edge. In his article “What Models Mean” [63], Seidewitz
describes the interactions and relationships among the concepts of a model. He
asserts that “a model’s meaning has two aspects: the model’s relationship to what’s
being modeled and to other models derivable from it. Carefully considering both
aspects can help us to understand how to use models to reason about the systems
we build ...” For example, is common practice to build software process models to
discover and exploit interesting interactions within a software project.

Software process models of modern systems are often large and complex. For
example, many such models have an exceedingly large number of control parame-
ters. The task of determining an optimal set of choice of these parameters is often
humanly impossible. Experienced managers are able to make guesses that are some-
times adequate. However, it has become obvious that automated help for managers
of large system developments is vital.

In this work, we will describe a tool (TAR2) that, for many hard models, can
identify a small number of controlling variable that are the keys to a model’s func-
tion. We call this set of controlling variables a collar. (This term will be explicitly
defined in a later section.) Such succinct controllers have many advantages:

• Smaller models are easier to understand and explain (or audit).
• Miller has shown that models generally containing fewer variables have less

variance in their outputs [48].
• The smaller the controller, the fewer are the demands on interfaces (sensors

and actuators) to the external environment. Hence, controllers for softare
processes designed around small models are easier to use (i.e., fewer things
to do) and less expensive to build.

Previously, we have explored the generation of such succinct controllers with
TAR2, in the context of small models with regular topologies. For example, TAR2
has beeen applied to

(1) COCOMO models to create designs with lower effort and fewer risks [47] and
defects [45].

(2) The NASA SILAP model for selecting V&V tasks [23].
(3) Finite state machines to find topologies that reduce the CPU cost of applying

formal methods [44,52].
(4) Maximizing whiskey production, modeled as finite state machines [9];

The above results, while interesting, are not convincing evidence of the scalability
of TAR2. The COCOMO and SILAP models are not large (the COCOMO model
consists of four equations and the SILAP model is a single-parent tree, 3 layers
deep). As to the other examples, they have a regular and repeated topology: in the
above examples, the same network of machines occurs in mutliple places around

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 3

the model. Such repeated sub-structures can greatly simplify any search over their
space of internal options.

Therefore, in this paper, we turn our attention to bigger and more complex
models. The two case studies presented below describe models that have been built
and patched over many years:

• A model of inspection policy effectiveness for a large software house;
• The Software Engineering Institute’s capability maturity model (level 2);

These are large models: unlike the COCOMO and SILAP models described previ-
ously, their specification fills many pages. Also, unlike our finite state machine mod-
els, the internal structure of these models does not repeat sub-structures. Hence,
they are a more challenging problem for TAR2.

This paper tests TAR2 on these more complex models. First, we discuss modeling
in software engineering and highlight the repeated observation that even seemingly
simple models can contain unexpected interactions. As model complexity grows, it
is therefore vital to augment model creation with automatic tools that search for
unexpected or detremential interactions. Next, we then discuss “hard modeling”
problems. When making descisions in limited time using limited information about
the environment, it is useful to know the fewest decisions that most affect the out-
comes. One way to find these smallest decision sets is to exploit a phenomenum
that we call “collars” and “clumps”. These are features of search space that have
been reported many times previously but, we believe have not been fully exploited.
Finally, this paper discusses how collars and clumps changes the design of data
miners. Our tool that exploits collars and clumps (TAR2) is then applied to two
case studies.

As we shall see, despite uncertainties or variabilities in the model, TAR2 was
able to find inputs that led tor preferred model output. Hence, these experiments
increase our confidence that TAR2 is a valuable addition to augment standard
modeling methods.

2. Models Hide Errors

Model are useful since humans can review/audit/improve an explicit representation
of their systems in a more effective and efficient manner before actually implement-
ing that system. But manual inspection is often insufficient to reveal the subtleties of
a model. Even very simple models can hide a surprising number of errors. Consider,
for example, a simple mathematical model of population growth.

dN

dT
= rN (1)

Here, r is a constant reflecting environmental conditions, T is time, and N is the
population. Note that this model is not accurate since population growth must taper

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

4 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

off as it approaches c, the maximum carrying capacity of the environment; i.e.

dN

dT
= rN

(
1− N

c

)
(2)

Before reading further, we ask the reader to consider whether equation #2 is an
appropriate model of population growth? If the reader cannot see all the subtleties
in a one-line model, then we should be suspicious of claims that the validity of
larger models can be accurately determined by manual analysis. Although equation
#2 does model our intuition in some cases, there is one situation in which it is
clearly incorrect. Consider the case of over-population in an hostile environment:
N > c, r < 0. Our intuition is that, in that situation, the population will fall.
However, with these assumptions rN(1− (N/c)) > 0. That is, our model concludes
that the population will increase (example taken from [37].)

Our experience has been that this error in this simple model is not apparent to
many people. Myers [50] reports a similar conclusion, but using a 63 line model.
In this experiment, 59 experienced IT professionals searched for errors in a very
simple text formatter that consisted of 63 lines of PL/1 code. Even with unlimited
time and the use of three different methods, 73% of the experts could only find (on
average) 5 of the 15 errors in this 63 line model [50]. This result, despite its age,
and the previous thought experiment do not inspire confidence that experts can
accurately assess larger models.

This phenomenon of models hiding errors is not limited to software. Consider
the results of the Feldman and Compton study in which 109 of 343 (32%) of the
known data points from six studied papers could not be explained using a glucose
regulation model developed from international refereed publications [20, 21, 65]. A
subsequent study corrected some modeling errors of Feldman and Compton to in-
crease the inexplicable percentage from 32% to 45%. A similar study successfully
faulted another smaller published scientific theory [43].

But as models grow in complexity, it becomes difficult for a manual analysis to
reveal all their subtleties. Hence, many researchers propose support environments to
help explore the increasingly complex models that engineers are developing. Gray,
et al, [24] have developed the Constraint-Specification Aspect Weaver (C-Saw) that
uses aspect-oriented approaches [22] to help engineers in the process of model trans-
formation. Cai and Sullivan [11] describe a formal method and tool called Simon
that “supports interactive construction of formal models, derives and displays de-
sign structure matrices ... and supports simple design impact analysis.” Other tools
of note are lightweight formal methods such as ALLOY [32] and SCR [28] as well
as various UML tools that allow for the execution of life cycle specifications (e.g.
the CADENA scenario editor [12]).

Recently, artificial intelligence (AI) methods have been successfully applied
to model-based SE. For example, Whittle uses deductive learners to generate
lower-level UML designs (state charts) from higher-level constructs (use case dia-
grams) [69]. More generally, the field of search-based SE augments model-based SE

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 5

with meta-heuristic techniques, like genetic algorithms, simulated annealing, etc.,
to explore a model. Such heuristic methods are hardly complete but, as Clarke, et
al [13] remark: “...software engineers face problems which consist, not in finding the
solution, but rather, in engineering an acceptable or near optimal solution from a
large number of alternatives.” [13].

Search-based SE is most often used to optimizing software testing [33,34,53,66]
but it has had application in numerous other areas. In prior work with Martin
Feather [18], we have used search-based SE for requirements analysis. Other re-
searchers [25, 38] use genetic algorithms to examine ways of modularizing soft-
ware [13] or developing effort estimators [2, 14, 15]. In all, Rela [59] lists 123 publi-
cations where search-based methods have been applied to the above applications as
well as automatic synthesis of software defect predictors, assisting in component de-
sign, developing multiprocessor schedules, re-engineering old systems into a better
one, and searching for compiler optimizations.

To use a search-based approach, software engineers have to reformulate their
problem by:

• Finding a representation of the problem that can be symbolically manipulated
(e.g. simulated or mutated). Such representations always exist with model-based
SE.

• Defining a fitness function (a.k.a. “utility function”” or “objective function”);
i.e. an “oracle” that scores a model configuration.

• Determining an appropriate set of manipulation operators to select future
searches based on the prior searches [26].

The rest of this paper explores data mining as one way to implement automatic
manipulation operators. Our TAR2 data miner searches through the space of possi-
ble concepts for a combination of concepts that describes some target theory. Given,
say, the output from a Monte Carlo simulation of a model, TAR2 can sift through
model output looking for the core concepts that most often led to preferred output.

3. “Hard Modeling” Problems

Before describing our research into data mining for automatically generating ma-
nipulation operators, we must motivate why we do not use traditional methods.
We assert that may models of large software projects follow into the category of’
“hard modeling” problems. These are models in which an optimal answer is not
possible, uncertainty permeates, the behavior is non-linear, the size and complexity
compound to make the model difficult to understand. Thus, we seek constraints to
model inputs that are satisficing (rather than optimal), are stable in the face of
uncertainty, can be automatically generated, reduce cognitive overload, and which
work for large non-linear and noisy models. Such constraints are called “solutions
to hard modeling problems”.

Many researchers have developed impressive visual environments for decreas-

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

6 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

ing the cognitive overload associated with exploring a multi-dimensional space. For
example, Figure 1 shows a tool developed at IBM that augments a standard three-
dimensional display with visual cues relating to higher-dimensional data; e.g., sup-
plementary dimensions are shown bottom right; blue circles around the axle show
circular motion information; and a color key, shown bottom left, indicates how colors
in the display relate to density information [67].

Such visualizations help analysts explore visual information, but they present
their own challenges. There are still limits on how many dimensions can be displayed
(e.g. we have yet to see effective visualizations for more than a ten dimensionality
space). Also, note how the tool shown in Figure 1 contains numerous controls that
allow analysts to change various visualization options. As the visualization environ-
ment grows more sophisticated, some users find they have traded a data browsing
problem with the new problem of exploring the full range of the effects of all the
controls.

When manual exploring of options fail, automatic methods can be applied. Op-
timization packages can be applied to data or the equations of a system to find
“sweet spots” that maximize the score resulting from model outputs. Related meth-
ods include sensitivity analysis [61] and design of experiments (DOE) methods [7]
A canonical sensitivity analysis method might be to compute eigenvectors of a lin-
ear system in order to understand its long-term temporal behavior [31, 37]. As for
design of experiments, DOE exercises an existing model and helps shed light on the
response surface of the model. DOE does identify gradients and key parameters for
a model.

While useful for some models, these automatic methods do not apply to all

Fig. 1. A visualization tool for scientific data. From [67].

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 7

models. For example, optimization methods can fail for non-linear models. Any
model with an “if” statement potentially introduces a “cliff” where the effects of
inputs on outputs abruptly change. For such models, there is no linear continuous
solution that applies to both sides of the “cliff”. Model uncertainty also complicates
sensitivity analysis. For example, the eigenvector technique described previously
would yield spurious results if the coefficients on the models are not known with
certainty. Lastly, a DOE analysis can be complicated by the dimensionality, noise,
and visualization problems described above.

In hard modeling problems, human agents must make decisions using:

• limited time;
• limited computational ability (or limited time for computation);
• limited knowledge about decision alternatives;
• uncertainty about possible outcomes of decisions;
• no more than a partial ordering of preferences;
• limited information about probabilities of outcomes.

Herbert Simon [64] defined and explored such hard modeling problems using a
data structure called state space [60]. In terms of model-based software engineering
(SE), a state space is the set of options and option selection operators within a
model. In hard modeling problems large portions of the state space are uncertain.
Simon argued that in such state spaces, searching for optimal solutions is a spurious
goal. Rather, agents can only make just enough decisions that are just good enough.
In Simon’s terminology, such decisions are satisficing.

Our contribution to hard modeling is to comment that (1) satisficing solutions
often can be achieved by ignoring certain irrelevant or redundant details within
a model; (2) surprisingly simple methods often can find what details are relevant
and what can be ignored. TAR2 exploits these properties of hard models through
a form of data mining called /em treatment learning. A treatment learner proposes
“treatments”; i.e., constraints on a small subset of the model inputs. The other
inputs are left to vary at random. (The term ”treatment” is chosen as an analogy
to the health professions use of that term in which a set of activities, medication,
and/or procedures is prescribed to address some specific health issue.) The result
is that, in addition to generating very succinct solutions, treatment learning offers
solutions that are stable despite uncertainty in the non-treated variables.

Our own view on hard modeling is that there often exists a “loophole” in search
problems that can make hard problems far easier to manage. We call this loophole
“collars and clumps”.

4. Collars and Clumps

This research assumes that many models can be controlled by a small number of
key variables which we call collars. Collars restrict the behavior of a model such
that their state space clumps; i.e. only small number of states are used at runtime.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

8 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

The output of a data miner can be simplified to constrain just the collar variables
that switch the system between a few clumps.

Definition: A collar is a set of input variables that determines the state of a
system in most cases. The size of the collar is the ratio of the cardinality of this
collar set to the total number of input variables for the system.

Definition: A dynamic model exhibits clumps when most values of input vari-
ables result in the systems being in one of relatively few states.

From these definition, it is apparent that these two concepts are duals. A system
with an effective collar is one that exhibits a high degree of clumping, and vice versa.
To visualize collars, imagine an execution trace spreading out across a program.
Initially, the trace is very small and includes only the inputs. Later, the trace spreads
wider as upstream variables affect more of the downstream variables (and the inputs
are the most upstream variables of all). At some time after the appearance of the
inputs, the variables hold a set of values. Some of these values were derived from the
inputs while others may be default settings that, as yet, have not been affected by
the inputs. The union of those values at time t is called the state st of the program
at that time.

Multiple execution traces are generated when the program is run multiple times
with different inputs. These traces reach different branches of the program. Those
branches are selected by tests on conditionals at the root of each branch. The
controllers of a program are the variables that have different settings at the roots of
various branches in separate traces. Programs have collars when a handful of the
controllers in an early state st control the settings of the majority of the variables
seen in later states.

As described previously collars are related to clumping. If a program has v

variables with range r, then the maximum number of states is rv. Programs clump

when most of those states are never used at runtime; i.e. |used|/ (rv) ≈ 0. Clumps
can cause collars:

• The size of used is the cardinality of the cross product of the ranges seen in the
controllers.

• If that cardinality is large, many states will be generated and programs do not
clump.

• But if that cross product cardinality is small, then the deltas between the states
will be small – in which case controlling a small number of collar variables would
suffice for selecting which states are reached at runtime.

As shown below, there is much theoretical and empirical evidence for expecting
that many models often contain collars and clumps.

4.1. Theoretical Evidence

In prior work with Singh [46], we have shown that collars are an expected property
of Monte Carlo simulations where the output has been discretized into a small

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 9

number of output classes. After such a discretization, many of the inputs would
reach the same goal state, albeit by different routes. The following diagram shows
two possible distinct execution paths within a Monte Carlo simulation both leading
to the same goal; i.e. a→ goal or b→ goal.

a1−→M1
a2−→M2

. . .
am−→Mm

c−→ goali

d←−

N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Each of the terms in lower case in the above diagram represent a probability of
some event; i.e. 0 ≤ {ai, bi, c, d, goali} ≤ 1. For the two pathways to reach the goal,
they must satisfy the collar M or the larger collar N (each collar is a conjunction).
As the size of N grows, the product

∏N
j=1 bj decreases and it becomes less likely

that a random Monte Carlo simulation will take steps of the larger collar N .
The magnitude of this effect is quite remarkable. We have executed the above

model under a variety of conditions:

• A basic simulation, where we assume where bi = bj = 1
n and ai = aj = 1

m ;
• A more complex simulation where ai and bi are drawn from random distribi-

tions. The complex simualtion results were described in [46]. We do not repeat
those results here since they report the same pattern as seen in the basic sim-
ulation.

According to the basic simulation, the narrower collar is thousands to millions of
times more likely. For example, when |M | = 2 and N > M , the condition for
selecting the larger collar is d

c ≥ 64; i.e. the larger collar N will be used only when
the d pathway is dozens of times more likely than c. The effect is more pronounced
as |M | grows; at |M | = 3 and N > M , the condition is d

c ≥ 1728; i.e. to select the
larger collar N , the d pathway must be thousands of times more likely than c (for
more details, see [46]). That is, when the output space is discretized into a small
number of outputs, and there are multiple ways to get to the same output, then
a randomized simulation (e.g. a Monte Carlo simulation) will naturally select for
small collars.

As to clumping, Druzdel [16] observed this effect in a medical monitoring system.
The system had 525,312 possible internal states. However, at runtime, very few were
ever reached. In fact, the system remained in one state 52% of the time, and a mere
49 states were used, 91% percent of the time. Druzdel showed mathematically that
there is nothing unusual about his application. If a model has n variables, each
with its own assignment probability distribution of pi, then the probability that the
model will fall into a particular state is p = p1p2p3...pn =

∏n
i=1 pi. By taking logs

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

10 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

of both sides, this equation becomes

ln p = ln
n∏

i=1

pi =
n∑

i=1

ln pi (3)

The asymptotic behavior of such a sum of random variables is addressed by the cen-
tral limit theorem. In the case where we know very little about a model, we assume
that the pi are uniform;y distributed and that many states are possible. However,
the more we know about the model, the less likely it is that the distributions are
uniform. Given enough variance in the individual priors and conditional probabili-
ties or pi, the expected case is that the frequency with which we reach states will
exhibit a log-normal distribution; i.e. a small fraction of states can be expected to
cover a large portion of the total probability space; and the remaining states have
practically negligible probability.

The assertion that many types of models display this clumping behavior is quite
important for the style of data mining (treatment learning) that we advocate. In
application to a clumping model with collars, Monte Carlo simulation, followed by
the use of TAR2, suffices to summarize that model in an effective way:

• TAR2’s rules never need to be bigger than the collars. Hence, if the collars are
small, TAR2’s rules can also be small.

• If a model clumps, then, very quickly, a Monte Carlo simulation would sample
most of the reachable states. TAR2’s summarization of that simulation would
then include most of the important details of a model.

4.2. Empirical Evidence

Empirical evidence for clumps first appeared in the 1950s. Writing in 1959, Samuel
studied machine learning for the game of checkers [62]. At the heart of his program
was a 32-term polynomial that scored different configurations. For example, king
center control means that a king occupies one of the center positions. The program
learned weights for these variable coefficients. After 42 games, the program had
learned that 12 variables were important, although only 5 of these were of any real
significance.

Decades later, we can assert that deleting irrelevant variable has proven to be a
useful strategy in many domains. For example, Kohavi and John report experiments
on 8 real world datasets where, on average, 81% of the non-collar variables can be
ignored without degrading the performance of a model automatically learned from
the data [35].

If models contain collars, or if the internal state space clumps, then much of
the reachable parts of a program can be reached very quicklya. This early coverage

aNote that this is different to the reliability issue which is “which parts of the system, that we have
not reached before, might we reach now.” While our tool sumamrizes the key points in observed
behavior, it can be used to drive the system into regions it does not frequently visit. For more on
this issue, see [52]

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 11

effect has been observed many times. In a telecommunications application, Avritzer,
Ros, and Weyuker found that a sample of 6% of all inputs to this system covered
99% of all inputs seen in about one year of operation (and a sample of just over
12% covered 99.9%) [3]. Further evidence for early coverage can be found in the
mutation testing literature. In mutation testing, some part of a program is replaced
with a syntactically valid, but randomly selected, variant (e.g. switching “less than”
signs to “greater than”). This method of testing is useful for getting an estimate of
what percentage of errors have been discovered by testing. Wong compared results
using X% of a library of mutators, randomly selected (X ∈{10,15,. . . 40,100}). Most
of what could be learned from the program could be learned using only X=10% of
the mutators; i.e. after a very small number of mutators, new mutators acted in
the same manner as previously used mutators [70]. The same observation has been
made elsewhere by Budd [8] and Acree [1].

If the space of possible execution pathways within a program is limited, then
program execution would be observed to clump since it could only ever repeat a few
simple patterns. Empirically such limitations have been observed in procedural and
declarative systems. Bieman and Schultz [5] report that 10 or fewer paths through
programs explored 83% of the du-pathways. (A du-path is a set of statements in
a computer program from a definition to a use of a variable. This is one common
form of structural coverage testing.) Harrold [27] studied the control graphs of 4000
Fortran routines and 3147 C functions. Potentially, the size of a control graph may
grow as the square of the number of statements (in the case where every statement
was linked to every other statement.) This research found that, in these case studies,
the size of the control graph is a linear function of the number of statements. In an
analogous result, Pelánek reviewed the structures of dozens of formal models and
concluded that the internal structure of those models was remarkably simple: “state
spaces are usually sparse, without hubs, with one large SCC [strongly connected
component], with small diameter b and small SCC quotient’c” [55]. This sparseness
of state spaces was observed previously by Holtzmann where he estimate the average
degree of a vertex in a state space to be 2 [29].

Pelánek hypotheses that these “observed properties of state spaces are not the
result of the way state spaces are generated nor of some features of specification
languages but rather of the way humans design/model systems” [55]. Pelánek does
not expand on this, but we assert that generally SE models are simple enough to be
controlled by treatment learning since they were written by humans with limited
short-term memories [49] who have difficulty designing overly-complex models.

bThe diameter of a graph (of a state space here) is the number of edges on the largest shortest
path between any two vertices.
cSCC quotient is a measure of the complexity of a graph.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

12 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

5. Data Mining with Collars and Clumps using Treatment
Learning

The TAR2 treatment learner [39, 41] is a data miner designed specifically to ex-
plore models collars. TAR2 finds the difference between outcomes. Formally, the
algorithm is a contrast set learner [4, 68] that uses weighted classes [10] to steer
the inference towards the preferred behavior. We call TAR2’s output “treatments”
since the minimal rules generated by the algorithm are similar to medical treatment
policies that try to achieve the most benefit, with the least intervention. The core
intuition of TAR2 is that it is unnecessary to search for the collars – they will re-
veal themselves after some limited random sampling. To see that, recall that collar
variables control the settings in the rest of the system. Any execution trace that
reaches a goal must pass through the collars (by definition). Therefore, to find the
collars, all an algorithm needs to do is find the attribute ranges with very different
frequencies in traces that reach different goals.

Detecting collars via this sampling method is quite simple to implement. Con-
sider a log of golf playing behavior shown in Figure 3. This log contains four at-
tributes (outlook, temperature, humidity, wind) and 3 target classes (none, some,
lots) that convey the amount of golf played. We recommend an exponential scoring
system for the classes, starting at twod. For example, our golfer could weight the
classes in Figure 3 as none=2 (worst), some=4, lots=8 (best).

TAR2 seeks attribute ranges that occur frequently in the highly weighted classes
and rarely in the lower weighted classes. Let a.r be some attribute range, e.g. out-
look.overcast means that the outlook is for overcast skies. ∆a.r is a heuristic measure
of the worth of a.r to improve the frequency of the best class. ∆a.r uses the following
definitions:

X(a.r): is the number of occurrences of that attribute range in class X; e.g. in
this data lots(outlook.sunny)=2 since there are 2 cases with outlook = sunny
and class = lots.

all(a.r): is the total number of occurrences of that attribute range in all classes;
e.g. all(outlook.sunny)=5.

best: the highest scoring class; e.g. best = lots.
rest: the set of non-best class; e.g. rest = {none, some}.
weight: The weight of a class X is symbolized by $X. (Thus, $best = 8.)

∆a.r is calculated as follows:

∆a.r =
∑

X∈rest($best− $X) ∗ (best(a.r)−X(a.r))
all(a.r)

(4)

dIf the weights run, say, {bad=0,ok=1,good=2} then the difference from bad to ok scores the
same as ok to good. An exponentially weighting scheme, starting at two, finds greater and greater
rewards moving to better classes. For further details, see [30].

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 13

When a.r is outlook.overcast, then ∆outlook.overcast is calculated as follows:
lots→none︷ ︸︸ ︷

((8− 2) ∗ (4− 0))+

lots→some︷ ︸︸ ︷
((8− 4) ∗ (4− 0))

4 + 0 + 0
=

40
4

= 10

In the following, we will refer to the ∆ and ∆s functions. The difference between
these is that the ∆ is a heuristic measure of a single attribute range while ∆s is a
heuristic measure of a conjuction of attribute ranges. (Thus, if the conjuction has a
cardinality of one, then ∆=∆s). The ∆s function is almost identitcal to Equation 4,
but all references to a.r are replaced by the frequency count of the number of rows
selected by (a1.r1 ∧ a2.r2...).

To build a treatment, TAR2 explores combinations of attribute ranges up to some
user-specified maximum size s (where the size s is the number of attribute ranges in
a conjunction of attributes). Given n attributes, the size of this search is n!

s!(n−s)! . To
make this search feasible, TAR2 must keep s small. Therefore, TAR2 first assesses
each attribute range, in isolation, i.e., with s = 1. A preliminary pass builds one
singleton treatment for each attribute range. The attribute ranges are then scored
by the ∆ of these singleton treatments. Treatment generation is constrained to just
the attribute ranges with a score greater than a user-supplied threshold.

input: D The example data.
items Attributes seen in the examples.
s Desired size of rule. Default=4.
promising Threshold for a useful attribute range. Detault= 1.5
skew Threshold for acceptable number of best entries in

treated. Default=20%
bands Number of divisions within continuous ranges. De-

fault=5.

output: A conjunction of attribute ranges

01. D1 ← discretize(D, bands)
02. temp ← -1
03. for attribute in items {
04. for R in attribute.ranges {
05. if ∆(attribute.R) ≥ promising
06. then candidates ← candidates + attribute.R}}
07. for C ⊆ candidates where |C| ≤ s {
08. treated ← C ∧ D1
09. result ← ∆s(C)
10. if result>temp and |best∧D1|/|best∧treated|>skew
11. then { output ← C
12. temp ← result}
13. return output

Fig. 2. The TAR2 algorithm.

The TAR2 algorithm is shown in Figure 2:

• The discretize function on line 1 divides the numeric ranges seen in the ex-
amples into bands number of groups. TAR2 was originally designed using a very
simple discretization policy; i.e. TAR2 sorts the known values and divides into
bandswith (roughly) the same cardinality. It was anticipated that this policy

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

14 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

outlook temp(oF) humidity windy? class weight

sunny 85 86 false none 2
sunny 80 90 true none 2
sunny 72 95 false none 2

rain 65 70 true none 2
rain 71 96 true none 2

rain 70 96 false some 4
rain 68 80 false some 4
rain 75 80 false some 4

sunny 69 70 false lots 8
sunny 75 70 true lots 8

overcast 83 88 false lots 8
overcast 64 65 true lots 8
overcast 72 90 true lots 8
overcast 81 75 false lots 8

Fig. 3. A log of some golf-playing behavior. From [57].

would be too simplistic and would have to be improved. However, our empirical
results (see below) were so encouraging that we were never motivated to do so.

• Lines 3 to 6 show the preliminary pass to find promising attribute ranges.
• The rest of the algorithm tries all subsets of the promising ranges looking for

the one that generates the largers ∆s value. Line 10 checks for overfitting: if a
treatment selects too few of the best classes in the data, it is ignored.

no change outlook =
overcast

0
2
4
6

5 3 6
0
2
4
6

0 0 4

= none (worst)

= some

= lots (best)

Fig. 4. Finding treatments that can improve golf playing behavior. With no treatments, we only
play lots of golf in 6

5+3+6
= 57% of cases. However, assuming outlook=overcast, we play golf lots

of times in 100% of cases.

To apply a treatment, TAR2 rejects all example entries that contradict the
conjunction of the attribute ranges in the treatment. E.g., if the treatment was
humidity ≥ 85 ∧ windy = true, then 11 of the lines of Figure 3 would be rejected.
The ratio of classes in the remaining examples is compared to the ratio of classes
in the original example set (in the humidity and wind treatment just given, this
ratio would be 3/14). The best treatment is the one that most increases the relative
percentage of preferred classes. In our golf example, a single best treatment was
generated containing outlook=overcast. Figure 4 shows the class distribution before
and after that treatment. That is, if we select a vacation location with overcast
weather, then we should be playing lots of golf, all the time.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 15

columns

domain # rows #
n
u
m

er
ic

#
d
is

cr
et

e

#class time(sec)

iris 150 4 0 3 < 1

wine 178 13 0 3 < 1

car 1,728 0 6 4 < 1

autompg 398 6 1 4 1

housing 506 13 0 4 1

pageblocks 5,473 10 0 5 2

cocomo 30,000 0 23 4 2

reacheness 25,000 4 9 4 3

circuit 35,228 0 18 10 4

reacheness2 250,000 4 9 4 23

pilot 30,000 0 99 9 86

Fig. 5. Runtimes for TAR2 on different domains. The first 6 data sets come from the UC Irvine
machine learning data repository [6]; “cocomo” comes from a COCOMO software cost estima-
tion model [47]; “pilot” comes from the NASA Jet Propulsion Laboratory [19]; “Reachness” and
“Reachness2” come from [51]; “circuit” comes from [40].

In practice, despite the n!
s!(n−s)! search, TAR2 scales well. Figure 5 shows TAR2’s

runtime on 11 data sets with varying numbers of rows and columns. Running on a
relatively slow machine (a 333 MHz Windows machine with 512MB of ram), TAR2
terminated in tens of seconds, even on data sets with up to 250,000 rows, each with
nearly 100 attributes.

6. Case Studies

In theory, we expect that many models contain collars and clumps. If so, tools like
TAR2 should be able to find tiny treatments that control the behavior of the models.
This section tests that theory on several case studies.

6.1. Inspection Policies

The first case study contrasts treatment learning with traditional learners. It will
be seen that treatments are dramatically smaller, and more understandable, than
the model learned by standard data miners.

Figure 6 offers a high-level view of a quantitative software process model [58]. At
each phase of that process, inspections are conducted of the functional specification
(FS), high-level design (HLD), low-level design (LLD), and the code (CODE). Raffo
modeled these phases, and the inspections using a StatemateTM state-based simu-
lation model and an ExtendTM discrete event model containing 30+ process steps
with two levels of hierarchy. Some of the inputs to the simulation model included
productivity rates for various processes, the volume of work (i.e. KSLOC), defect

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

16 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

projects
approved

functional
specification

high-level
design

FS inspection

low-level
design

HLD
inspection

code
dev

LLD
inspection

code
inspection

unit
test

development
complete

functional
test

unit test
complete

system
test

field
 support and
maintenance

release to
customers

Fig. 6. High-level block diagram of a discrete event model of one company’s software process.

detection and injection rates for all phases, effort allocation percentages across all
phases of the project, rework costs across all phases, parameters for process overlap,
the amount and effect of training provided, and resource constraints.

Model outputs are the development expense (person months), product quality
(number of high severity defects) and project duration (calendar months) which are
combined as follows:

utility = 40 ∗ (14− quality) + 320 ∗ (70− expense) +
640 ∗ (24− duration)

(5)

The justification for this style of utility function is discussed in detail in [58]. In
summary, this function was created after extensive debriefing of the business users.

The model has been extensively validated. The model’s process diagrams, model

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 17

inputs, model parameters and outputs were reviewed by members of the software en-
gineering process group as well as senior developers and managers. In other studies,
the model was used to accurately predict the performance of several past releases of
the project. Finally, in special case studies, the model was used to predict unantic-
ipated special cases. Specifically, when predicting the impact of developing overly
complex functionality, the model predicted that development would take approxi-
mately double the normal development schedule. Initially rejected by management,
it was later found that this model’s predictions corresponded quite accurately with
the company’s actual experience.

In this example, we will use the model to assess different software inspection
policies. For each phase of the software process modeled in Figure 6, four types of
inspections can potentially be applied. These four types are listed below, sorted by
their cost and effectiveness. For example, full Fagan inspections are most expensive
and find the most issues. At the other end of the scale, doing no inspections is
cheapest but finds no issues:

F: A full Fagan inspection [17] is a seven step process with pre-determined roles for
inspection participants. For the company studied by Raffo, the defect detection
capabilitye of their full Fagan inspections was TR(0.35, 0.50, 0.65)f . Such studies
use between 4 and 6 staff, plus the author of the artifact being inspected.

B: A baseline inspection is a continuation of current practice at the company un-
der study. The baseline inspection at this company was essentially a poorly
performed Fagan inspection, Historical records show that these baseline in-
spections have varying defect detection capabilities of {min,median,max} =
{0.13, 0.21, 0.30}.

W: Walk through inspections conducted informally by an outside consultant. His-
torical records show that these inspections have a defect detection capability of
TR(0.07, 0.15, 0.23).

N: No inspection;

Each type of inspection can be performed at each phase; i.e. there are 44 possible
inspection polices. A data set for TAR2 was prepared by running each configuration
50 times; i.e. 50 ∗ 44 = 12800 samples. Each run was then tagged with its utility,
using Equation 5. These utilities were discretized into four classes, of approximately
equal frequency. (Thus, the significance of the boundary values is just that they give
class of approximately equal cardinality.)

• class1 : value of Equation 5 < 9843
• class2 : 9843 ≤ value of Equation 5 < 10698
• class3 : 10698 ≤ value of Equation 5 < 11664
• class4 : 11664 ≤ value of Equation 5 ≤ 14755

eDefect detection capability is the percentage of defects detected from those that are latent in the
inspected artifact.
fTR(a, b, c) denotes a triangular distribution with minimum, median, max of a, b, c respectively.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

18 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

 80
 60
 40
 20
 0

 1
40

00

 1
20

00

 1
00

00

 8
00

0

 6
00

0

%
 fr

eq
ue

nc
y

utility

before
after

Fig. 7. Utility frequency in 12800 samples, before and after treatment.

The before bar chart in Figure 7 shows the frequency of these classes in the un-
treated model. Note that many (40%) of the samples generate the lowest class1
utility.

TAR2 was then applied to learn treatments that distinguish the desired class4
utilities from the rest. The best treatment generated by the algorithm was very
small only recommended changing one of the inspection processes; i.e.

hidesign 12 = F

The after bar chart of Figure 7 shows the effect of imposing this treatment of
hidesign 12=Fg onto the simulator. (hidesign 12 is the code we used for full Fagan
inspections for high-level designs) The treated model is much improved: it generates
zero class1 and class2 outputs and, in 80% of cases, generates class4 outputs.
Further, the improvement was achieved without having to control the inspection
policies in the other phases.

If we were not concerned with finding minimal solutions, TAR2 would have
been called again on data generated from the inspection model, after the inputs
have been constrained to hidesign 12=F. This iterative process could repeat until
it was shown that further constraints did not improve the output. Such interactive
treatment learning has been applied on other models (e.g. see [19]). However, for
the sake of exposition, the execution of this model is not explored further.

In terms of the discussion in §3, an important feature of hidesign 12=F is that
it is stable despite uncertainty in other parameters. Despite large scale variation
of all other parameters in this model, this treatment yielded the effect seen in
Figure 7. In terms of supporting commercial practices, this is a very useful result.
Large corporations may have little ability to influence the practices and processes

gIn this data set, each attribute is labeled with its column number so hidesign 12 appears in the
twelfth column the input.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 19

C4.5 and CART are iterative dichotomization learners that seek the best attribute
value splitter that most simplifies the data that fall into the different splits. Each
such splitter becomes a root of a tree. Sub-trees are generated by calling iterative
dichotomization recursively on each of the splits.
CART is defined for continuous target concepts and its splitters strive to reduce the
standard deviation of the data that falls into each split. C4.5 is defined for discrete
class classification and uses an information-theoretic measure to describe the diversity
of classes within a data set.
A leaf generated by CART stores the average value of the class selected by the branch
while a leaf generated by C4.tree stores the most frequency class. Hence, C4.5 is called
a decision tree learner while CART is called a regression tree.

Fig. 8. About C4.5 and CART

of their satellite organizations or contractors. Hence, they often have to carefully
select what policies to implement across the company. In terms of Equation 5, the
treatment learned in this example representing the least action that offers the most
reward.

Also, in terms of advocating treatment learning, the most important feature of
this example is what is missing. To learn its treatments in this case study, TAR2 im-
ported samples with 51 variables (50 inputs and one utility score). It then generated
treatments, the best of which used only one of the inputs.

There are other commonly used data miners, such as C4.5, CART, and linear
regression to which we compare TAR2. The operation and application of these are
briefly summarized here:

• C4.5 and CART use the iterative dichotimzation algorithm described in Fig-
ure 8.

• Linear regression tries to fit one straight line through the observed values. The
line offers a set of predicted values and the distance from these predicted values
to the actual values is a measure of the error associated with that line. Linear
regression tools such as the least squares regression package search for a line
that minimizes that sum of the squares of the error.

• C4.5 predicts for discrete class symbols (e.g. class1, class2, class3, class4) so
this algorithm used the same data as TAR2.

• Linear regression and CART make numeric predictions. These algorithms used
the TAR2 data with the classN symbols replaced by raw numerics of Equa-
tion 5.

These data miners can be used to analyze similar models. However, they gener-
ally are far less succinct. For example, when the inspection data of this case study
was passed to C4.5 [56] the decsion tree that was learned has fifty (50) nodes on
seven (7) levels. A regression tree learned from CART has 24 nodes and four (4)
levels. A typical node consists of five (5) to nineteen(19) terms of the form “FFFN”
denoting the use of no inspections for code but full Fagan inspections for all earlier
phases. A linear regression tree learned from this model’s data produced a similarly

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

20 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

complex model.
A comparison of the output from TAR2 and C4.5 and results from CART and

linear regression demonstrate that standard methods of summarizing data (linear
regression, decision trees, regression trees) can generate much larger theories than
treatment learning. The reason for this is very simple. Theories learned from itera-
tive dichotomization describe the features that separate all of the target variables.
However, treatments from TAR2 just describe the minimal deltas between preferred
and undesirable targets.

Another advantage of treatment learning is that it is much easier to derive
actions from treatments than from the standard methods described here. To be
sure, decision trees can be analyzed to find those branch values that most often
select preferred classes while most often discarding undesired classes. (The initial
TAR2 prototype was such a post-processor). However, TAR2 achieves the same
result directly without the need to interface to another learner.

6.2. Studying the Capability Maturity Model (CMM)

The previous study explored a numeric model where all the influences were precisely
specified. This second case study takes a numeric model and adds a large degree
of uncertainty in the numerics. This second study shows that, even in presence of
large degrees of uncertainty, TAR2 can still find useful treatments.

An important feature of this second study is that it analyzes a class of models
that can defeat standard methods. The model contains dozens of if-then rules; i.e.
it is neither linear nor continuous: small changes in the environment can lead to
“cliffs” where the model behavior changes abruptly. Also, the model contains non-
deterministic choices (see the rany operator, discussed below) and so its behavior
can be highly noisy.

This study uses a rule-based model of the costs and benefits model of the Ca-
pability Maturity Model (CMM) level 2 (hereafter, CMM2) [54, p. 125-191]. We
elected to study CMM2 since, in our experience, many organizations can achieve at
least this level of software process capability. CMM2 is less concerned with issues of,
for example, which design pattern to apply, than with what overall project process
to use. Improving CMM2-style decisions is important since, in early software life
cycle, many CMM2-style decisions affect the resource allocation for the rest of the
project.

In this model, CMM2 was encoded using the JANE propositional rule-based
language [42]. JANE’s rules take the form Goal if SubGoals such as the one shown
in Figure 9.

JANE is a backward chaining language: to prove a Goal, JANE tries to find
rules that prove each of the SubGoals. Each SubGoal contributes some Cost and
Chances to the Goal. JANE’s Chances define the extent to which a belief in one
vertex can propagate to another. Costs let an analyst model the common situation
where some of the Cost of some procedure is amortized by reusing its results many

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 21

stableRequirements
if effectiveReviews
and requirementsUsed
and sEteamParticipatesInPlanning
and documentedRequirements
and sQAactivities
and (reviewRequirementChanges

rany softwareConfigurationManagement
rany baselineChangesControlled
rany workProductsIdentified
rany softwareTracking

).

Fig. 9. Part of CMM2, encoded in the JANE language.

times. Hence, the first time we use a proposition, we incur its Cost but afterwards,
that proposition is free of charge.

The Cost and Chances of a proposition are either provided by the JANE pro-
grammer or computed at runtime via a traversal of the rules:

• When searching X if not A, the Chances of X are 1-Chances(A) and Cost(X) =
Cost(A).

• When searching X if A and B and C, the Chances and Costs of X are (respec-
tively) the product of the chances and the sum of the costs of A,B,C.

• When searching X if A or B or C, then the Cost and Chances of X are taken
from the first member of A,B,C that is satisfied.

These and, or, not operators can be insufficient to capture the decision making of
business users. For examples, in our experience, business users often select CMM2
options in a somewhat arbitrary manner. To model this, JANE includes a rany

operator (short for “random any”):

• The rany operator is like or except that (e.g.) X if A rany B rany C succeeds
if some random number of A,B,C (greater than one) succeeds. Unlike and, or

which explore their operands in a left-to-right order, rany explores its SubGoals

is a random order. If at least one succeeds, then the Cost and Chances of X
is the sum and product (respectively) of the Cost and Chances of the satisfied
members of A,B,C.

Rany is useful when searching for subsets that contribute to some conclusion. For
example, the JANE rule in Figure 9 offers several essential features of stableRequire-
ments plus several optional factors relating to monitoring change in evolving projects
– the essential features are and-ed together while the optional factors are rany-ed
together.

Figure 9 includes 11 propositions. Our model of CMM2, written in JANE, has
55 propositions (range = {t, f}). Of those 55 propositions, 27 were identified by
our users as actions that could be changed by managers (see Figure 10).

Apart from rany, JANE supports one other mechanisms for exploring the space
of possibilities within CMM2. When defining Costs and Chances, the programmer

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

22 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

can supply a range and a skew. For example:

goodUnitTesting and cost = 1 to +5

defines the cost of goodUnitTesting as being somewhere in the range 1 to 5, with
the mean skewed slightly towards 5 (denoted by the “+”).

baselineAudits, base-
lineChangesControlled,
changeRequestsHandled,
changesCommunicated,
configurationItemStatus-

Recorded,
deviationsDocumented,

documentedDevelopment-
Plan,

documentedProjectPlan,
earlyPlanning,

formalReviewsAtMilestones,
goodUnitTesting,

identifiedWorkProducts,
periodicSoftwareReviews

planRevised,
requirementsReview,
requirementsUsed, re-

viewRequirementChanges,
risksTracked, SCMplan,

SCMplanUsed,
SElifeCycleDefined,

SEteamParticipatesIn-
Planning,

SEteamParticipatesOn-
Proposal,

SQAauditsProducts,
SQAplan, SQAplanUsed,

SQAreviewActivities,
workProductsIdentified

Fig. 10. Management actions in the CMM2 model. SQA= software quality assurance and SCM=
software configuration management)

0
10
20
30
40
50
60
70

5 16 5 74
0

10
20
30
40
50
60
70

7 13 19 60
0

10
20
30
40
50
60
70

5 14 26 55
0

10
20
30
40
50
60
70

14 22 30 24

T1 T2 T3 baseline
worth=1.44 worth=1.31 worth=1.28 current worth = 1

KEY:
Top-to-bottom = least desir-
able to most desirable.

= high cost, low chances; i.e. a very bad software project

= low cost, low chances

= high cost, high chances

= low cost, high chances; i.e. a good software project

Fig. 11. Ratios of different software project types seen in four situations.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 23

Similarly, while all the Chances values were based on expert judgment, their
precise value is subjective. Hence, each such Chances value X was altered to be a
range

chances = 0.7*X to 1.3*X

During a simulation, the first time a Cost or Chance is accessed, it is assigned
randomly according to the range and skew. The assignment is cached so that all
subsequent accesses use the same randomly generated value. After each simulation,
the cache is cleared. After thousands of simulations, JANE can sample the “what-if”
behavior resulting from different assignments within the range and many different
rany choices.

Data from 2000 simulations was passed from the CMM2 model to TAR2. Each
simulation was classified into one of four classes:

• class=0: High cost, low chance;
• class=1: Low cost, low chance;
• class=2: High cost, high chance;
• class=3: Low cost, high chance.

That is, our preferred projects are cheap and highly likely while expensive, low
odds projects are to be avoided.

Figure 11 shows three sets of actions learned by TAR2. The right-hand-side
histogram shows the baseline distributions seen in the 2000 simulations. The other
histograms show how those ratios change after applying the treatments learned by
TAR2; The worth of each option is a reflection of the proportion of good and bad
projects, compared to the baseline, i.e. (worth(baseline) = 1). Note that as worth
increases, the proportion of preferred projects also increases.

Figure 12 shows the three best treatments (T1, T2, T3) found using this technique
(and Figure 11 compared the effects of these treatments to the untreated examples).
Note that the values of each attribute are reported using the tags no, lower, middle,
or upper. In treatment learning, continuous attribute ranges are divided into N-
discrete bands based on percentile positions. For N=3, we can name the bands
lower, middle, upper for the lower, middle, and upper 33% percentile bands.

In Figure 12, the treatments are advising to lower the cost of:

• Using requirements: This could be accomplished by (e.g.) sharing them around
the development team in some searchable hypertext format

• Performing formal reviews at milestones: This could be accomplished by (e.g.)
using ultra-lightweight formal methods such as proposed by Leveson [36].

• Performing good unit testing: This could be accomplished by (e.g.) hiring better
test engineers.

An interesting feature of Figure 12 is what is missing:

• None of the treatments proposed adjusting the Chances of any action. In this

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

24 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

T1: requirementsUsed.Cost=lower and
not periodicSoftware-Reviews and
formalReviewsAtMilestones.Cost=lower

T2: requirementsUsed.Cost=lower and
goodUnitTesting.Cost=middle and
formalReviewsAtMilestones.Cost=lower

T3: goodUnitTesting.Cost=lower and
periodicSoftwareReviews.Cost=middle and
formalReviewsAtMilestones.Cost=lower

Fig. 12. The three best treatments found in the CMM2 model.

study, changing Cost will suffice.
• Of the 27 actions listed in in Figure 10, only the four underlined actions appear

in the top three treatments. That is, management commitment to undertake 27-
4=23 of the actions is less useful than changing formalReviewsAtMilestones,
goodUnitTesting, periodicSoftwareReviews, and requirementsUsed

• The value not in T1 is a recommendation against periodicSoftwareReviews (plus
lowering the costs of using requirements and formal reviews at milestones).
Note that if periodicSoftwareReviews are conducted, T3 asserts that there is no
apparent need to reduce the cost of such reviews.

More generally, in a result consistent with the prior studies, despite the un-
certainties introduced by rany and the cost/chances ranges, TAR2 found a small
number of CMM2 process options that have a significant impact on the project.

Note that the conclusions of Figure 12 are not general to all software projects.
The Chances values used in this study came from some local domain knowledge
about the likelihood that process change A will effect process change B. The Cost

values were domain-specific as well. In other organizations, with different work prac-
tices and staff, those Chances and Cost values could be very different.

7. Conclusion

Understanding model configuration options means understanding how input choices
affect output scores. That understanding is complex for a certain class of hard mod-
els, i.e., those with high dimensionality models that are non-linear, non-continuous
and built in domains with much noise or other uncertainties, and where managers
have limited control over all model inputs.

Hard modeling problems may defeat standard methods. Visualization cannot
handle very large dimensionality. Analytical methods such as an eigenvector study
offer spurious results if the parameters of the variables are uncertain. Other stan-
dard automatic methods may be defeated by “cliffs” in non-linear models where
the association between inputs and outputs changes abruptly. Although it is true
that data mining methods can handle non-linear models and scale to very large di-
mensionality, these data mining techniques (neural nets, genetic algorithms, C4.5,

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 25

CART, etc.) often yield models that are incomprehensible to humans.
TAR2 is a special kind of data miner that produces very succinct output. It

assumes that within models there exists a small number of key variables that control
the rest. There is much evidence for this assumption. The mathematics of clumps
and collars promises that models naturally contain structures that greatly restrict
the space of possible model behaviors. TAR2 is a data miner designed to exploit such
collars and clumps. It is a minimal contrast set learner that returns a “treatment”;
i.e. a minimal, most influential set of deltas between different classes of outcomes.
The case studies in this paper demonstrate that a minimal list of the differences
between concepts can be much smaller than a detailed description of all aspects of
a concept. For models where TAR2 can generate succinct summaries, its algorithm
can significantly improved searched-based methods of data mining.

TAR2 addresses the hard modeling problems (discussed in §3) as follows:

• TAR2 offers minimal constraints on the input space and tracks the effects of
those constraints, while letting all the other variables vary randomly. Hence, its
proposed solutions are not brittle to changes outside the treatments.

• Since it only references a subset of the model inputs, it is a dimensionality
reduction tool. In this report, we offered examples where TAR2 reasoned over
100-variable inputs spaces. Elsewhere, we have run it on data sets with over
250 variables. In all cases seen to date, it reduces those spaces to a handful of
variables.

• Such small solutions are easier to explain and audit than solutions using all
model inputs.

• Further, when managers do not have the budget or authority to control all
model input variables, TAR2 can offer them a minimal set which they can use
to focus their resources.

• TAR2 has been applied to models with large amounts of noise. For example,
in a TAR2-style analysis, we often explore what happens to the solutions when
the variance on the model variables increases. Such studies return statements
of the form “the solutions offered by this analysis hold for variances up to the
following critical threshold values, after which we do not know how to control
this domain”.

Treatment learning is not indicated for low-dimensionality linear continuous
models built in domains that have no noise or other uncertainties, and where man-
agers have full control over all model inputs. Other reasons not to use our tools
include when where there is no need to explain or audit models, where reducing
model variance is not valuable, and when there exists budgets for building and
using maximal models.

As to further work, there is no reason to polarize the SE modeling field into
“traditional methods” versus “treatment learning”. Much could be achieved by
combining the two techniques. For example, many of the methods described in §3

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

26 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

suffered from the curse of dimensionality. TAR2 could be used as a fast dimensional-
ity reduction tool that could focus a data visualization environment or a sensitivity
analysis on the parts of the input space that are most crucial. Ideally, that focus-
ing need not wait till the simulation terminates. In incremental treatment learning,
TAR2 offers feedback during a simulation run into order the guide the simulator
into regions of interest. Before TAR2 can be deployed in that manner, it must be
optimized so that it can run fast enough to keep up with the simulator. Currently,
we are exploring stochastic methods for that optimization.

References

1. A.T. Acree. On Mutations. PhD thesis, School of Information and Computer Science,
Georgia Institute of Technology, 1980.

2. J. Aguilar-Ruiz, I. Ramos, J.C. Riquelme, and M. Toro. An evolutionary approach
to estimating software development projects. Information and Software Technology,
43(14):875–882, December 2001.

3. A. Avritzer, J.P. Ros, and E.J. Weyuker. Reliability of rule-based systems. IEEE
Software, pages 76–82, September 1996.

4. S.B. Bay and M.J. Pazzani. Detecting change in categorical data: Mining contrast sets.
In Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, 1999. Available from http://www.ics.uci.edu/ pazzani/Publications/stucco.pdf

.
5. J.M. Bieman and J.L. Schultz. An empirical evaluation (and specification) of the all-

du-paths testing criterion. Software Engineering Journal, 7(1):43–51, 1992.
6. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998. URL:

http://www.ics.uci.edu/ mlearn/MLRepository.html
.

7. D.S. Boning and P.K. Mozumder. Doe/opt: a system for design of experiments, re-
sponse surface modeling, and optimization using process and device simulation. IEEE
Transactions on Semiconductor Manufacturing, 7(2):233–244, May 1994.

8. T.A. Budd. Mutation analysis of programs test data. PhD thesis, Yale University,
1980.

9. T. Burkleaux, T. Menzies, and D. Owen. Lean = (lurch+tar3) = reusable model-
ing tools. In Proceedings of WITSE 2005, 2004. Available from
http://menzies.us/pdf/04lean.pdf

.
10. C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong. Mining association

rules with weighted items. In Proceedings of International Database Engineer-
ing and Applications Symposium (IDEAS 98), August 1998. Available from
http://www.cse.cuhk.edu.hk/ kdd/assoc rule/paper.pdf

.
11. Yuanfang Cai and Kevin J. Sullivan. Simon: modeling and analysis of design space

structures. In ASE ’05: Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pages 329–332, New York, NY, USA, 2005. ACM
Press.

12. A. Childs, J. Greenwald, G. Jung, M. Hoosier, and John Hatcliff. Calm and cadena:
Metamodeling for component-based product-line development. IEEE Computer, 39(2),
Feburary 2006. Avail-
able from http://projects.cis.ksu.edu/docman/view.php/7/129/CALM-Cadena-IEEE-

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 27

Computer-Feb-2006.pdf
.

13. J. Clarke, J.J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformulating software engi-
neering as a search problem. IEE Proceedings-Software, 150(3):161–175, 2003.

14. J. J. Dolado. A validation of the component-based method for software size estimation.
IEEE Transactions of Software Engineering, 26(10):1006–1021, 2000.

15. J. J. Dolado. On the problem of the software cost function. Information and Software
Technology, 43:61–72, 2001.

16. M.J. Druzdzel. Some properties of joint probability distributions. In Proceedings of
the Tenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-94), pages 187–194, 1994. Available from
http://www.pitt.edu/AFShome/d/r/druzdzel/public/html/abstracts/uai94.html

.
17. M. Fagan. Advances in software inspections. IEEE Trans. on Software Engineering,

pages 744–751, July 1986.
18. Martin Feather and Steve Cornfordi. Quantitative risk-based requirements reasoning.

Requirements Engineering Journal, 8(4):248–265, 2003.
19. M.S. Feather and T. Menzies. Converging on the optimal attainment of require-

ments. In IEEE Joint Conference On Requirements Engineering ICRE’02 and
RE’02, 9-13th September, University of Essen, Germany, 2002. Available from
http://menzies.us/pdf/02re02.pdf

.
20. B. Feldman, P. Compton, and G. Smythe. Hypothesis Testing: an Appropriate Task

for Knowledge-Based Systems. In 4th AAAI-Sponsored Knowledge Acquisition for
Knowledge-based Systems Workshop Banff, Canada, 1989.

21. B. Feldman, P. Compton, and G. Smythe. Towards Hypothesis Testing: Justin, Pro-
totype System Using Justification in Context. In Proceedings of the Joint Australian
Conference on Artificial Intelligence, AI ’89, pages 319–331, 1989.

22. R. E. Filman. Aspect-Oriented Software Development. Addison-Wesley, Boston,
2004.

23. M.S. Fisher and T. Menzies. Learning ivv strategies. In HICSS’06, 2006. Available
from http://menzies.us/pdf/06hicss.pdf

.
24. J. Gray, Y. Lin, and J. Zhang. Automating change evolution in model-driven engi-

neering. IEEE Computer, 39(2):51–58, February 2006.
25. M. Harman, R. Hierons, and M. Proctor. A new representation and crossover operator

for search-based optimization of software modularization. In GECO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1351–1358. Morgan
Kaufmann, July 2002.

26. M. Harman and B.F. Jones. Search-based software engineering. Journal of Informa-
tion and Software Technology, 43:833–839, December 2001.

27. M.J. Harrold, J.A. Jones, and G. Rothermel. Empirical studies of control dependence
graph size for c programs. Empirical Software Engineering, 3:203–211, 1998.

28. C.L. Heitmeyer. Software cost reduction. In John J. Marciniak, editor, Encyclope-
dia of Software Engineering, January 2002. Available from
http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.pdf

.
29. Gerhard J. Holzmann. Algorithms for automated protocal verification. ATT Technical

Journal, 69(2):32–44, 1990.

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

28 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

30. Y. Hu. Treatment learning: Implementation and application. Master’s thesis, Depart-
ment of Electrical Engineering, University of British Columbia, 2003. Masters Thesis.

31. Y. Ishida. Using global properties for qualitative reasoning: A qualitative system the-
ory. In Proceedings of IJCAI ’89, pages 1174–1179., 1989.

32. Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

33. B. Jones, D. Eyres, and H.-H. Sthamer. A strategy for using genetic algorithms to
automate branch and fault-based testing. Computer Journal, 41(2):98–107, 1998.

34. B. Jones, H.-H. Sthamer, and D. Eyres. Automatic structural tsting using genetic
algorithms. Software Engineering Journal, 11:299–306, 1996.

35. Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.

36. N. Leveson, S. Cha, and T. Shimall. Safety verification of ADA programs using soft-
ware fault trees. IEEE Software, 8(7):48–59, July 1991.

37. R. Levins and C.J. Puccia. Qualitative Modeling of Complex Systems: An Introduc-
tion to Loop Analysis and Time Averaging. Harvard University Press, Cambridge,
Mass., 1985.

38. R. Lutz. Evolving good hierarchical decomposition of complex systems. Journal of Sys-
tems Architecture, 47:613–634, 2001.

39. T. Menzies. 21st century AI: proud, not smug. IEEE Intelligent Systems, 2003. Avail-
able from http://menzies.us/pdf/03aipride.pdf

.
40. T. Menzies and Y. Hu. Reusing models for requirements engineering. In First Inter-

national Workshop on Model-based Requirements Engineering, 2001. Available from
http://menzies.us/pdf/01reusere.pdf

.
41. T. Menzies and Y. Hu. Just enough learning (of association rules): The

TAR2 treatment learner. In Artificial Intelligence Review, 2007. Available from
http://menzies.us/pdf/07tar2.pdf

.
42. T. Menzies and J.D. Kiper. Better reasoning about software engineering activities. In

ASE-2001, 2001. Available from http://menzies.us/pdf/01ase.pdf
.

43. T. Menzies, A. Mahidadia, and P. Compton. Using causality as a generic knowledge
representation, or why and how centralised knowledge servers can use causality. In
Proceedings of the 7th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop, 1992.

44. T. Menzies, D. Owen, and B. Cukic. You seem friendly, but can i trust
you? In Formal Aspects of Agent-Based Systems, 2002. Available from
http://menzies.us/pdf/02trust.pdf

.
45. T. Menzies and J. Richardson. Making sense of requirements, sooner. IEEE Com-

puter, October 2006. Available from http://menzies.us/pdf/06qrre.pdf
.

46. T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In
M. Madravio, editor, Soft Computing in Software Engineering. Springer-Verlag, 2003.
Available from http://menzies.us/pdf/03maybe.pdf

.
47. T. Menzies and E. Sinsel. Practical large scale what-if queries: Case studies

with software risk assessment. In Proceedings ASE 2000, 2000. Available from

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

Learning Control Policies for Software Projects 29

http://menzies.us/pdf/00ase.pdf
.

48. A. Miller. Subset Selection in Regression (second edition). Chapman & Hall, 2002.
49. G.A. Miller. The magical number seven, plus or minus two: Some limits on our capac-

ity for processing information. The Psychological Review, 63:81–97, 1956. Available
from http://www.well.com/ smalin/miller.html

.
50. G.J. Myers. A controlled experiment in program testing and code walk-

throughs/inspections. Communications of the ACM, 21:760–768, 9, September 1977.
51. D. Owen, B. Cukic, and T. Menzies. An alternative to model checking: Verification

by random search of and-or graphs representing finite-state models. In 7th IEEE In-
ternational Symposium on High Assurance Systems Engineering, volume 1, page 119,
2002.

52. D. Owen, T. Menzies, and B. Cukic. What makes finite-state models more (or less)
testable? In IEEE Conference on Automated Software Engineering (ASE ’02), 2002.
Available from http://menzies.us/pdf/02moretest.pdf

.
53. R.P. Pargas, M.J Harrold, and R. R. Peck. Test-data generation using genetic algo-

rithms. Journal of Software Testing, Verification and Reliability, 9:263–282, 1999.
54. M.C. Paulk, C.V. Weber, B. Curtis, and M.B. Chriss. The Capability Maturity

Model: Guidelines for Improving the Software Process. Addison-Wesley, 1995.
55. R. Pelanek. Typical structural

properties of state spaces. In Proceedings SPIN’04 Workshop, 2004. Available from
http://www.fi.muni.cz/ xpelanek/publications/state spaces.ps

.
56. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
57. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1992. ISBN:

1558602380.
58. D.M. Raffo. Modeling software processes quantitatively and assessing the impact of

potential process changes of process performance, May 1996. Ph.D. thesis, Manufac-
turing and Operations Systems.

59. L. Rela. Evolutionary computing in search-based software engineering. Master’s thesis,
Lappeenranta University of Technology, 2004.

60. P.S. Rosenbloom, J.E. Laird, and A. Newell. The SOAR Papers. The MIT Press,
1993.

61. A. Saltelli, K. Chan, and E.M. Scott. Sensitivity Analysis. Wiley, 2000.
62. A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal, 3(3):211–229, July 1959.
63. Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, Sept.-Oct. 2003.
64. H. A. Simon. Models of bounded rationality, volume 2. MIT Press, 1982.
65. G.A. Smythe. Brain-hypothalmus, Pituitary and the Endocrine Pancreas. The En-

docrine Pancreas, 1989.
66. N. Tracey, J. Clarke, and K. Mander. Automated program flaw finding using simulated

annealing. In International Symposium on Software Testing and Analysis, pages 73–
81. ACM/SIGSOFT, March 1998.

67. L.A. Treinish. A function-based data model for visualization, 1998. IBM Research
Center, Yorktown Heights, NY. Available from
http://www.research.ibm.com/people/l/lloydt/dm/function/dm fn.htm

.
68. Geoffrey I. Webb, Shane Butler, and Douglas Newlands. On detecting differences be-

April 16, 2009 13:47 WSPC/INSTRUCTION FILE one-v9

30 Menzies, Kiper, Greenwald, Hu, Raffo, Setamanit

tween groups. In KDD ’03: Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 256–265, New York, NY,
USA, 2003. ACM Press.

69. J. Whittle and P. Jayaraman. Generating hierarchical state machines from use case
charts. In IEEE International Conference on Requirements Engineering (RE2006),
2006.

70. W.E. Wong and A.P. Mathur. Reducing the cost of mutation testing: An empirical
study. The Journal of Systems and Software, 31(3):185–196, December 1995.

