
1

A Data Miner for Searching Model-Based Software
Tim Menzies, Member, IEEE, , James Kiper, Member, IEEE, Jeremy Greenwald, Ying Hu,

David Raffo, Member, IEEE, and Siri-on Setamanit

Abstract— Models in software engineering allow developers to
explore trade spaces more effectively. Building a useful model
can be intellectually difficult. Hence, we propose a combination
of human and artificial intelligence where humans proposes a
set of possible influences, then a special kind of machine learner
(a minimal contrast set learner selects the subset of the model.
We show theoretically and empirically that our TAR2 minimal
contrast set learner can generate very succinct conclusions from
seemingly complex spaces.

Index Terms— model-driven software engineering, contrast set
learning, treatment learning

I. INTRODUCTION

SOFTWARE engineering is modeling [1]. Software engi-
neers build models at every phase of the life cycle. Some

are paper-based and some are executable but all these artifacts
are models which Mellor [2] defines to be “elements describing
something (for example, a system, bank, phone, or train) built
for some purpose that is amenable to a particular form of
analysis, such as communication of ideas between people and
machines; completeness checking; test case generation; etc.”

The current ubiquity of the term model-driven software
engineering is both a recognition that modeling has long been
a central activity in software development, and an appreciation
of the reality that we are not using these models as effectively
as we may hope. We therefore endorse the thesis that mod-
els are currently used throughout the software development
process – from requirements and design to testing and per-
formance evaluation – and that the use of such models will
only increase. We also recognize that, even with tool support,
creation of practical and functional models is a resource-
intensive activity, especially in terms of human intelligence.
Effective use of models requires that they be allowed to evolve
through the software development process. Other researchers

Dr. Menzies is with the Lane Department of Computer Science, West
Virginia University and can be reached at tim@menzies.us

Dr. Kiper is with the Computer Science and Systems Analysis Department,
School of Engineering & Applied Science, Miami University, and can be
reached at kiperjd@muohio.edu

Mr. Greenwald is with Computer Science, Portland State University and
can be reached at jegreen@cecs.pdx.edu

Ms. Hu is a software designer in Vancouver, British Columbia and can be
reached at huying_ca.@yahoo.com

Dr. Raffo is a Associate Professor in the School of Business Administration,
Portland State University, and can be reached at raffod@sba.pdx.edu

Ms. Setamanit is a graduate student at Portland State University and can
be reached at sirion@pdx.edu

The research described in this paper was carried out at Miami University,
West Virginia University and Portland State University under contracts and
sub-contracts with NASA’s Software Assurance Research Program. Reference
herein to any specific commercial product, process, or service by trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement by
the United States Government.

Manuscript received January 1, 2007. Download an earlier draft from
http://menzies.us/pdf/07exploit.pdf

have recognized that “designers must be able to examine
various design alternatives quickly and easily among myriad
and diverse configuration possibilities” [3].

The number of configuration possibilities within a model
can be dauntingly large. A model with 20 binary choices
has 220 > 1, 000, 000 possible configurations, far beyond
the capability of human comprehension. Since 2000 we have
explored sampling those configurations at random, running the
resulting model, scoring the output with some oracle, then
using data mining to find the configuration options that most
improve model output [4], [4]–[18]. This paper synthesizes
that prior work and presents new case studies. We have found
that standard data miners may be inadequate for exploring
model configuration possibilities. Standard data miners often
yield results that still are incomprehensible to humans:

• Neural nets never generate a succinct generalization of
their knowledge [19];

• The random search of genetic algorithms can produce
models that are too complex to understand [20];

• Most decision/regression tree learners such as C4.5 [21]
or CART [22] execute in local top-down search, with no
memory between different branches. The same concept
can hence be needlessly repeated many times within
the tree. Consequently, such trees can be cumbersome,
needlessly large, and difficult to understand.

Our premise is that the detailed, complex and arcane output
generated by standard data miners is often superfluous. Firstly,
many human experts can not (or will not) read complex the-
ories learned by a data miner. Secondly, numerous empirical
and theoretical results argue that, in the usual case, models are
controlled by a handful of of key variables. If data miners are
restricted to just returning models containing those keys, then
the learned model will be very small indeed.

Hence, we propose a different kind of data miner to assist
analysts in exploring the configuration possibilities within
their models. Traditional machine learners like C4.5 generate
classifiers that assign a class symbol to an example. Our
preferred method, called treatment learning just generates the
differences in the key variables between different outcomes.

The rest of this paper is structured as follows. The twin
topics of model-based SE and search-based SE are introduced.
Evidence is then presented that, often, the key variables that
control a model are few in number. This will motivate the
design of the TAR2 treatment learner. Case studies will then
be presented showing that, in many domains, TAR2 finds a
small number of controlling variables. The conclusion will
be that understanding the configuration possibilities within
model-based SE can be dramatically simplified via treatment
learning.

David Raffo
Note
Will software engineers know what the words "Trade Spaces" means?

David Raffo
Highlight

David Raffo
Note
An interesting interpretation I have not considered before

David Raffo
Highlight

David Raffo
Note
Doesn't model based Software Engineering (and we should spell out SE here), refer to the wide range of models that can be built about requirements, design, and software artefacts? In this paper, we give examples of process models, but doesn't this term refer to a very broad class of models and applications of those models? Are we claiming that TAR2 treatment learner is good with all of them?

2

II. MODELING AND SEARCH

Anthropologists argue that the ability to build abstract
models is the what gives homo sapiens their competitive edge.
In his article “What Models Mean” [23], Seidewitz describes
the interactions and relationships among the concepts of a
model, model correctness, model interpretation, a theory that
allows us to deduce new statements for the model, a modeling
language, and a model interpretation. He asserts that “a
model’s meaning has two aspects: the model’s relationship to
what’s being modeled and to other models derivable from it.
Carefully considering both aspects can help us to understand
how to use models to reason about the systems we build ...”
These are the aspects of a model’s meaning on which we focus
in model-based software engineering.

Model-based software engineering (SE) is becoming in-
creasingly important. Sendall and Kozacaynski argue that
increasing productivity and reduced time-to-market for soft-
ware products can accrue when “using concepts closer to the
problem domain ...” via modeling [24]. Hailpern and Tarr
observe that model-driven development “imposes structure and
common vocabularies so that artifacts are useful for their main
purpose in their particular stage in the life cycle.” [25]

The utility of model-based SE is widely acknowledged. For
example, the Object Management Group (OMG) has recently
adopted a model-driven architecture framework with goals of
“portability, interoperability and reusability through architec-
tural separation of concerns.” [26] Also, Microsoft has been
developing a Software Factory concept that leverages models
with the goal of automation of the software development pro-
cess [27]. And, at Lockheed Martin, engineers have developed
an integrated modeling method called Model Centric Software
Development that uses “automated generation of partial im-
plementation artifacts,” reverse engineering to integrate legacy
assets, and model verification and checking [28]

The importance of models and the model-driven approach
is not limited to software design and UML. Many tools exist
for modeling such as distributed agent-based simulations [29],
discrete-event simulation [30]–[32], continuous simulation
(also called system dynamics) [33], [34], state-based simula-
tion (which includes petri net and data flow approaches) [35]–
[37], logic-based and qualitative-based methods [38, chapter
20] [39], and rule-based simulations [40]. One can find models
used in the requirements phase (see the DDP method and
tool [41] which are a risk-based approach and visual tool
to support requirements engineering), refactoring of designs
using patterns [42], software integration [43], model-based
security [44], and performance assessment [45].

Model are useful since humans can review/audit/improve an
explicit representation of their systems. But as models grow
in complexity, it becomes difficult for a manual analysis to
reveal all their subtleties. Hence, many researchers propose
support environments to help explore the increasingly complex
models that engineers are developing. Gray, at al, [3] have de-
veloped the Constraint-Specification Aspect Weaver (C-Saw)
that uses aspect-oriented approaches [46] to help engineers
in the process of model transformation. Cai and Sullivan [47]
describe a formal method and tool called Simon that “supports

interactive construction of formal models, derives and displays
design structure matrices ... and supports simple design impact
analysis.” Other tools of note are lightweight formal methods
such as ALLOY [48] and SCR [49] as well as various UML
tools that allow for the execution of life cycle specifications
(e.g. the CADENA scenario editor [50]).

Recently, AI has been successful applied to model-based
SE. For example, Whittle uses deductive learners to gen-
erate lower-level UML designs (state charts) from higher-
level constructs (use case diagrams) [51]. More generally,
the field of search-based SE augments model-based SE with
meta-heuristic techniques, like genetic algorithms, simulated
annealing, etc., to explore a model. Such heuristic methods are
hardly complete but, as Clarke et.al. [52] remark: “...software
engineers face problems which consist, not in finding the
solution, but rather, in engineering an acceptable or near
optimal solution from a large number of alternatives.” [52].

Search-based SE is most often used to optimizing software
testing [53]–[56] but it has has application in numerous other
areas. With Feather, we have used search-based SE for require-
ments analysis [41]. Other researchers [57], [58] use genetic
algorithms to examine ways of modularizing software [52] or
developing effort estimators [59]–[61]. In all, Rela [62] lists
123 publications were search-based methods have been applied
to the above applications as well as automatic synthesis of
software detect predictors; assisting in component design; de-
veloping multiprocessor schedules; re-engineering old systems
into better one; and searching for compiler optimizations.

To use a search-based approach, software engineers have to
reformulate their problem by:
• Finding a representation of the problem that can be

symbolically manipulated (e.g. simulated or mutated).
Such representations always exist with model-based SE.

• Defining a fitness function; i.e. an “oracle” that scores
a model configuration. Current model-based SE methods
rarely offer such a function (exception: formal methods
that generate temporal constraints). In our experience,
generating such a fitness function is usually possible,
albeit after days of work with the domain experts [63].

• Determining an appropriate set of manipulation operators
to select future searches based on the prior searches [64].

Data mining is one way to implement automatic manipu-
lation operators. A data miner searches through the space of
possible concepts for a combination of concepts that describes
some target theory [65]. Given, say, the output from a Monte
Carlo simulation of a model, a 21st century data miner can
sift through gigabytes of data looking for the core concepts
that most select for preferred output.

III. COLLARS AND CLUMPS

This research assumes that many models can be controlled
by a small number of key variables which we call collars.
Collars restrict the behavior of a model such that their state
space clumps; i.e. only small number of states are used at
runtime. If so, then the output of data miner could be simplified
to just constrain the collar variables that switch the system
between a few clumps. Such brevity is useful since:

David Raffo
Highlight

David Raffo
Note
This sentence seems difficult to parse and understand what you are referring to.

David Raffo
Note
Here's a couple of DES references. Please add one.Raffo, "Software project management using PROMPT: A hybrid metrics, modeling and utility framework", journal of Information, Software and Technology, Elsevier, Vol 47, No 15, Dec 2005, pp Pages 1009-1017.Raffo and Menzies, “Evaluating the Impact of a New Technology Using Simulation: The Case for Mining Software Repositories” , Proceedings of the 6th International Workshop on Software Process Simulation Modeling (ProSim’05), Held in St. Louis, Missouri, May 14 and 15, 2005

David Raffo
Note
hybrid simulation (a combination of DES and SD)Setamanit, Wakeland and Raffo, “Using Simulation to Evaluate Global Software Development Task Allocation Strategies”, Special Issue on Software Process (4% acceptance rate), Software Process: Improvement and Practice, (Forthcoming)Martin, R.H. and D. M, Raffo, “Application of a Hybrid Process Simulation Model to a Software Development Project”, Journal of Systems and Software, Volume 59, Number 3, December 2001Donzelli and Iazeolla, Hybrid Simulation Modelling of the Software Process”, Journal of Systems and Software, Volume 59, Number 3, December 2001

David Raffo
Cross-Out

David Raffo
Replacement Text
e

David Raffo
Inserted Text
ly

David Raffo
Cross-Out

David Raffo
Replacement Text
e

David Raffo
Cross-Out

David Raffo
Replacement Text
f

David Raffo
Inserted Text
s

David Raffo
Note
Questions: Are you saying that in order to use the various types of search based approaches or learners, a simulation model needs to be built first? Are you also saying that the oracle function (I guess in the domain I work in, it is called a utility function or objective function), is also required?

3

• Smaller models are easier to explain (or audit).
• Large models often contain irrelevant or redundant de-

tails, which search-based methods can learn to ignore.
• Miller shows that models generally contain fewer vari-

ables have less variance in their outputs [66].
• The smaller the model, the fewer are the demands on

interfaces (sensors and actuators) to the external environ-
ment. Hence, systems designed around small models are
easier to use (less to do) and cheaper to build.

To visualize collars, imagine an execution trace spreading
out across a program. Initially, the trace is very small and
includes only the inputs. Later, the trace spreads wider as
upstream variables effect more of the downstream variables
(and the inputs are the most upstream variables of all). At
some time after the appearance of the inputs, the variables hold
a set of values. Some of these values were derived from the
inputs while others may be default settings that, as yet, have
not been effected by the inputs. The union of those values at
time t is called the state st of the program at that time.

Multiple execution traces are generated when the program
is run multiple times with different inputs. These traces reach
different branches of the program. Those branches are selected
by tests on conditionals at the root of each branch. The
controllers of a program are the variables that have different
settings at the roots of different branches in different traces.
Programs have collars when a handful of the controllers in
an early state st control the settings of the majority of the
variables seen in later states .

A related effect to collars is clumping. If a program has v
variables with range r, then the maximum number of states is
rv . Programs clump when most of those states are never used
at runtime; i.e. |used|/ (rv) ≈ 0. Clumps can cause collars:

• The size of used is the cardinality cross product of the
ranges seen in the controllers.

• If that cardinality is large, many states will be generated
and programs won’t clump.

• But if that cross product is small, then the deltas between
the states will be small – in which case controlling a small
number of collar variables would suffice for selecting
what states are reached at runtime.

There is much theoretical and empirical evidence for ex-
pecting that models often contain collars and clumps.

A. Theoretical Evidence

With Singh [14], we have showed that collars are an ex-
pected property of Monte Carlo simulations where the output
has been discretized into a small number of output classes.
After such a discretization, many of the inputs would reach
the same goal state, albeit by different routes. The following
diagram shows two possible distinct execution paths within
a Monte Carlo simulation both leading to the same goal; i.e.
a→ goal or b→ goal.

a1−→M1
a2−→M2

. . .
am−→Mm

 c−→ goali
d←−

N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Each of the terms in lower case in the above diagram represent
a probability of some event; i.e. 0 ≤ {ai, bi, c, d, goal} ≤ 1.
For the two pathways to reach the goal, they must satisfy the
collar M or the larger collar N (each collar is a conjunction).
As the size of N grows, the product

∏N
j=1 bj decreases and

it becomes less likely that a random Monte Carlo simulation
will take steps of the larger collar N .

The magnitude of this effect is quite remarkable. Under
a variety of conditions, the narrower collar is thousands to
millions of times more likely. For example, when |M | = 2
and N > M , the condition for selecting the larger collar is
d
c ≥ 64; i.e. the larger collar N will be used only when the
d pathway is dozens of times more likely than c. The effect
is more pronounced as |M | grows; at |M | = 3 and N > M ,
the condition is d

c ≥ 1728; i.e. to select the larger collar N ,
the d pathway must be thousands of times more likely than c
(for more details, see [14]).

That is, when the output space is discretized into a small
number of outputs, and there are multiple ways to get to the
same output, then a randomized simulation (e.g. a Monte Carlo
simulation) will naturally select for small collars. This means,
in turn, that a minimal summary of the variables that control
what outputs are selected will be very small.

As to clumping, Druzdel [67] observed this effect in a
medical monitoring system. The system had 525,312 possible
internal states. However, at runtime, very few were ever
reached. In fact, the system remained in one state 52% of
the time, and a mere 49 states were used, 91% percent of
the time. Druzdel showed mathematically that there is nothing
unusual about his application. If a model has n variables, each
with its own assignment probability distribution of pi, then
the probability that the model will fall into a particular state
is p = p1p2p3...pn =

∏n
i=1 pi. By taking logs of both sides,

this equation becomes

ln p = ln
n∏

i=1

pi =
n∑

i=1

ln pi (1)

The asymptotic behavior of such a sum of random variables
is addressed by the central limit theorem. In the case where
we know very little about a model, pi is uniform and many
states are possible. However, the more we know about the
model, the less likely it is that the distributions are uniform.
Given enough variance in the individual priors and conditional
probabilities or pi, the expected case is that the frequency with
which we reach states will exhibit a log-normal distribution;
i.e. a small fraction of states can be expected to cover a large
portion of the total probability space; and the remaining states
have practically negligible probability.

David Raffo
Note
This seems like a critical concept for the paper. Would it be worth a small more concrete example of how this works?

4

The assertion that many types of models display this
clumping behavior is quite important for the style of data
mining (treatment learning) that we advocate. In application
to a clumping model with collars, Monte Carlo simulation,
followed by TAR2, suffices to summarize that model in an
effective way:
• TAR2’s rules never need to be bigger than the collars.

Hence, if the collars are small, TAR2’s rules can also be
small.

• If a model clumps, then, very quickly, a Monte Carlo
simulation would sample most of the reachable states.
TAR2’s summarization of that simulation would then
include most of the important details of a model.

B. Empirical Evidence

Empirical evidence for clumps first appeared in the 1950s.
Writing in 1959, Samuel studied machine learning for the
game of checkers [68]. At the heart of his program was a
32-term polynomial scoring how board configurations; e.g.
king center control means that a king occupies one of the
center positions. The program learns weights for these variable
coefficients. After 42 games, the program had learned that 12
variable were important, although only 5 of these were of any
real significance.

Decades later, we can assert that deleting irrelevant variable
has proven to be a useful strategy in many domains. For
example, Kohavi and John report experiments on 8 real world
datasets where on average, 81% of the non-collar variables
can be ignored without degrading the performance of a model
automatically learned from the data [69].

If models contain collars, or if the internal state space
clumps, then much of the reachable parts of a program can
be reached very quickly. This early coverage effect has been
observed many times. In a telecommunications application,
Avritzer, Ros, & Weyuker found that a sample of 6% of all
inputs to this system covered 99% of all inputs seen in about
one year of operation (and a sample of just over 12% covered
99.9%) [70]. Further evidence for early coverage can be found
in the mutation testing literature. In mutation testing, some
part of a program is replaced with a syntactically valid, but
randomly selected, variant (e.g. switching “less than” signs to
“greater than”). This method of testing is useful for getting an
estimate of what percentage of errors have been discovered
by testing. Wong compared results using X% of a library of
mutators, randomly selected (X ∈{10,15,. . . 40,100}). Most of
what could be learned from the program could be learned
using only X=10% of the mutators; i.e. after a very small
number of mutators, new mutators acted in the same manner
as previously used mutators [71]. The same observation has
been made elsewhere by Budd [72] and Acree [73].

If the space of possible execution pathways within a pro-
gram are limited, then program execution would be observed
to clump since it could only ever repeat a few simple patterns.
Empirically such limitations have been observed in procedural
and declarative systems. Bieman and Schultz [74] report that
10 or fewer paths through programs explored 83% of the
du-pathways (a du-path is a set of statements in a computer

program from a definition to a use of a variable. This is one
common form of structural coverage testing.) Harrold [75]
studied the control graphs of 4000 Fortran routines and 3147
C functions. Potentially, the size of a control graph may grow
as the square of the number of statements (in the case where
every statement was linked to every other statement.) This
research found that, in these case studies, the size of the control
graph is a linear function of the number of statements. In an
analogous result, Pelánek reviewed the structures of dozens
of formal models and concluded that the internal structure
of those models was remarkably simple: “state spaces are
usually sparse, without hubs, with one large SCC [strongly
connected component], with small diameter 1 and small SCC
quotient”2 [76]. This sparseness of state spaces was observed
previously by Holtzmann where he estimate the average degree
of a vertex in a state space to be 2 [77].

Pelánek hypotheses that these “observed properties of state
spaces are not the result of the way state spaces are generated
nor of some features of specification languages but rather of
the way humans design/model systems” [76]. Pelánek does
not expand on this, but we assert that generally SE models
are simple enough to be controlled by treatment learning
since they were written by humans with limited short-term
memories [78] who have difficulty designing overly-complex
models.

IV. DATA MINING WITH COLLARS AND CLUMPS

The TAR2 treatment learner [79] is a data miner that
is specialized for generating models containing only collar
variables. TAR2 finds the difference between classes. For-
mally, the algorithm is a contrast set learner [80], [81] that
uses weighted classes [82] to steer the inference towards the
preferred behavior. We call TAR2’s output “treatments” since
the minimal rules generated by the algorithm are similar to
medical treatment policies that try to achieve the most benefit,
with the least intervention.

The core intuition of TAR2 is that it is unnecessary to search
for the collars– they will reveal themselves after some limited
random sampling. To see that, recall that collar variables
control the settings in the rest of the system. Any execution
trace that reaches a goal must pass through the collars (by
definition). Therefore, to find the collars, all an algorithm
needs to do is find the attribute ranges with very different
frequencies in traces that reach different goals.

Detecting collars via this sampling method is very simple
to implement. Consider a log of golf playing behavior shown
in Figure 1. This log contains four attributes (outlook, tem-
perature, humidity, wind) and 3 classes (none, some, lots)
that convey the amount of golf played. We recommend an
exponential scoring system for the classes, starting at two3.

1The diameter of a graph (of a state space here) is the number of edges on
the largest shortest path between any two vertices.

2SCC quotient is a measure of the complexity of a graph.
3If the weights run, say, {bad=0,ok=1,good=2} then the difference from bad

to ok scores the same as ok to good.. An exponentially weighting scheme,
starting at two, finds greater and greater rewards moving to better classes. For
further details, see [8].

David Raffo
Cross-Out

David Raffo
Replacement Text
that scored different

David Raffo
Cross-Out

David Raffo
Replacement Text
(

David Raffo
Inserted Text
)

David Raffo
Inserted Text
s

5

outlook temp(oF) humidity windy? class weight
sunny 85 86 false none 2
sunny 80 90 true none 2
sunny 72 95 false none 2

rain 65 70 true none 2
rain 71 96 true none 2
rain 70 96 false some 4
rain 68 80 false some 4
rain 75 80 false some 4

sunny 69 70 false lots 8
sunny 75 70 true lots 8

overcast 83 88 false lots 8
overcast 64 65 true lots 8
overcast 72 90 true lots 8
overcast 81 75 false lots 8

Fig. 1. A log of some golf-playing behavior.

For example, our golfer could weight the classes in Figure 1
as none=2 (worst), some=4, lots=8 (best).

TAR2 seeks attribute ranges that are frequently in the highly
weighted classes and rare in the lower weighted classes. Let
a.r be some attribute range e.g. outlook.overcast means that
the outlook is for overcast skies. ∆a.r is a heuristic measure
of the worth of a.r to improve the frequency of the best class.
∆a.r uses the following definitions:

X(a.r): is the number of occurrences of that attribute range
in class X; e.g. in this data lots(outlook.sunny)=2
since there are 2 cases with outlook = sunny and
class = lots.

all(a.r): is the total number of occurrences of that attribute
range in all classes; e.g. all(outlook.sunny)=5.

best: the highest scoring class; e.g. best = lots;
rest: the non-best class; e.g. rest = {none, some};
weight: The weight of a class X is symbolized by $X;.

(Thus, $best = 8.)
∆a.r is calculated as follows:

∆a.r =

P
X∈rest($best − $X) ∗ (best(a.r)− X(a.r))

all(a.r)

When a.r is outlook.overcast, then ∆outlook.overcast is calcu-
lated as follows:

lots→none︷ ︸︸ ︷
((8− 2) ∗ (4− 0))+

lots→some︷ ︸︸ ︷
((8− 4) ∗ (4− 0))

4 + 0 + 0
=

40
4

= 10

To build a treatment, TAR2 explores combinations of at-
tribute ranges up to some user-specified maximum size s
(where the size s is the number of attribute ranges in a
conjunction of attributes). Given n attributes, the size of this
search is n!

s!(n−s)! . To make this search feasible, TAR2 must
keep s small. Therefore, TAR2 first assesses each attribute
range, in isolation. A preliminary pass builds one singleton
treatment for each attribute range. The attribute ranges are
then scored by the ∆ of these singleton treatments. Treatment
generation is constrained to just the attribute ranges with a
score greater than a user-supplied threshold (default value= 1;
maximum useful value yet found= 7).

To apply a treatment, TAR2 rejects all example en-
tries that contradict the conjunction of the attribute

no change outlook =
overcast

0
2
4
6

5 3 6
0
2
4
6

0 0 4

= none (worst)

= some

= lots (best)

Fig. 2. Finding treatments that can improve golf playing behavior. With no
treatments, we only play lots of golf in 6

5+3+6
= 57% of cases. However,

assuming outlook=overcast, we play golf lots of times in 100% of cases.

ranges in the treatment. E.g., if the treatment was
humidity ≥ 85 ∧ windy = true, then 11 of the lines of Fig-
ure 1 would be rejected. The ratio of classes in the remaining
examples is compared to the ratio of classes in the original
example set (in the humidity and wind treatment just given,
this ratio would be 3/14). The best treatment is the one that
most increases the relative percentage of preferred classes. In
our golf example, a single best treatment was generated con-
taining outlook=overcast. Figure 2 shows the class distribution
before and after that treatment. That is, if we select a vacation
location with overcast weather, then we should be playing lots
of golf, all the time.

In practice, despite the n!
s!(n−s)! search, TAR2 scales well.

Figure 3 shows TAR2’s runtime on 11 data sets with varying
numbers of rows and columns. Running on a relatively slow
machine (a 333 MHz Windows machine with 512MB of ram),
TAR2 terminated in tens of seconds, even on data sets with
up to 250,000 rows, each with nearly 100 attributes.

V. CASE STUDIES

In theory, we expect that many models contain collars and
clumps. If so, tools like TAR2 should be able to find tiny
treatments that control the behavior of the models. This section
tests that theory on several case studies.

A. Inspection Policies

The first case study contrasts treatment learning with tradi-
tional learners. It will be seen that treatment are dramatically

columns

domain # rows #
nu

m
er

ic

#
di

sc
re

te

#class time(sec)
iris 150 4 0 3 < 1
wine 178 13 0 3 < 1
car 1,728 0 6 4 < 1
autompg 398 6 1 4 1
housing 506 13 0 4 1
pageblocks 5,473 10 0 5 2
cocomo 30,000 0 23 4 2
reacheness 25,000 4 9 4 3
circuit 35,228 0 18 10 4
reacheness2 250,000 4 9 4 23
pilot 30,000 0 99 9 86

Fig. 3. Runtimes for TAR2 on different domains. First 6 data sets come
from the UC Irvine machine learning data repository [83]; “cocomo” comes
from a COCOMO software cost estimation model [4]; “pilot” comes from the
NASA Jet Propulsion Laboratory [6].

6

projects
approved

functional
specification

high-level
design

FS inspection

low-level
design

HLD
inspection

code
dev

LLD
inspection

code
inspection

unit
test

development
complete

functional
test

unit test
complete

system
test

field
 support and
maintenance

release to
customers

Fig. 4. High-level block diagram of a discrete event model of one company’s
software process.

smaller, and more understandable, than the model learned by
standard data miners.

Figure 4 offers a high-level view of a quantitative software
process model [84]. At each phase of that process, inspections
are conducted of the functional specification (FS), high-level
design (HLD), low-level design (LLD), and the code (CODE).
Raffo modeled these phases, and the inspections using a
StatemateTM state-based simulation model and an ExtendTM

discrete event model containing 30+ process steps with two
levels of hierarchy. Some of the inputs to the simulation model
included productivity rates for various processes; the volume
of work (i.e. KSLOC); defect detection and injection rates
for all phases; effort allocation percentages across all phases
of the project; rework costs across all phases; parameters for
process overlap; the amount and effect of training provided;
and resource constraints.

Model outputs are the development expense (person
months), product quality (number of high severity defects)
and project duration (calendar months) which are combined
as follows:

utility = 40 ∗ (14− quality) + 320 ∗ (70− expense) +
640 ∗ (24− duration)

(2)

The justification for this style of utility function is discussed
in detail in [84]. In summary, this function was created after
extensive debriefing of the business users.

The model has been extensively validated. The model’s
process diagrams, model inputs, model parameters and out-
puts were reviewed by members of the software engineering
process group as well as senior developers and managers. In
other studies, the model was used to accurately predict the
performance of several past releases of the project. Finally, in
special case studies, the model was used to predict unantici-
pated special cases. Specifically, when predicting the impact of
developing overly complex functionality, the model predicted
that development would take approximately double the normal
development schedule. Initially rejected by management, it
was later found that this model’s predictions corresponded
quite accurately with the company’s actual experience.

In this example, we will use the model to assess different
software inspection policies. For each phase of Figure 4, four
types of inspections can potentially be applied. These four
types are listed below, sorted by their cost and effectiveness.
For example, full Fagan inspections are most expensive and
find the most issues. At the other end of the scale, doing no
inspections is cheapest but finds no issues:

F: A full Fagan inspection [85] is a seven step process
with pre-determined roles for inspection participants.
For the company studied by Raffo, the defect detec-
tion capability4 of their full Fagan inspections was
TR(0.35, 0.50, 0.65)5. Such studies use between 4 and
6 staff, plus the author of the artifact being inspected.

B: A baseline inspection is a continuation of current practice
at the company under study. The baseline inspection at
this company was essentially a poorly performed Fagan
inspection, Historical records show that these baseline
inspections have varying defect detection capabilities of
{min,mode, max} = {0.13, , 0.21, 0.30}.

W: Walk through inspections conducted informally by
an outside consultant. Historical records show that
these inspections have a defect detection capability of
TR(0.07, 0.15, 0.23).

N: No inspection;
Each type of inspection can be performed at each phase; i.e.
there are 44 possible inspection polices. A data set for TAR2
was prepared by running each configuration 50 times; i.e.
50 ∗ 44 = 12800 samples. Each run was then tagged with its
utility, using Equation 2. These utilities were discretized into
four classes, of approximately equal frequency:
• class1 : value of Equation 2 < 9843
• class2 : 9843 ≤ value of Equation 2 < 10698
• class3 : 10698 ≤ value of Equation 2 < 11664
• class4 : 11664 ≤ value of Equation 2 ≤ 14755

The before bar chart in Figure 5 shows the frequency of these
classes in the untreated model. Note that many (40%) of the
samples generate the lowest class1 utility.

4Defect detection capability is the percentage of defects that are latent in
the artifact that is being inspected that are detected.

5TR(a, b, c) denotes a triangular distribution with minimum, mode, max
of a, b, c respectively.

7

 80
 60
 40
 20
 0

 1
40

00

 1
20

00

 1
00

00

 8
00

0

 6
00

0

%
 fr

eq
ue

nc
y

utility

before
after

Fig. 5. Utility frequency in 12800 samples, before and after treatment.

corErr gg50 <= 72: class1
corErr gg50 > 72
| corErr gg50 <= 154
| | spec gg2 = b
| | | hiDist gg13 = 0
| | | | corErr gg11 <= 17: class1
| | | | corErr gg11 > 17: class2
| | | hiDist gg13 = tr
| | | | corErr gg31 <= 18: class1
| | | | corErr gg31 > 18
| | | | | inspEff gg19 <= 33.742185: class1
| | | | | inspEff gg19 > 33.742185: class2
| | spec gg2 = f
| | | corErr gg21 <= 22
| | | | detCap gg38 <= 0.563188
| | | | | inspDur gg10 <= 117.043523
| | | | | | corErr gg50 <= 120: class1
| | | | | | corErr gg50 > 120
| | | | | | | inspDur gg40 <= 292.445892: class2
| | | | | | | inspDur gg40 > 292.445892: class1
| | | | | inspDur gg10 > 117.043523: class1
| | | | detCap gg38 > 0.563188: class2
| | | corErr gg21 > 22: class2
| | spec gg2 = n
| | | inspEff gg29 <= 336.924853: class2
| | | inspEff gg29 > 336.924853: class1
| | spec gg2 = w
| | | corErr gg11 <= 3: class1
| | | corErr gg11 > 3
| | | | corErr gg11 <= 4
| | | | | inspEff gg9 <= 32.423212: class2
| | | | | inspEff gg9 > 32.423212
| | | | | | inspDur gg10 <= 35.939846
| | | | | | | detCap gg8 <= 0.110608: class2
| | | | | | | detCap gg8 > 0.110608: class1
| | | | | | inspDur gg10 > 35.939846: class2
| | | | corErr gg11 > 4
| | | | | detCap gg8 <= 0.145107
| | | | | | inspEff gg9 <= 49.227938: class1
| | | | | | inspEff gg9 > 49.227938
| | | | | | | detCap gg8 <= 0.131955: class2
| | | | | | | detCap gg8 > 0.131955: class1
| | | | | detCap gg8 > 0.145107
| | | | | | inspEff gg9 <= 33.741217: class1
| | | | | | inspEff gg9 > 33.741217: class2
| corErr gg50 > 154
| | detCap gg8 <= 0.618237: class2
| | detCap gg8 > 0.618237
| | | inspDur gg30 <= 137.500433: class3
| | | inspDur gg30 > 137.500433: class2

Fig. 6. A decision tree learned via C4.5.

TAR2 was then applied to learn treatments that distinguish
the desired class4 utilities from the rest. The best treatment
generated by the algorithm was very small only recommended
changing one of the inspection processes; i.e.

hidesign 12 = F

The after bar chart of Figure 5 shows the effect of imposing

C4.5 and CART are well-understood and widely-cited iterative
dichotomization learners. Such learners:

• Seek the best attribute value splitter that most simplifies
the data that fall into the different splits.

• Each such splitter becomes a root of a tree.
• Sub-trees are generated by calling iterative dichotomization

recursively on each of the splits.
CART is defined for continuous target concepts and its splitters
strive to reduce the standard deviation of the data that falls into
each split. C4.5 is defined for discrete class classification and
uses an information-theoretic measure to describe the diversity of
classes within a data set.
Another difference between C4.5 and CART is how the leaf nodes
summarize the examples that fall down the branch to that leaf.
A leaf generated by CART stores the average value of the class
selected by the branch while a leaf generated by C4.tree stores
the most frequency class. Hence, C4.5 is called a decision tree
learner while CART is called a regression tree.

Fig. 7. About C4.5 and CART

this treatment of hidesign 12=F6 (full Fagan inspections for
high-level designs) onto the simulator. The treated model is
much improved: it generates zero class1 and class2 outputs
and, in 80% of cases, generates class4 outputs. Further, the
improvement was achieved without having to control the
inspection policies in the other phases.

In terms of advocating treatment learning, the most im-
portant feature of this example is what is missing. To learn
its treatmetns, TAR2 imported samples with 51 variables (50
inputs and one utility score). It then generated treatments, the
best of which, used only one of the inputs. Other data miners,
working on the same data, are far less succinct. For example,
Figure 6 show the results of passing the inspection model data
to C4.5 [21] and an appendix to this document shows the
output from the CART and linear regression learners:
• C4.5 and CART use the iterative dichotimzation algo-

rithm described in Figure 7.
• Linear regression tries to fit one straight line through

the observed values. The line offers a set of predicted
values and the distance from these predicted values to
the actual values is a measure of the error associated with
that line. Linear regression tools such as the least squares
regression package search for a line that minimizes that
sum of the squares of the error.

• C4.5 predicts for discrete class symbols (e.g. class1,
class2, class3, class4) so this algorithm used the same
data as TAR2.

• Linear regression and CART make numeric predictions.
These algorithms used the TAR2 data with the classN
symbols replaced by raw numerics of Equation 2.

A comparison of the output from TAR2, C4.5 (in Figure 6),
and results from CART and linear regression (see appendix)
demonstrate that standard methods of summarizing data (linear
regression, decision trees, regression trees) can generate much
larger theories than treatment learning. The reason for this is
very simple. Theories learned from iterative dichotomization
describe the features that separate all of the target variables.

6In this data set, each attribute is labeled with its column number so
hidesign 12 appears in the twelfth column the input.

8

However, treatments just describe the minimal deltas between
preferred and undesirable targets.

Another advantage of treatment learning is that it is much
easier to derive actions from treatments than from the standard
methods shown in Figure 6 and the appendix. To be sure,
decision trees can be analyzed to find branch values that most
selected for preferred classes while most discarding undesired
classes (the initial TAR2 prototype was such a post-processor).
However, TAR2 achieves the same result directly without the
need to interface to another learner.

B. Studying the CMM

The previous studied explored a numeric model where
all the influences were precisely specified. This second case
study takes a numeric model and adds a large degree of
uncertainty in the numerics. This second study shows that,
even in presence of large degrees of uncertainty, TAR2 can
still find useful treatments.

This study uses a rule-based model of the costs and ben-
efits model of CMM level 2 (hereafter, CMM2) [86, p125-
191]. We elected to study CMM2 since, in our experience,
many organizations can achieve at least this level. CMM2
is less concerned with issues of (e.g.) which design pattern
to apply, than with what overall project structure should be
implemented. Improving CMM2-style decisions is important
since in early software life cycle, many CMM2-style decisions
affect the resource allocation for the rest of the project.

CMM2 was encoded using the JANE propositional
rule-based language [9]. JANE’s rules take the form
Goal if SubGoals such as the one shown in Figure 8.

stableRequirements
if effectiveReviews
and requirementsUsed
and sEteamParticipatesInPlanning
and documentedRequirements
and sQAactivities
and (reviewRequirementChanges

rany softwareConfigurationManagement
rany baselineChangesControlled
rany workProductsIdentified
rany softwareTracking

).

Fig. 8. Part of CMM2, encoded in the JANE language.

JANE is a backward chaining language: to prove a Goal,
JANE tries to find rules that prove each of the SubGoals. Each
SubGoal contributes some Cost and Chances to the Goal.
JANE’s Chances define the extent to which a belief in one
vertex can propagate to another. Costs let an analyst model the
common situation where some of the Cost of some procedure
is amortized by reusing its results many times. Hence, the first
time we use a proposition, we incur its Cost but afterwards,
that proposition is free of charge.

The Cost and Chances of a proposition are either provided
by the JANE programmer or computed at runtime via a
traversal of the rules:

• When searching X if not A, the Chances of X are 1-
Chances(A) and Cost(X) = Cost(A).

• When searching X if A and B and C, the Chances and
Costs of X are (respectively) the product of the chances
and the sum of the costs of A,B,C.

• When searching X if A or B or C, then the Cost and
Chances of X are taken from the first member of A,B,C
that is satisfied.

These and, or, not operators can be insufficient to capture
the decision making of business users. For examples, in our
experience, business users select CMM2 options, often in a
somewhat arbitrary manner. To model this, JANE includes a
rany operator (short for “random any”):
• The rany operator is like or except that (e.g.) X if

A rany B rany C succeeds if some random number
of A,B,C (greater than one) succeeds. Unlike and, or
which explore their operands in a left-to-right order, rany
explores its SubGoals is a random order. If at least one
succeeds, then the Cost and Chances of X is the sum
and product (respectively) of the Cost and Chances of
the satisfied members of A,B,C.

Rany is useful when searching for subsets that contribute
to some conclusion. For example, the JANE rule in Figure 8
offers several essential features of stableRequirements plus
several optional factors relating to monitoring change in evolv-
ing projects – the essential features are and-ed together while
the optional factors are rany-ed together.

Figure 8 includes 11 propositions. Our model of CMM2,
written in JANE, has 55 proposition (range = {t, f}). Of
those 55 propositions, 27 were identified by our users as
actions that could be changed by managers (see Figure 9).

Apart from rany, JANE supports one other mechanisms
for exploring the space of possibilities within CMM2. When
defining Costs and Chances, the programmer can supply a
range and a skew. For example:

goodUnitTesting and cost = 1 to +5

defines the cost of goodUnitTesting as being somewhere in
the range 1 to 5, with the mean skewed slightly towards 5
(denoted by the “+”).

Similarly, while all the Chances values were based on
expert judgment, their precise value is subjective. Hence, each

baselineAudits,
baselineChangesControlled,

changeRequestsHandled,
changesCommunicated,
configurationItemStatus-

Recorded,
deviationsDocumented, docu-

mentedDevelopmentPlan,
documentedProjectPlan,

earlyPlanning,
formalReviewsAtMilestones,

goodUnitTesting,
identifiedWorkProducts,
periodicSoftwareReviews

planRevised,
requirementsReview,
requirementsUsed,

reviewRequirementChanges,
risksTracked, SCMplan,

SCMplanUsed,
SElifeCycleDefined, SEteam-

ParticipatesInPlanning,
SEteamParticipatesOnPro-
posal, SQAauditsProducts,
SQAplan, SQAplanUsed,

SQAreviewActivities,
workProductsIdentified

Fig. 9. Management actions in the CMM2 model. SQA= software quality
assurance and SCM= software configuration management)

David Raffo
Cross-Out

David Raffo
Replacement Text
y

David Raffo
Cross-Out

David Raffo
Inserted Text
in the

David Raffo
Cross-Out

David Raffo
Inserted Text
s

David Raffo
Cross-Out

David Raffo
Cross-Out

9

0
10
20
30
40
50
60
70

5 16 5 74
0

10
20
30
40
50
60
70

7 13 19 60
0

10
20
30
40
50
60
70

5 14 26 55
0

10
20
30
40
50
60
70

14 22 30 24
T1 T2 T3 baseline

worth=1.44 worth=1.31 worth=1.28 current worth = 1

KEY:
Top-to-bottom = least
desirable to most desirable.

= high cost, low chances;
i.e. a very bad software
project

= low cost, low chances

= high cost, high chances

= low cost, high chances;
i.e. a good software
project

Fig. 10. Ratios of different software project types seen in four situations.

such Chances value X was altered to be a range

chances = 0.7*X to 1.3*X

During a simulation, the first time a Cost or Chance is
accessed, it is assigned randomly according to the range and
skew. The assignment is cached so that all subsequent accesses
use the same randomly generated value. After each simulation,
the cache is cleared. After thousands of simulations, JANE
can sample the “what-if” behavior resulting from different
assignments within the range and many different rany choices.

Data from 2000 simulations was passed from the CMM2
model to TAR2. Each simulation was classified into one of
four classes:

• class=0: High cost, low chance;
• class=1: Low cost, low chance;
• class=2: High cost, high chance;
• class=4: Low cost, high chance.

That is, our preferred projects are cheap and highly likely
while expensive, low odds projects are to be avoided.

Figure 10 shows three sets of actions learned by TAR2.
The right-hand-side histogram shows the baseline distributions
seen in the 2000 simulations. The other histograms show
how those ratios change after applying the treatments learned
by TAR2; The worth of each option is a reflection of the
proportion of good and bad projects, compared to the baseline,
i.e. (worth(baseline) = 1). Note that as worth increases, the
proportion of preferred projects also increases.

Figure 11 shows the three best treatments (T1, T2, T3) found
using this technique (and Figure 10 compared the effects of
these treatments to the untreated examples). Note that the
values of each attribute are reported using the tags no, lower,
middle, or upper. In treatment learning, continuous attribute
ranges are divided into N-discrete bands based on percentile
positions. For N=3, we can name the bands lower, middle,
upper for the lower, middle, and upper 33% percentile bands.

In Figure 11, the treatments are advising to lower the cost
of:

• Using requirements: This could be accomplished by (e.g.)
sharing them around the development team in some
search-able hypertext format

• Performing formal reviews at milestones: This could be
accomplished by (e.g.) using ultra-lightweight formal
methods such as proposed by Leveson [87].

T1: requirementsUsed.Cost=lower and
not periodicSoftware-Reviews and
formalReviewsAtMilestones.Cost=lower

T2: requirementsUsed.Cost=lower and
goodUnitTesting.Cost=middle and
formalReviewsAtMilestones.Cost=lower

T3: goodUnitTesting.Cost=lower and
periodicSoftwareReviews.Cost=middle and
formalReviewsAtMilestones.Cost=lower

Fig. 11. The three best treatments found in the CMM2 model.

• Performing good unit testing: This could be accomplished
by (e.g.) hiring better test engineers.

An interesting feature of Figure 11 is what is missing:
• None of the treatments proposed adjusting the Chances

of any action. In this study, changing Cost will suffice.
• Of the 27 actions listed in in Figure 9, only the

four underlined actions appear in the top three treat-
ments. That is, management commitment to undertake
27-4=23 of the actions is less useful than changing
on formalReviewsAtMilestones, goodUnitTesting,
periodicSoftwareReviews, and requirementsUsed

• The value not in T1 is a recommendation against pe-
riodicSoftwareReviews (plus lowering the costs of using
requirements and formal reviews at milestones). Note that
if periodicSoftwareReviews are conducted, T3 is saying
that there is no apparent need to reduce the cost of such
reviews.

More generally, in a result consistent with the prior stud-
ies, despite the uncertainties introduced by rany and the
cost/chances ranges, TAR2 found a small number of CMM2
process options that have a significant impact on the project.

Note that the conclusions of Figure 11 are not general to
all software projects. The Chances values used in this study
came from some local domain knowledge about the likelihood
that process change A will effect process change B. The Cost
values were domain-specific as well. In other organizations,
with different work practices and staff, those Chances and
Cost values could be very different.

C. Other Case Studies

Treatment learning has been applied to spacecraft design to
find how to cover more requirements, reduce risk, at the least

10

cost [6], [12]. It has also been applied to software process
control using:
• A Chung-Mypolopous soft-goal graph to find better cov-

erage of the non-functional requirements [13].
• COCOMO effort and risk models models to find options

selecting for lower effort and fewer risks [4];
• COCOMO effort, risk, and defect prediction models

models to find project options selecting for lower effort
and fewer threats and lower defects [15];

• Qualitative inference diagrams to find requirements se-
lecting for higher quality [16].

• The NASA SILAP model (that selects V&V tasks in
order to most lower risks) [17];

Treatment learning has also been applied to:
• Finite state machines to find topologies that reduce the

CPU cost of applying formal methods [10], [18].
• Models of the global economy so study methods of

extending human life expectancy [7];
• Maximizing whiskey production [5];

In all the case studies explored by TAR2, the same three
observations were made:
• Treatment learning can find very small treatments, even

for seemingly complex models;
• These treatments can be far smaller that models generated

by standard data miners.
• Despite uncertainties or variabilities in the model, TAR2

was able to find effective treatments that selected for
preferred model output (but the less uncertainty or model
variability, the smaller the variance in TAR2’s predicted
output for the treated model).

VI. RELATED WORK

Elsewhere [14] we have discussed the connection of treat-
ment learning to soft computing methods such as fuzzy logic,
genetic algorithms, and neural nets. Approximate, heuristically
generated models would be adequate to control models if those
models contain clumps and collars. That is, the widespread
presence of clumps and collars would explain the success of
soft computing.

Treatment learners share the same goals as, but uses dif-
ferent methods from, sensitivity analysis [88] and design of
experiments (DOE) methods [89] that seek out the key factors
that most influence a model (also, recommended settings
for those key factors are generated). A canonical sensitiv-
ity analysis method might be to compute eigenvector of a
linear system in order to understand its long-term temporal
behaviour. However, for models where the collar and clump
assumption holds, a detailed exploration of the nuances of the
model’s states may yield little more information than TAR2’s
treatments.

Treatment learning would be preferred to numerical sen-
sitivity analysis when the goal is a succinct policy statement
that can be quickly explained to business users. Also, treatment
learning might be a useful pre-processor to sensivitiy analysis
in order to focus the sensitivity analysis on the parts of the
model that are most crucial. On the other hand, TAR2 is
not the tool of choice when seeking intricate optimizations

of complex non-linear systems with massive feedback. For
such optimizations, standard statistical sensitivity methods are
generally preferred to treatment learning.

As for design of experiments, DOE exercises an existing
model and helps shed light on the response surface of the
model. DOE does identify gradients and key parameters that
the model is sensitive to. So, in this regard, DOE and TAR2 are
analogous. However, TAR2 augments the usual DOE rig with
the generation of a new extremely parsimonious approximate
from an initial, far more complex, model.

It is insightful to contrast treatment learning with auto-
matic formal methods. Treatment learner offers coarse-grained
heuristic controllers for models with a wide range of internal
parameter settings. Automatic formal methods, on the other
hand, rigorously explore the structure of small models that are
precisely specified (albeit with some non-determinism). Hence
they are tools to be used for different tasks in the life cycle of
a model.

Early in the software life cycle, engineers are concerned
with exploring a large space of possible models or possible
model configurations. Model-based tools needed for such
option assessment (e.g. TAR2) may be very different from
model-based tools for fine-tuning and verifying a final model
such as SPIN [90]. Certainly, for mission and safety critical
models, it is essential that such rare but dangerous bugs be
located and fixed. However, while much of the model remains
under debate, the rigorous search of, say, SPIN can be rendered
obsolete by the next revision to the model.

VII. CONCLUSION

Controlling some models may be much simpler than pre-
viously thought. Models are written by people; people have
cognitive limits; therefore models written by people aren’t
always complex. Also, regardless of who writes a model, the
mathmematics of clumps and collars promises that models
naturally contain structures that greatly restrict the space of
possible model behaviors.

It is possible to design data miners to exploit such collars
and clumps. The case studies in this paper show that a minimal
list of the differences between concepts can be much smaller
than a detailed description of all aspects of a concept. For
models where TAR2 can generate succinct summaries, its
algorithm can significantly improved searched-based methods
of data mining. Human designers could avoid wasting time on
superfluous details in that models could be iteratively built by
humans, then pruned by minimal contrast set learning. In this
way, human-based design intelligence could be augmented in
a cost-effective manner via artificial intelligence.

Treatment learning will fail when models don’t contain
clumps and collars. Such models can’t be controlled by a
small number of key variables– in which case TAR2’s tiny
rules will never be useful. However, this paper has presented
theoretical and empirical evidence to suggest that collars and
clumps can be expected in many models. Hence, treatment
learning should be applicable to much of model-based SE,
particular when large numbers of configuration possibilities
are being discussed.

David Raffo
Cross-Out

David Raffo
Replacement Text
n

David Raffo
Highlight

David Raffo
Note
Hmmm.... I wonder. Wouldn't we identify the parameters we consider to be important up front and then exercise those parameters to create output for TAR2? If so, we just need to look at the sim output for the sensitivity analysis to be complete complete. What is very cool in my view is the combination of the treatment learner and the sensititivity analysis.

David Raffo
Note
Question: How many runs does the treatment learner need in order to "learn the model"?

David Raffo
Cross-Out

David Raffo
Replacement Text

David Raffo
Highlight

11

REFERENCES

[1] D. C. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25–31, February 2006.

[2] S. Mellor, A. Clark, and T. Futagamii, “Model-driven development -
guest editor’s introduction,” IEEE Software, vol. 20, no. 5, pp. 14– 18,
Sept.-Oct. 2003.

[3] J. Gray, Y. Lin, and J. Zhang, “Automating change evolution in model-
driven engineering,” IEEE Computer, vol. 39, no. 2, pp. 51–58, February
2006.

[4] T. Menzies and E. Sinsel, “Practical large scale what-if queries: Case
studies with software risk assessment,” in Proceedings ASE 2000, 2000,
available from http://menzies.us/pdf/00ase.pdf.

[5] T. Burkleaux, T. Menzies, and D. Owen, “Lean = (lurch+tar3) = reusable
modeling tools,” in Proceedings of WITSE 2005, 2004, available from
http://menzies.us/pdf/04lean.pdf.

[6] M. Feather and T. Menzies, “Converging on the optimal attainment of
requirements,” in IEEE Joint Conference On Requirements Engineering
ICRE’02 and RE’02, 9-13th September, University of Essen, Germany,
2002, available from http://menzies.us/pdf/02re02.pdf.

[7] D. Geletko and T. Menzies, “Model-based software testing via treatment
learning,” in IEEE NASE SEW 2003, 2003, available from http://menzies.
us/pdf/03radar.pdf.

[8] Y. Hu, “Treatment learning: Implementation and application,” Master’s
thesis, Department of Electrical Engineering, University of British
Columbia, 2003, masters Thesis.

[9] T. Menzies and J. Kiper, “Better reasoning about software engineering
activities,” in ASE-2001, 2001, available from http://menzies.us/pdf/
01ase.pdf.

[10] T. Menzies, D. Owen, and B. Cukic, “You seem friendly, but can i trust
you?” in Formal Aspects of Agent-Based Systems, 2002, available from
http://menzies.us/pdf/02trust.pdf.

[11] D. R. T. Menzies, J. Smith, “When is pair programming better?” 2003,
available from http://menzies.us/pdf/04pairprog.pdf.

[12] S. L. Cornford, J. D. M. S. Feather, J. Salcedo, and T. Menzies, “Op-
timizing spacecraft design optimization engine development: Progress
and plans,” in Proceedings of the IEEE Aerospace Conference, Big Sky,
Montana, 2003, available from http://menzies.us/pdf/03aero.pdf.

[13] E. Chiang and T. Menzies, “Simulations for very early lifecycle quality
evaluations,” Software Process: Improvement and Practice, vol. 7, no.
3-4, pp. 141–159, 2003, available from http://menzies.us/pdf/03spip.pdf.

[14] T. Menzies and H. Singh, “Many maybes mean (mostly) the same thing,”
in Soft Computing in Software Engineering, M. Madravio, Ed. Springer-
Verlag, 2003, available from http://menzies.us/pdf/03maybe.pdf.

[15] T. Menzies and J. Richardson, “Xomo: Understanding development
options for autonomy,” in COCOMO forum, 2005, 2005, available from
http://menzies.us/pdf/05xomo cocomo forum.pdf. For more details, see
also the longer technical report http://menzies.us/pdf/05xomo101.pdf.

[16] ——, “Making sense of requirements, sooner,” IEEE Computer, October
2006, available from http://menzies.us/pdf/06qrre.pdf.

[17] M. Fisher and T. Menzies, “Learning iv&v strategies,” in HICSS’06,
2006, available from http://menzies.us/pdf/06hicss.pdf.

[18] D. Owen, T. Menzies, and B. Cukic, “What makes finite-state models
more (or less) testable?” in IEEE Conference on Automated Software
Engineering (ASE ’02), 2002, available from http://menzies.us/pdf/
02moretest.pdf.

[19] G. Hinton, “How neural networks learn from experience,” Scientific
American, pp. 144–151, September 1992.

[20] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
1999.

[21] R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp.
81–106, 1986.

[22] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classi-
fication and regression trees,” Wadsworth International, Monterey, CA,
Tech. Rep., 1984.

[23] E. Seidewitz, “What models mean,” IEEE Software, vol. 20, no. 5, pp.
26–32, Sept.-Oct. 2003.

[24] S. Sendall and W. Kozacaynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Software, vol. 20,
no. 5, pp. 42–45, Sept.-Oct. 2003.

[25] B. Hailpern and P. Tarr, “Model-driven develpment: the good, the bad,
and the ugly,” IBM Systems Journal, vol. 45, no. 3, pp. 451–461, 2006.

[26] MDA Guide Version 1.0.1, Object Management Group, June 2003.
[Online]. Available: http://www.omg.org/mda/presentations.htm

[27] J. Greenfield and K. Short, Software factories : assembling applications
with patterns, models, frameworks, and tools. Wiley Publishing,
Indianapolis, IN, 2004.

[28] D. Waddington and P. Lardieri, “Model-centric software development,”
IEEE Computer, vol. 39, no. 2, pp. 28–29, February. 2006.

[29] W. Clancey, P. Sachs, M. Sierhuis, and R. van Hoof, “Brahms: Sim-
ulating practice for work systems design,” in Proceedings PKAW ’96:
Pacific Knowledge Acquisition Workshop, P. Compton, R. Mizoguchi,
H. Motoda, and T. Menzies, Eds. Department of Artificial Intelligence,
1996.

[30] A. Law and B. Kelton, Simulation Modeling and Analysis. McGraw
Hill, 2000.

[31] H. Harrell, L. Ghosh, and S. Bowden, Simulation Using ProModel.
McGraw-Hill, 2000.

[32] D. Kelton, R. Sadowski, and D. Sadowski, Simulation with Arena,
second edition. McGraw-Hill, 2002.

[33] T. Abdel-Hamid and S. Madnick, Software Project Dynamics: An
Integrated Approach. Prentice-Hall Software Series, 1991.

[34] H. Sterman, Business Dynamics: Systems Thinking and Modeling for a
Complex World. Irwin McGraw-Hill, 2000.

[35] M. Akhavi and W. Wilson, “Dynamic simulation of software process
models,” in Proceedings of the 5th Software Engineering Process Group
National Meeting (Held at Costa Mesa, California, April 26 - 29).
Software engineering Institute, Carnegie Mellon University, 1993.

[36] D. Harel, “Statemate: A working environment for the development of
complex reactive systems,” IEEE Transactions on Software Engineering,
vol. 16, no. 4, pp. 403–414, April 1990.

[37] R. Martin and D. M. Raffo, “A model of the software development pro-
cess using both continuous and discrete models,” International Journal
of Software Process Improvement and Practice, June/July 2000.

[38] I. Bratko, Prolog Programming for Artificial Intelligence. (third edition).
Addison-Wesley, 2001.

[39] Y. Iwasaki, “Qualitative physics,” in The Handbook of Artificial Intelli-
gence, P. C. A. Barr and E. Feigenbaum, Eds. Addison Wesley, 1989,
vol. 4, pp. 323–413.

[40] P. Mi and W. Scacchi, “A knowledge-based environment for modeling
and simulation software engineering processes,” IEEE Transactions on
Knowledge and Data Engineering, pp. 283–294, September 1990.

[41] M. Feather and S. Cornfordi, “Quantitative risk-based requirements
reasoning,” Requirements Engineering Journal, vol. 8, no. 4, pp. 248–
265, 2003.

[42] R. France, S. Ghosh, E. Song, and D. Kim, “A metamodeling approach
to pattern-based moel refractoringt,” IEEE Software, vol. 20, no. 5, pp.
52–58, Sept.-Oct. 2003.

[43] P. Denno, M. P. Steves, D. Libes, and E. J. Barkmeyer, “Model-drven
integration using existing models,” IEEE Software, vol. 20, no. 5, pp.
59–63, Sept.-Oct. 2003.

[44] J. Jrjens and J. Fox, “Tools for model-based security engineering,” in
ICSE ’06: Proceeding of the 28th international conference on Software
engineering. New York, NY, USA: ACM Press, 2006, pp. 819–822.

[45] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, May 2004.

[46] R. E. Filman, Aspect-Oriented Software Development. Addison-Wesley,
Boston, 2004.

[47] Y. Cai and K. J. Sullivan, “Simon: modeling and analysis of design
space structures,” in ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. New
York, NY, USA: ACM Press, 2005, pp. 329–332.

[48] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[49] C. Heitmeyer, “Software cost reduction,” in Encyclopedia of
Software Engineering, J. J. Marciniak, Ed., January 2002,
available from http://chacs.nrl.navy.mil/publications/CHACS/2002/
2002heitmeyer-encse.p%df.

[50] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff,
“Calm and cadena: Metamodeling for component-based product-
line development,” IEEE Computer, vol. 39, no. 2, Feburary
2006, available from http://projects.cis.ksu.edu/docman/view.php/7/129/
CALM-Cadena-IEEE-Comp%uter-Feb-2006.pdf.

[51] J. Whittle and P. Jayaraman, “Generating hierarchical state machines
from use case charts,” in IEEE International Conference on Require-
ments Engineering (RE2006), 2006.

[52] J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shep-
perd, “Reformulating software engineering as a search problem,” IEE
Proceedings-Software, vol. 150, no. 3, pp. 161–175, 2003.

12

[53] B. Jones, H.-H. Sthamer, and D. Eyres, “Automatic structural tsting
using genetic algorithms,” Software Engineering Journal, vol. 11, pp.
299–306, 1996.

[54] B. Jones, D. Eyres, and H.-H. Sthamer, “A strategy for using genetic al-
gorithms to automate branch and fault-based testing,” Computer Journal,
vol. 41, no. 2, pp. 98–107, 1998.

[55] R. Pargas, M. Harrold, and R. R. Peck, “Test-data generation using
genetic algorithms,” Journal of Software Testing, Verification and Reli-
ability, vol. 9, pp. 263–282, 1999.

[56] N. Tracey, J. Clarke, and K. Mander, “Automated program flaw finding
using simulated annealing,” in International Symposium on Software
Testing and Analysis. ACM/SIGSOFT, March 1998, pp. 73–81.

[57] M. Harman, R. Hierons, and M. Proctor, “A new representation and
crossover operator for search-based optimization of software modular-
ization,” in GECO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann, July 2002, pp. 1351–
1358.

[58] R. Lutz, “Evolving good hierarchical decomposition of complex sys-
tems,” Journal of Systems Architecture, vol. 47, pp. 613–634, 2001.

[59] J. Aguilar-Ruiz, I. Ramos, J. Riquelme, and M. Toro, “An evolutionary
approach to estimating software development projects,” Information and
Software Technology, vol. 43, no. 14, pp. 875–882, December 2001.

[60] J. J. Dolado, “A validation of the component-based method for software
size estimation,” IEEE Transactions of Software Engineering, vol. 26,
no. 10, pp. 1006–1021, 2000.

[61] ——, “On the problem of the software cost function,” Information and
Software Technology, vol. 43, pp. 61–72, 2001.

[62] L. Rela, “Evolutionary computing in search-based software engineering,”
Master’s thesis, Lappeenranta University of Technology, 2004.

[63] T. Menzies, “Critical success metrics: Evaluation at the business-level,”
International Journal of Human-Computer Studies, special issue on
evaluation of KE techniques, vol. 51, no. 4, pp. 783–799, October 1999,
available from http://menzies.us/pdf/99csm.pdf.

[64] M. Harman and B. Jones, “Search-based software engineering,” Journal
of Information and Software Technology, vol. 43, pp. 833–839, Decem-
ber 2001.

[65] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[66] A. Miller, Subset Selection in Regression (second edition). Chapman

& Hall, 2002.
[67] M. Druzdzel, “Some properties of joint probability distributions,” in

Proceedings of the Tenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-94), 1994, pp. 187–194.

[68] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal, vol. 3, no. 3, pp. 211–229, July 1959.

[69] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997. [Online].
Available: citeseer.nj.nec.com/kohavi96wrappers.html

[70] A. Avritzer, J. Ros, and E. Weyuker, “Reliability of rule-based systems,”
IEEE Software, pp. 76–82, September 1996.

[71] W. Wong and A. Mathur, “Reducing the cost of mutation testing: An
empirical study,” The Journal of Systems and Software, vol. 31, no. 3,
pp. 185–196, December 1995.

[72] T. Budd, “Mutation analysis of programs test data,” Ph.D. dissertation,
Yale University, 1980.

[73] A. Acree, “On mutations,” Ph.D. dissertation, School of Information and
Computer Science, Georgia Institute of Technology, 1980.

[74] J. Bieman and J. Schultz, “An empirical evaluation (and specification) of
the all-du-paths testing criterion,” Software Engineering Journal, vol. 7,
no. 1, pp. 43–51, 1992.

[75] M. Harrold, J. Jones, and G. Rothermel, “Empirical studies of control
dependence graph size for c programs,” Empirical Software Engineering,
vol. 3, pp. 203–211, 1998.

[76] R. Pelanek, “Typical structural properties of state spaces,” in Proceed-
ings SPIN’04 Workshop, 2004, available from http://www.fi.muni.cz/
∼xpelanek/publications/state spaces.ps.

[77] G. J. Holzmann, “Algorithms for automated protocal verification,” ATT
Technical Journal, vol. 69, no. 2, pp. 32–44, 1990.

[78] G. Miller, “The magical number seven, plus or minus two: Some limits
on our capacity for processing information,” The Psychological Review,
vol. 63, pp. 81–97, 1956, available from http://www.well.com/∼smalin/
miller.html.

[79] T. Menzies, “21st century ai: proud, not smug,” IEEE Intelligent
Systems, 2003, available from http://menzies.us/pdf/03aipride.pdf.

[80] S. Bay and M. Pazzani, “Detecting change in categorical data: Mining
contrast sets,” in Proceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining, 1999, available from http://
www.ics.uci.edu/∼pazzani/Publications/stucco.pdf.

[81] G. I. Webb, S. Butler, and D. Newlands, “On detecting differences
between groups,” in KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining.
New York, NY, USA: ACM Press, 2003, pp. 256–265.

[82] C. Cai, A. Fu, C. Cheng, and W. Kwong, “Mining association rules with
weighted items,” in Proceedings of International Database Engineering
and Applications Symposium (IDEAS 98), August 1998, available from
http://www.cse.cuhk.edu.hk/∼kdd/assoc rule/paper.pdf.

[83] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998, uRL: http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[84] D. Raffo, “Modeling software processes quantitatively and assessing the
impact of potential process changes of process performance,” May 1996,
ph.D. thesis, Manufacturing and Operations Systems.

[85] M. Fagan, “Advances in software inspections,” IEEE Trans. on Software
Engineering, pp. 744–751, July 1986.

[86] M. Paulk, C. Weber, B. Curtis, and M. Chriss, The Capability Maturity
Model: Guidelines for Improving the Software Process. Addison-
Wesley, 1995.

[87] N. Leveson, S. Cha, and T. Shimall, “Safety verification of ADA
programs using software fault trees,” IEEE Software, vol. 8, no. 7, pp.
48–59, July 1991.

[88] A. Saltelli, K. Chan, and E. Scott, Sensitivity Analysis. Wiley, 2000.
[89] D. Boning and P. Mozumder, “Doe/opt: a system for design of experi-

ments, response surface modeling, and optimization using process and
device simulation,” IEEE Transactions on Semiconductor Manufactur-
ing, vol. 7, no. 2, pp. 233–244, May 1994.

[90] G. Holzmann, The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

13

Tim Menzies is a associate professor at the Lane
Department of Computer Science at West Virginia
University (USA), and has been working with NASA
on software quality issues since 1998. He has a CS
degree and a PhD from the University of New South
Wales and is the author of over 160 publications. His
recent research concerns modeling and learning with
a particular focus on light weight modeling methods.
His doctoral research explored the validation of,
possibly inconsistent, knowledge-based systems in
the QMOD specification language.

James Kiper is Associate Dean for Research and
Graduate Studies in the School of Engineering and
Applied Science, and Professor of Computer Science
at Miami University where he has been for the past
twenty years. His research interest are in the area
of software engineering, design rationale capture,
representation, and analysis; and in software and
system risk management.

Jeremy Greenwald is a graduate student in the
Computer Science Department at Portland State
University. He received his BS in Physics and As-
tronomy from the University of Pittsburgh in 2001.
He has over six years of research experience in
numeric methods and data mining. His master thesis
focuses on combining data mining with numeric
optimization techniques. He also has interned at a
software development firm in Beaverton, Oregon.

Ying Hu is a software designer working in Vancouver, British Vancouver.
Formerly a graduate student at School of Electrical Engineering at the
University of British Columbia, Ms Hu implemented TAR2.

David Raffo is currently Associate Professor of
Computer Science and Business Administration at
Portland State University and a Principal Consul-
tant at Quantel, Inc. Raffo completed his Ph.D. at
Carnegie Mellon University. His research interests
include: Strategic Process Design, Financial Analy-
sis of Systems Engineering Decisions, Process Sim-
ulation, and Value Based Systems Engineering. Dr.
Raffo has over forty refereed publications in the field
of software engineering and is co-Editor-in-Chief of
the international journal of Software Process: Im-

provement and Practice. He is a Visiting Scientist at the Software Engineering
Institute and a Research Member of the International Process Research Con-
sortium (IPRC). Prior professional experience includes programming as well
as managing software development and consulting projects at Arthur D. Little,
Inc. Dr. Raffo teaches courses in Software Process Improvement, Software
Process Modeling and Simulation, and Systems Analysis and Design.

Siri-on Setamanit is currently a Consultant at Quan-
tel, Inc., a Portland, Oregon based firm specializ-
ing in Process Simulation and Modeling tools and
services. Ms. Setamanit’s research interests include:
Software Process Modeling and Simulation, Global
Software Development processes, and Supply and
Logistics Management. Ms. Setamanit received a
M.S. and Ph.D. (2007) in Systems Science from
Portland State University, an MBA from the Uni-
versity of Oregon, and a BBA from Chulalongkorn
University in Bangkok, Thailand.

APPENDIX

Figure 12 and Figure 13 show the decision trees learned
from the example of §V-B.

14

policy=NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| policy=NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW, FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| | policy=WNNN,NWNN,FNNW,FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,

NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| | | _detCap_8 <= 0.431 : 6940
| | | _detCap_8 > 0.431 : 8180
| | policy=WNNN,NWNN,FNNW,FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,

NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| | | _detCap_8 <= 0.491 :
| | | | _inspDur_10 <= 94 : 8780
| | | | _inspDur_10 > 94 : 7860
| | | _detCap_8 > 0.491 : 9320
| policy=NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| | policy=BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 : 9750
| | policy=BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 : 10300
policy=NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| policy=NNWF,BBBB,FFFF,NNNF,BFFF <= 0.5 :
| | _detCap_38 <= 0.418 : 10700
| | _detCap_38 > 0.418 : 11400
| policy=NNWF,BBBB,FFFF,NNNF,BFFF > 0.5 :
| | _corErr_50 <= 155 : 11900
| | _corErr_50 > 155 :
| | | policy=NNNF,BFFF <= 0.5 : 12400
| | | policy=NNNF,BFFF > 0.5 :
| | | | _detCap_38 <= 0.519 : 12500
| | | | _detCap_38 > 0.519 : 13600

Fig. 12. A regression tree learned by CART from data generated from the Figure 4 model. In this figure, and Figure 13, policies are denoted as a four-part
sequence describing the inspection policy at each phase. For example, “FFFN” denotes using no inspections for code but full Fagan inspections for all earlier
phases.

utility = 7370
+ 1220policy=WNNN,NWNN,FNNW,FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,

NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 258policy=FNNB,BNNN,NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW, FNNF,

NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 640policy=NNWN,NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 505policy=NNNW,WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
- 190policy=WNNW,BNNW,WNNB,BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 206policy=BNNB,WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
- 177policy=WWWW,NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 890policy=NNNB,NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
- 296policy=NNWW,FNNF,NNWB,NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 545policy=NNFN,BNNF,WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 640policy=WNNF,NNWF,BBBB,FFFF,NNNF,BFFF
+ 459policy=NNWF,BBBB,FFFF,NNNF,BFFF - 143policy=BBBB,FFFF,NNNF,BFFF
+ 835policy=NNNF,BFFF - 142_spec_2=n,b + 27_spec_2=b + 3690_detCap_8
- 135_inspEff_9 - 7320_inspDur_10 - 64400_corErr_11 - 760_detCap_18
- 134_inspEff_19 - 7310_inspDur_20 - 64300_corErr_21 - 9100_detCap_28
- 134_inspEff_29 - 7320_inspDur_30 - 64300_corErr_31 + 6170_detCap_38
- 134_inspEff_39 - 7320_inspDur_40 - 64400_corErr_41

+ 21500_inspEff_48 + 1.17e6_inspDur_49 + 64400_corErr_50

Fig. 13. Linear regression learned from data generated from the Figure 4 model.

