
1

I. CASE STUDY: STUDYING THE CMM

Our first case studies explored reasoning over a symbolic
model containing much uncertainty. The second studied ex-
plored a numeric model where all the influences were precisely
specified. This third study takes a numeric model and adds a
large degree of uncertainty in the numerics.

This study uses a cost/benefits model of CMM level 2
CMM2 [1, p125-191]. We elected to study CMM2 since, in
our experience, many organizations can achieve at least this
level. CMM2 is less concerned with issues of (e.g.) which
design pattern to apply, than with what overall project structure
should be implemented. Improving CMM2-style decisions is
important since in early software life cycle, many CMM2-
style decisions effect the resource allocation for the rest of the
project.

CMM2 was encoded using the JANE propositional
rule-based language [2]. JANE’s rules take the form
GoalifSubGoals. Each SubGoal contributes some Cost and
Chances to the Goal. JANE’s Chances define the extent to
which a belief in one vertex can propagate to another. Costs
let an analyst model the common situation where some of the
Cost of some procedure is amortized by reusing its results
many times. Hence, the first time we use a proposition, we
incur its Cost but afterwards, that proposition is free of charge.

The Cost and Chances of a proposition are either provided
by the JANE programmer or computed at runtime via a
traversal of the rules:

• When searching X if not A, the Chances of X are 1-
Chances(A) and Cost(X) = Cost(A).

• When searching X if A and B and C, the Cost and
Chances of X is the product of the cost and chances
of A,B,C.

• When searching X if A or B or C, then the Cost and
Chances of X is taken from the first member of A,B,C
that is satisfied.

These and, or, not operators can be insufficient to capture
the decision making of business users. For examples, in our
experience, business users select CMM-2 options, often in a
somewhat arbitrary manner. To model this, JANE includes a
rany operator:

• The rany operator is like or except that (e.g.) X if
A rany B rany C succeeds if some random number
of A,B,C (greater than one) succeeds. Unlike and, or
which explore their operands in a left-to-right order, rany
explores its SubGoals is a random order. If at least one
succeeds, then the Cost and Chances of X is summed
from the satisfied members of A,B,C.

Rany is useful when searching for subsets that contribute to
some conclusion. For example, the JANE rule in Figure 1
offers several essential features of stableRequirements plus
several optional factors relating to monitoring change in evolv-
ing projects. The essential features are and-ed together while
the optional factors are rany-ed together.

Figure 1 shows 11 propositions. Our model of CMM2,
written in JANE, has 55 proposition (range = {t, f}) and
is available from the authors. Of those 55 propositions, 27

stableRequirements
if effectiveReviews
and requirementsUsed
and sEteamParticipatesInPlanning
and documentedRequirements
and sQAactivities
and (reviewRequirementChanges

rany softwareConfigurationManagement
rany baselineChangesControlled
rany workProductsIdentified
rany softwareTracking

).

Fig. 1. Part of CMM-2, encoded in the JANE language.

were identified as management actions that could be changed
by managers (see Figure 2).

Apart from rany, JANE supports one other mechanisms
for exploring the space of possibilities within CMM-2. When
defining Costs and Chances, the programmer can supply a
range and a skew. For example:

goodUnitTesting and cost = 1 to +5

defines the cost of goodUnitTesting as being somewhere in
the range 1 to 5, with the mean skewed slightly towards 5
(denoted by the “+”).

Similarly, while all the Chances values were based on
expert judgment, their precise value is subjective. Hence, each
such Chances value X was altered to be a range

chances = 0.7*X to 1.3*X

During a simulation, the first time a Cost or Chance is
accessed, it is assigned randomly according to the range and
skew. The assignment is cached so that all subsequent accesses
use the same randomly generated value. After each simulation,
the cache is cleared. After thousands of simulations, JANE
can sample the “what-if” behavior resulting from different
assignments within the range and many different rany choices.

Data from 2000 simulations was passed from the CMM-2
model to TAR2. Each simulation was classified into one of
four classes:
Score=0: High cost, low chance
Score=1: Low cost, low chance
Score=2: High cost, high chance

baselineAudits,
baselineChangesControlled,

changeRequestsHandled,
changesCommunicated,
configurationItemStatus-

Recorded,
deviationsDocumented, docu-

mentedDevelopmentPlan,
documentedProjectPlan,

earlyPlanning,
formalReviewsAtMilestones,

goodUnitTesting,
identifiedWorkProducts,
periodicSoftwareReviews

planRevised,
requirementsReview,
requirementsUsed,

reviewRequirementChanges,
risksTracked, SCMplan,

SCMplanUsed,
SElifeCycleDefined, SEteam-

ParticipatesInPlanning,
SEteamParticipatesOnPro-
posal, SQAauditsProducts,
SQAplan, SQAplanUsed,

SQAreviewActivities,
workProductsIdentified

Fig. 2. Management actions in the CMM2 model. SQA= software quality
assurance and SCM= software configuration management)



2

0
10
20
30
40
50
60
70

14 22 30 24
0

10
20
30
40
50
60
70

5 16 5 74
0

10
20
30
40
50
60
70

7 13 19 60
0

10
20
30
40
50
60
70

5 14 26 55
baseline ∆1 ∆2 ∆3

current worth=1 worth=1.44 worth=1.31 worth=1.28

KEY:
Top-to-bottom = least
desirable to most desirable.

= high cost, low chances;
i.e. a very bad software
project

= low cost, low chances

= high cost, high chances

= low cost, high chances;
i.e. a good software
project

Fig. 3. Ratios of different software project types seen in four situations.

∆1: requirementsUsed.Cost=lower and not periodicSoftware-
Reviews and formalReviewsAtMilestones.Cost=lower

∆2: requirementsUsed.Cost=lower and
goodUnitTesting.Cost=middle and
formalReviewsAtMilestones.Cost=lower

∆3: goodUnitTesting.Cost=lower and
periodicSoftwareReviews.Cost=middle and
formalReviewsAtMilestones.Cost=lower

Fig. 4. The three best treatments found in the CMM-2 model.

Score=4: Low cost, high chance.
That is, our preferred projects are cheap and highly likely

while expensive, low odds projects are to be avoided.
Figure 3 shows three sets of actions learned by TAR2.

The left-hand-side histogram shows the baseline distributions
seen in the 2000 simulations. The other histograms show
how those ratios change after applying the treatments learned
by TAR2; The worth of each option is a reflection of the
proportion of good and bad projects, compared to the baseline,
i.e. (worth(baseline) = 1). Note that as worth increases, the
proportion of preferred projects also increases.

Figure 4 shows the three best treatments (∆1,∆2,∆3) found
using this technique (and Figure 3 compared the effects of
these treatments to the untreated examples). Note that the
values of each attribute are reported using the tags no, lower,
middle, or upper. In treatment learning, continuous attribute
ranges are divided into N-discrete bands based on percentile
positions. For N=3, we can name the bands lower, middle,
upper for the lower, middle, and upper 33% percentile bands.

In Figure 4, the treatments are advising to lower the cost
of:

• Using requirements: This could be accomplished by (e.g.)
by sharing them around the development team in some
searchable hypertext format

• Performing formal reviews at milestones: This could be
accomplished by (e.g.) using ultra-lightweight formal
methods such as proposed by Leveson [3].

• Performing good unit testing: This could be accomplished
by (e.g.) hiring better test engineers.

An interesting feature of Figure 4 is what is missing:
• None of the treatments proposed adjusting the Chances

of any action. In this study, changing Cost will suffice.
• Of the 27 actions listed in in Figure 2, only the

four underlined actions appear in the top three treat-

ments. That is, management commitment to undertake
27-4=23 of the actions is less useful than changing
on formalReviewsAtMilestones, goodUnitTesting,
periodicSoftwareReviews, and requirementsUsed

• The value not in ∆1 is a recommendation against pe-
riodicSoftwareReviews (plus lowering the costs of using
requirements and formal reviews at milestones). Note that
if periodicSoftwareReviews are conducted, ∆3 is saying
that there is no apparent need to reduce the cost of such
reviews.

More generally, in a result consistent with the prior stud-
ies, despite the uncertainties introduced by rany and the
cost/chances ranges, TAR2 found a small number of CMM-2
process options that have a significant impact on the project.

XXX jim- some phrase about external validity. only good
for the numbers we used in this study. blah blah blah

REFERENCES

[1] M. Paulk, C. Weber, B. Curtis, and M. Chriss, The Capability Maturity
Model: Guidelines for Improving the Software Process. Addison-Wesley,
1995.

[2] T. Menzies and J. Kiper, “Better reasoning about software engineering
activities,” in ASE-2001, 2001, available from http://menzies.us/pdf/01ase.
pdf.

[3] N. Leveson, S. Cha, and T. Shimall, “Safety verification of ADA programs
using software fault trees,” IEEE Software, vol. 8, no. 7, pp. 48–59, July
1991.


