
Defect Prediction from Static Code Features:
Current Results, Limitations, New Approaches

TIM MENZIES, ZACH MILTON

West Virginia University

BURAK TURHAN

NRC

BOJAN CUKIC, YUE JIANG

West Virginia University

AYŞE BENER

Boğaziçi University

Building quality software is expensive. Software QA budgets are limited. Data miners can learn

defect predictors from static code features which can be used to control QA resources; e.g. to
focus on the parts of the code predicted to be more defective.

Recent results show that supposedly better data mining technology is not leading to better

defect predictors. We hypothesize that we have reached the limits of the standard learning goal
of maximizing area under the curve (AUC) of the probability of false alarms and probability of

detection “AUC(pf,pf)”; i.e. the area under the curve of a probability of false alarm vs probability

of detection.
Accordingly, we explore changing the standard goal. Learners that maximize “AUC(effort,pd)”

find the smallest set of modules that contain the most errors. WHICH is a meta-learner framework

that can be quickly customized to different goals. When customized to AUC(effort,pd), WHICH
out-performs all the data mining methods studied here. More importantly, measured in terms of

this new goal, certain widely used learners perform much worse than simple manual methods.
Hence, we advise against the indiscriminate use of learners. Learners must be chosen and

customized to the goal at hand. With the right architecture (e.g. WHICH), tuning a learner to

specific local business goals can be a simple task.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics—Product metrics;
Complexity metrics; U.2.8 [Computer Methodologies]: Learning

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: defect prediction, static code features, WHICH

1. INTRODUCTION

A repeated result is that static code features such as lines of code per module,
number of symbols in the module, etc can be used by a data miner to predict which

Corresponding author: Tim Menzies. Author contacts: tim@menzies.us, zmilton@mix.wvu.edu,

bojan.cukic@mail.csee.wvu.edu, yjiang1@mix.wvu.edu, burak.turhan@nrc-cnrc.gc.ca, bener@

boun.edu.tr. This research was supported by NSF grant CCF-0810879 and the Turkish Scientific
Research Council (Tubitak EEEAG 108E014). For an earlier draft, see http://menzies.us/pdf/

08bias.pdf.
c© 20YY 0000-0000/20YY/0000-0001

Submitted to ASE Journal, Vol. V, No. N, Month 20YY, Pages 1–32.

2 ·

modules are more likely to contain defects1. Such defect predictors can be used
to allocate the appropriate verification and validation budget assigned to different
code modules.

The current high water mark in this field has been curiously static for several
years. For example, for three years we have been unable to improve on our 2006
results [Menzies et al. 2007]. Other studies report the same ceiling effect: many
methods learn defect predictors that perform statistically insignificantly different
to the best results. For example, after a careful study 19 data miners for learning
defect predictors seeking to maximize the area under the curve of detection-vs-false
alarm curve, Lessmann et al. [2008] conclude

...the importance of the classification model is less than generally as-
sumed ... practitioners are free to choose from a broad set of models
when building defect predictors.

This article argues for a very different conclusion. The results of Lessmann et al. are
certainly correct, in the context of maximizing detection and minimizing false alarm
rates- but this is not the only possible goal of a defect predictor. WHICH [Milton
2008] is a meta-learning scheme where domain specific goals can be inserted into
the core of the learner. When those goals are set to one particular business goal
(“find the fewest modules that contain the most errors”) then the ceiling effect
disappears:

—WHICH significantly out-performs other learning schemes.
—More importantly, certain widely used learners perform worse than simple manual

methods.

That is, contrary to the views of Lessmann et al, the selection of a learning method
appropriate to a particular goal is very critical. Learners that appear useful when
pursuing certain goals, can be demonstrably inferior when pursuing others. We
recommend WHICH as a simple method to create such customizations.

The rest of this paper is structured as follows. §2 describes the use of static
code features for learning defect predictors. §3 documents the ceiling effect that
has stalled progress in this field. After that, §IV and §V discuss a novel method to
break through the ceiling effect.

2. BACKGROUND

This section motivates the use of data mining for static code features and reviews
recent results. The rest of the paper will discuss limits with this approach, and how
to overcome them.

2.1 Blind Spots

Our premise is that building high quality software is expensive. Hence, during
development, developers skew their limited quality assurance (QA) budgets towards

1e.g. [Weyuker et al. 2008; Halstead 1977; McCabe 1976; Chapman and Solomon 2002; Nagappan

and Ball 2005a; Hall and Munson 2000; Nikora and Munson 2003; Nagappan and Ball 2005b;
Khoshgoftaar 2001; Tang and Khoshgoftaar 2004; Khoshgoftaar and Seliya 2003; Porter and

Selby 1990; Tian and Zelkowitz 1995; Khoshgoftaar and Allen 2001; Srinivasan and Fisher 1995]

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 3

artifacts they believe most require extra QA. For example, it is common at NASA
to focus QA more on the on-board guidance system than the ground-based database
storing scientific data collected from a satellite.

This skewing process can introduce an inappropriate bias to quality assurance
(QA). If the QA activities concentrate on project artifacts, say A,B,C,D, then that
leaves blind spots in E,F,G,H,I,.... Blind spots can compromise high assurance
software. Leveson remarks that in modern complex systems, unsafe operations
often result from an unstudied interaction between components [Leveson 1995]. For
example, Lutz and Mikulski [Lutz and Mikulski 2003] found a blind spot in NASA
deep-space missions: most of the mission critical in-flight anomalies resulted from
errors in ground software that fails to correctly collect in-flight data.

To avoid blind spots, one option is to rigorously assess all aspects of all software
modules. But this is impractical. Software project budgets are finite and QA
effectiveness increases with QA effort. A linear increase in the confidence C that
we have found all faults can take exponentially more effort. For example, to detect
one-in-a-thousand module faults, moving C from 90% to 94% to 98% takes 2301,
2812, and 3910 black box tests (respectively)2. Lowry et.al. [Lowry et al. 1998] and
Menzies and Cukic [Menzies and Cukic 2000] offer numerous other examples where
assessment effectiveness is exponential on effort.

Exponential cost increase quickly exhausts finite QA resources. Hence, blind
spots can’t be avoided and must be managed. Standard practice is to apply the best
available assessment methods on the sections of the program that the best available
domain knowledge declares is the most critical. We endorse this approach. Clearly,
the most critical sections require the best known assessment methods, in hope of
minimizing the risk of safety or mission critical failure occurring post deployment.
However, this focus on certain sections can blind us to defects in other areas which,
through interactions, may cause similarly critical failures. Therefore, the standard
practice should be augmented with a lightweight sampling policy that (a) explores
the rest of the software and (b) raises an alert on parts of the software that appear
problematic. This sampling approach is incomplete by definition. Nevertheless, it
is the only option when resource limits block complete assessment.

2.2 Lightweight Sampling

2.2.1 Data Mining. One method for building a lightweight sampling policy is
data mining over static code features. For this paper, we define data mining to be
the process of summarizing tables of data where rows are examples and columns
are the features collected for each example3 One special feature is called the class.
The appendix to this paper describes various kinds of data miners including:

2A randomly selected input to a program will find a fault with probability x. Voas observes [Voas

and Miller 1995] that after N random black-box tests, the chance of the inputs not revealing any
fault is (1−x)N . Hence, the chance C of seeing the fault is 1− (1−x)N which can be rearranged

to N(C, x) =
log(1−C)
log(1−x)

. For example, N(0.90, 10−3) = 2301.
3Technically, this is supervised learning in the absence of a background theory. For notes on

unsupervised learning, see papers discussing clustering such as [Bradley et al. 1998]. For notes on
using a background theory, see (e.g.) papers discussing the learning or tuning of Bayes nets [Fenton

and Neil 1999].

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

4 ·
m = Mccabe v(g) cyclomatic complexity

iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to
closing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 +N2
V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2
N2

E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

Fig. 1. Static code features.

—Näive Bayes classifiers use statistical combinations of features to predict for class
value. Such classifiers are called “naive” since they assume all the features are
statistically independent. Nevertheless, a repeated empirical result is that, on
average, seemingly näive Bayes classifiers perform as well as other seemingly
more sophisticated schemes (e.g. see Table 1 in [Domingos and Pazzani 1997]).

—Rule learners like RIPPER [Cohen 1995a] generate lists of rules. When classifying
a new code module, we take features extracted from that module and iterate over
the rule list. The output classification is the first rule in the list whose condition
is satisfied.

—Decision tree learners like C4.5 [Quinlan 1992b] build one single-parent tree whose
internal nodes test for feature values and whose leaves refer to class ranges. The
output of a decision tree is a branch of satisfied tests leading to a single leaf
classification.

There are many alternatives and extensions to these learners. Much recent work
has explored the value of building forests of decision trees using randomly selected
subsets of the features [Breimann 2001; Jiang et al. 2008]. Regardless of the learning
method, the output is the same: combinations of standard features that predict for
different class values.

2.2.2 Static Code Features. Defect predictors can be learned from tables of data
containing static code features and whose class label is defective and whose values
are true or false. In those tables:

—Rows describe data from one module. Depending on the language, modules may
be called “functions”, “methods”, “procedures” or “files”.

—Columns describe one of the static code features of Figure 1. The appendix of
this paper offers further details on these features.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 5

These static code features are collected from prior development work. The defective
class summarizes the results of a whole host of QA methods that were applied to
that historical data. If any manual or automatic technique registered a problem
with this module, then it was marked “defective=true”. For these data sets, the
data mining goal is to learn a binary prediction for defective from past projects
that can be applied to future projects.

This paper argues that such defect predictors are useful and describes a novel
method for improving their performance. Just in case we overstate our case, it
is important to note that defect predictors learned from static code features can
only augment, but never replace, standard QA methods. Given a limited budget
for QA. the manager’s task is to decide which set of QA methods M1,M2, ... that
cost C1, C2, ... should be applied. Sometimes, domain knowledge is available that
can indicate that certain modules deserve the most costly QA methods. If so,
then some subset of the system may receive more attention by the QA team. We
propose defect predictors as a rapid and cost effective lightweight sampling policy
for checking if the rest of the system deserves additional attention. As argued above,
such a sampling method is essential for generating high-quality systems under the
constraint of limited budgets.

2.3 Frequently Asked Questions

2.3.1 Why Binary Classifications?. The reader may wonder why we pursue such
a simple binary classification scheme (defective ∈ {true, false}) and not, say, num-
ber of defects or severity of defects. In reply, we say:

—We do not use severity of defects since in large scale data collections, such as those
used below, it is hard to distinguish defect “severity” from defect “priority”. All
too often, we have found that developers will declare a defect “severe” when they
are really only stating a preference on what bugs they wish to fix next. Other
authors have the same reservations:
—Nikora cautions that “without a widely agreed upon definition of severity, we

can not reason about it” [Nikora 2004].
—Ostrand et al. make a similar conclusion: “(severity) ratings were highly sub-

jective and also sometimes inaccurate because of political considerations not
related to the importance of the change to be made. We also learned that they
could be inaccurate in inconsistent ways” [Ostrand et al. 2004].

—We do not use number of defects as our target variable since, as shown in Figure 2,
only a vanishingly small percent of our modules have more than one issue report.
That is, our data has insufficient examples to utilize (say) one method in the kc1
data set with a dozen defects.

2.3.2 Why Not Use Regression?. Other researchers (e.g. [Mockus et al. 2005;
T. Zimmermann and Murphy 2009]), use a logistic regression model to predict
software quality features. Such models have the general form

Probability(Y) =
e(c+a1X1+a2X2+...)

1 + e(c+a1X1+a2X2+...)

where ai are the logistic regression predicted constants and the Xi are the inde-
pendent variables used for building the logistic regression model. For example. in

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

6 ·
Percentage of modules with N defects

N defects cm1 kc1 kc3 mw1 pc1

1

2
3

4

5
6

7

8
9

10
11

12

10.67

02.17
01.19

00.99

00.40
00.20

00.40

6.50

3.04
2.18

0.76

0.33
0.43

0.28

0.24
0.05

0.05

0.05

1.96

1.53
2.83

5.69

0.74

0.25

4.15

1.53
0.45

0.09

0.09
0.09

0.09

0.09

totals 16.01 13.90 6.32 6.68 6.58

Fig. 2. Sample of percentage of defects seen in different modules. Note that only a very small
percentage of modules have more than one defect. For more details on these data sets, see Figure 3.

the case of Zimmermann et al,’s work, those variables are measures of code change,
complexity, and pre-release bugs. These are used to predict number of defects.

Another regression variant is the negative binomial regression (NBM) model used
by Ostrand et al. [Ostrand et al. 2004] to predict defects in AT&T software. Let
yi equal the number of faults observed in file i and xi be a vector of characteristics
for that file. NBM assumes that yi given xi has a Poisson distribution with mean
λi computed from λi = γie

βxi where γi is the gamma distribution with mean 1 and
variance σ2 ≥ 0 (Ostrand et al. compute σ2 and β using a maximum likelihood
procedure).

Logistic regression and NBM fit one model to the data. When data is multi-
modal, it is useful to fit multiple models. A common method for handling arbitrary
distributions to approximate complex distributions is via a set of piecewise linear
models. Model tree learners, such as Quinlan’s M5’ algorithm [Quinlan 1992a], can
learn such piecewise linear models. M5’ also generates a decision tree describing
when to use which linear model.

We do not use regression for several reasons:

—Regression assumes a continuous target variable and, as discussed above, our
target variable is binary and discrete.

—There is no definitive result showing that regression methods are better/worse
than the data miners used in this study. In one of the more elaborate recent
studies, Lessmann et al. found no statistically significant advantage of logistic
regression over a large range of other algorithms [Lessmann et al. 2008] (the
Lessmann et al. result is discussed, at length, below).

—In previous work we have assessed various learning methods (including regression
methods and model trees) in terms of their ability be guided by various business
considerations. Specifically, we sought learners that could tune their conclusions
to user-supplied utility weights about false alarms, probability of detection, etc.
Of the fifteen defect prediction methods used in that study, regression and model
trees were remarkably worst at being able to be guided in this way [Menzies
and Stefano 2003]. The last section of this paper discusses a new learner, called

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 7

WHICH, that was specially designed to support simple tuning to user-specific
criteria.

2.3.3 Why Static Code Features?. Another common question is why just use
static code features? Fenton [Fenton et al. 1994] divides software metrics into
process, product, and personnel and uses these to collect information on how the
software was built, what was built, and who built it. Static code measures are just
product metrics and, hence, do not reflect process and personnel details. For this
reason, other researchers use more that just static code measures. For example:

—Reliability engineers use knowledge of how the frequency of faults seen in a run-
ning system changes over time [Musa et al. 1987; Littlewood and Wright 1997].

—Other researchers explore churn; i.e. the rate at which the code base changes [Hall
and Munson 2000].

—Other researchers reason about the development team. For example, Nagappan et
al. comment of how organizational structure effects software quality [Nagappan
et al. 2008] while Weyuker et al. document how large team sizes change defect
rates [Weyuker et al. 2008].

When replying to this question, we say that static code features are one of the few
measures we can collect in a consistent manner across many projects. Ideally, data
mining occurs in some CMM level 5 company where processes and data collection
is precisely defined. In that ideal case, there exists extensive data sets collected
over many projects and many years. These data sets are in a consistent format and
there is no ambiguity in the terminology of the data (e.g. no confusion between
“severity” and “priority”).

We do not work in that ideal situation. Since 1998, two of the authors (Men-
zies and Cukic) have been research consultants to NASA. Working with NASA’s
Independent Software Verification and Validation Facility (IV&V), we have tried
various methods to add value to the QA methods of that organization. As we
have come to learn, NASA is a very dynamic organization. the NASA enterprise
has undergone major upheavals following the 2003 loss of the Columbia shuttle,
then President Bush’s new vision for interplanetary space exploration in 2004, and
now (2010) the cancellation of that program. As research consultants, we cannot
precisely define and data collection in such a dynamic environment. Hence, we do
not ask “what are the right features to collect?”. Instead, we can only ask “what
features can we access, right now?”. This question is relevant to NASA as well as
any organization where data collection is not controlled by a centralized authority
such as:

—agile software projects;
—out-soured projects;
—open-soured projects;
—and organizations that make extensive use of sub-contractors and sub-sub con-

tractors.

In our experience, the one artifact that can accessed in a consistent manner across
multiple different projects is the source code (this is particularly true in large
projects staffed by contractors, sub-contractors, and sub-sub contractors). Static

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

8 ·

code features can can be automatically and cheaply extracted from source code,
even for very large systems [Nagappan and Ball 2005a]. By contrast, other methods
such as manual code reviews are labor-intensive. Depending on the review methods
8 to 20 LOC/minute can be inspected and this effort repeats for all members of the
review team, which can be as large as four or six [Menzies et al. 2002].

For all the above reasons, many industrial practitioners and researchers (including
ourselves) use static attributes to guide software quality predictions (see the list
shown in the introduction). Verification and validation (V&V) textbooks [Rakitin
2001] advise using static code complexity attributes to decide which modules are
worthy of manual inspections. At the NASA IV&V facility, we know of several
large government software contractors that will not review software modules unless
tools like McCabe predict that some of them might be fault prone.

2.3.4 What Can be Learned from Static Code Features?. The previous section
argued that, for pragmatic reasons, all we can often collect are static code measures.
This is not to say that if we use those features, then they yield useful or interesting
results. Hence, a very common question we hear about is “what evidence is that
anything useful can be learned from static code measures?”.

There is a large body of literature arguing that static code features are an inad-
equate characterization of the internals of a function:

—Fenton offers an insightful example where the same functionality is achieved via
different language constructs resulting in different static measurements for that
module [Fenton and Pfleeger 1997]. Using this example, Fenton argues against
the use of static code features.

—Shepperd & Ince present empirical evidence that the McCabe static attributes
offer nothing more than uninformative attributes like lines of code. They com-
ment “for a large class of software it (cyclomatic complexity) is no more than a
proxy for, and in many cases outperformed by, lines of code” [Shepperd and Ince
1994].

—In a similar result, Fenton & Pfleeger note that the main McCabe’s attribute
(cyclomatic complexity, or v(g)) are highly correlated with lines of code [Fenton
and Pfleeger 1997].

If static code features were truly useless, then the defect predictors learned from
them would satisfy two predictions:

Prediction1:. They would perform badly (not predict for defects);
Prediction2:. They would have no generality (predictors learned from one data

set would not be insightful on another).

At least in our experiences, these predictions do not hold. This evidence falls into
two groups: field studies and a controlled laboratory study. In the field studies:

—Our prediction technology was commercialized in the Predictive tool and sold
across the United States to customers in the telecom, energy, technology, and
government markets, including organizations such as Compagnie Financire Al-
catel (Alcatel); Chevron Corporation; LogLogic, Inc.; and Northrop Grumman
Corporation. As an example of the use of Predictive, one company (GB Tech,
Inc.) used it to manage safety critical software for a United States manned strike

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 9

fighter. This code had to be tested extensively to ensure safety (the software
controlled a lithium ion battery, which can overcharge and possibly explode).
First, a more expensive tool for structural code coverage was applied. Later, the
company ran that tool and Predictive on the same code. Predictive produced
consistent results with the more expensive tools while being able to faster process
a larger code base than the more expensive tool [Turner 2006].

—We took the defect prediction technology of this paper (which was developed at
NASA in the USA) and applied it to a software development company another
country (a Turkish software company). The results were very encouraging: when
inspection teams focused on the modules that trigger our defect predictors, they
found up to 70% of the defects using 40% of the effort (measured in staff hours).
Based on those results, we have subsequently been were invited by two companies
to build tools to incorporate our defect prediction methods into their routine daily
processes [Tosun et al. 2009].

—A subsequent, more detailed, study on the Turkish software compared how much
code needs to be inspected using a random selection process vs selection via our
defect predictors. Using the random testing strategy, 87% of the files would have
to inspected in order to detect 87% of the defects. However, if the inspection
process was restricted to the 25% of the files that trigger our defect predictors,
then 88% of the defects could be found. That is, the same level of defect detection
(after inspection) can be achieved using 87−25

87 = 71% less effort [?].

The results of these field studies run counter to Prediction1. However, they are
not reproducible results. In order to make a claim that other researchers can verify,
we designed a controlled experiment to assess Prediction1 and Prediction2 in a
reproducible manner [Turhan et al. 2009]. That experiment was based on the public
domain data sets of Figure 3. These data sets are quite diverse and are written in
different languages (C,C++,JAVA); written in different countries (United Stated
and Turkey); and written for different purposes (control and monitoring of white
goods, NASA flight systems, ground-based software).

Before we can show that experiment, we must first digress to define performance
measures for defect prediction. When such a predictor fires then {A,B,C,D}
denotes the true negatives, false negatives, false positives, and true positives (re-
spectively). From these measures we can compute:

pd = recall = D
B+D

pf = C
A+C

In the above, pd is the probability of detecting a faulty module while pf is the
probability of false alarm. Other performance measures are accuracy = A+D

A+B+C+D

and precision = D
B+D . Figure 4 shows an example of the calculation of these

measures.
Elsewhere[Menzies et al. 2007], we show that accuracy and precision are highly

unstable performance indicators for data sets like Figure 3 where the target con-
cept occurs with relative infrequency: in Figure 3, only 1

7 th (median value) of the
modules are marked as defective. Therefore, for the rest of this paper, we will not
refer to accuracy or precision.

Having defined performance measures, we can now check Predictions1&2; i.e.
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

10 ·
project source language description # modules features %defective
pc1 NASA C++ flight software

for earth orbit-
ing satellites

1,109 21 6.94

kc1 NASA C++ storage manage-
ment for ground
data

845 21 15.45

kc2 NASA C++ storage manage-
ment for ground
data

522 21 20.49

cm1 NASA C++ spacecraft in-
strument

498 21 9.83

kc3 NASA JAVA storage manage-
ment for ground
data

458 39 9.38

mw1 NASA C++ a zero grav-
ity experiment
related to com-
bustion

403 37 7.69

ar4 Turkish white
goods manufac-
turer

C refrigerator 107 30 18.69

ar3 Turkish white
goods manufac-
turer

C dishwasher 63 30 12.70

mc2 NASA C++ video guidance
system

61 39 32.29

ar5 Turkish white
goods manufac-
turer

C washing ma-
chine

36 30 22.22

Total: 4,102

Fig. 3. Tables of data, sorted in order of number of examples, taken from http://promisedata.

org/data. The rows labeled “NASA” come from NASA aerospace projects while the other rows

come from a Turkish software company writing applications for domestic appliances. All this data
conforms to the format of §2.2.2.

module found in defect logs?
no yes

signal no A = 395 B = 67
detected? yes C = 19 D = 39

pf = Prob.falseAlarm = 5%

pd = Prop.detected = 37%

acc = accuracy = 83%

prec = precision = 67%

Fig. 4. Performance measures

static defect features lead to poor fault predictors and defect predictors have no
generality between data sets. If D denotes all the data in Figure 3, and Di denote
one particular data set Di ∈ D, then we can conduct two kinds of experiments:

SELF:. Self-learning experiments where we train on 90% of Di then test on the
remaining 10% . Note that such self-learning experiments will let us comment on
Prediction1.

RR:. Round-robin experiments where we test on 10% (randomly selected) of data
set Di after training on the remaining nine data sets D−Di. Note that such round-
robin experiments will let us comment on Prediction2.
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 11

median
experiment notes pd% pf%

RR round-robin 94 68
RR2 round-robin + relevancy filtering 69 27

SELF self test 75 29

Fig. 5. Results of round-robin and self experiments. From [Turhan et al. 2009]. All the pd and pf

results are statistically different at the 95% level (according to a Mann-Whitney test).

It turns out that the round-robin results are unimpressive due to an irrelevancy
effect, discussed below. Hence, it is also useful to conduct:

RR2:. Round-robin experiments where a relevancy filter is used to filter away
irrelevant parts of the training data.

After repeating experiments RR, SELF, RR2 twenty times for each data set Di ∈ D,
the median results are shown in Figure 5. At first glance, the round-robin results
of RR seem quite impressive: a 98% probability of detection. Sadly, these high
detection probabilities are associated with an unacceptably high false alarm rate of
68%.

In retrospect, this high false alarm rate might have been anticipated. A median
sized data set from Figure 3 (e.g. mw1) has around 450 modules. In a round-robin
experiment, the median size of the training set is over 3600 modules taken from nine
other projects. In such an experiment, it is highly likely that the defect predictor
will be learned from numerous irrelevant details from other projects.

To counter the problem of irrelevant training data, the second set of round-
robin experiments constructed training sets for Di from the union of the 10 nearest
neighbors within D −Di. The RR2 results of Figure 5 show the beneficial effects
of relevancy filtering: false alarm rates reduced by 68

27 = 252% with only a much
smaller reduction in pd of 94

69 = 136%.
Returning now to Prediction1, the SELF and RR2 pd ≥ 69% results are much

larger than those seen in industrial practice:

—A panel at IEEE Metrics 2002 [Shull et al. 2002] concluded that manual software
reviews can find ≈60% of defects4

—Raffo found that the defect detection capability of industrial review methods
can vary from pd = TR(35, 50, 65)%5. for full Fagan inspections [Fagan 1976] to
pd = TR(13, 21, 30)% for less-structured inspections [Raffo 2005].

That is, contrary to Prediction1, defect predictors learned from static code fea-
tures perform well, relative to standard industrial methods.

Turning now to Prediction2, note that the RR2 round-robin results (with rele-
vancy filtering) are close to the SELF:

—The pd results are only 1− 75
69 = 8% different;

—The pf results are only 29
27 − 1 = 7% different.

4That panel supported neither Fagan claim [Fagan 1986] that inspections can find 95% of defects

before testing or Shull’s claim that specialized directed inspection methods can catch 35% more
defects that other methods [Shull et al. 2000].
5TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

12 ·

That is, contrary to Prediction2, there is generality in the defect predictions
learned from static code features. Learning from local data is clearly best (SELF’s
pd results are better than RR2), However, nearly the same performance results as
seen in SELF can be achieved by applying defect data from one site (e.g. NASA
fight systems) to another (e.g. Turkish white good software).

2.4 Summary

For all the above reasons, we research defect predictors based on static code features.
Such predictors are:

—Useful: they out-perform standard industrial methods. Also, just from our own
experience, we can report that they have been successfully applied in software
companies in the United States and Turkey.

—Generalizable: as the RR2 results show, the predictions of these models generalize
across data sets taken from different organizations working in different countries.

—Easy to use: they can automatically process thousands of modules in a matter
of seconds. Alternative methods such as manual inspections are much slower (8
to 20 LOC per minute).

—Widely-used: We can trace their use as far back as 1990 [Porter and Selby 1990].
We are also aware of hundreds of publications that explore this method (for a
partial sample, see the list shown in the introduction).

3. CEILING EFFECTS IN DEFECT PREDICTORS

Despite several years of exploring different learners and data pre-processing meth-
ods, the performance of our learners has not improved. This section documents
that ceiling effect and the rest of this paper explores methods to break through the
ceiling effect.

In 2006 [Menzies et al. 2007] we defined a repeatable defect prediction experiment
which, we hoped, others could improve upon. That experiment used public domain
data sets and open source data miners. Surprisingly, a simple näive Bayes classifiers
(with some basic pre-processor for the numerics) out-performed the other studied
methods. For details on näive Bayes classifiers, see the appendix.

We made the experiment repeatable in the hope that other researchers could im-
prove or refute our results. So far, to the best of our knowledge, no study using just
static code features has out-performed our 2006 result. Our own experiments [Jiang
et al. 2008] found little or no improvement from the application of numerous data
mining methods. Figure 6 shows some of those results using (in order, left to right)
aode average one-dependence estimators [Yang et al. 2006]; bag bagging [Brieman
1996]; bst boosting [Freund and Schapire 1997]; IBk instance-based learning [Cover
and Hart 1967]; C4.5 C4.5 [Quinlan 1992b]; jrip RIPPER [Cohen 1995b]; lgi lo-
gistic regression [Breiman et al. 1984]; nb näive Bayes (second from the right); and
rf random forests [Breimann 2001]. These histograms show area under the curve
(AUC) of a pf-vs-pd curve. To generate such a “AUC(pf,pd)” curve:

—A learner is executed multiple times on different subsets of data;
—The pd, pf results are collected from each execution;
—The results are sorted on increasing order of pf ;
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 13

Fig. 6. Box plot for AUC(pf,pd) seen with 9 learners when, 100 times, a random 90% selection of

the data is used for training and the remaining data is used for testing. The rectangles show the

inter-quartile range (the 25% to 75% quartile range). The line shows the minimum to maximum
range, unless that range extends beyond 1.5 times the inter-quartile range (in which case dots are

used to mark these extreme outliers). From [Jiang et al. 2008].

Fig. 7. Range of AUC(pf,pd) ranks seen in 19 learners building defect predictors when, 10 times,
a random 66% selection of the data is used for training and the remaining data is used for testing.
In ranked data, values from one method are replaced by their rank in space of all sorted values

(so smaller ranks means better performance). In this case, the performance value was area under
the false positive vs true-positive curve (and larger values are better). Vertical lines divide the

results into regions where the results are statically similar. For example, all the methods whose

top ranks are 4 to 12 are statistically insignificantly different. From [Lessmann et al. 2008].

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

14 ·

—The results are plotted on a 2-D graph using pf for the x-axis and pd for the
y-axis.

A statistical analysis of the Figure 6 results showed that only boosting on discretized
data offers a statistically better result than näive Bayes. However, we cannot
recommend boosting: boosting is orders of magnitudes slower than näive Bayes;
and the median improvement over näive Bayes is negligible.

Other researchers have also failed to improve our results. For example, Figure 7
shows results from a study by Lessmann et al. on statistical differences between
19 learners used for defect prediction [Lessmann et al. 2008]. At first glance, our
preferred näive Bayes method (shown as “NB” on the sixth line of Figure 7) seems
to perform poorly: it is ranked in the lower third of all 19 methods. However, as
with all statistical analysis, it is important to examine not only central tendencies
but also the variance in the performance measure. The vertical dotted lines in
Figure 7 show Lessmann et al.’s statistical analysis that divided the results into
regions where all the results are significantly different: the performance of the top
16 methods are statistically insignificantly different from each other (including our
preferred “NB” method). Lessmann et.al. comment:

“Only four competitors are significantly inferior to the overall winner
(k-NN, K-start, BBF net, VP). The empirical data does not provide
sufficient evidence to judge whether RndFor (Random Forest), performs
significantly better than QDA (Quadratic Discriminant Analysis) or any
classifier with better average rank.

In other words, Lessmann et al. are reporting a ceiling effect where a large number
of learners exhibit performance results that are indistinguishable.

 0

 1
 0

 1

 0

 1effort

ideal (pd=1, pf=0)

risk adverse
cost

adverse

pf

pd
effort

Fig. 8. Pf -vs-pd-vs-effort.

4. BREAKING THROUGH THE CEILING

This section discusses methods for breaking through the ceiling effects documented
above.
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 15

One constant in the results of Figure 6 and Figure 7 is the performance goal
used in those studies: both those results assumed the goal of the learning was to
maximize AUC(pf,pd), i.e. the area under a pf -vs-pd curve. As shown below, if we
change the goal of the learning, then we can break the ceiling effect and find better
(and worse) methods for learning defect predictors from static code measures.

Depending on the business case that funded the data mining study, different goals
may be most appropriate. To see this, consider the typical pf -vs-pd-vs-effort curve
of Figure 8:

—The pf ,pd performance measures were defined above.
—Effort is the percentage of the code base found in the modules predicted to be

faulty (so if all modules are predicted to be faulty, the 100% of the code base
must be processed by some other, slower, more expensive QA method).

For the moment, we will just focus on the pf, pd plane of Figure 8. A perfect
detector has no false alarm rates and finds all fault modules; i.e. pf, pd=0, 1. As
shown in Figure 8, the AUC(pf,pd) can bend towards this ideal point but may never
reach there:

—Detectors learned from past experience have to make some inductive leaps and,
in doing so, make some mistakes. That is, the only way to achieve high pds is to
accept some level of pfs.

—The only way to avoid false alarms is to decrease the probability that the detector
will trigger. That is, the only way to achieve low pfs is to decrease pd.

Different businesses prefer different regions of Figure 8 curve:

—Mission-critical systems are risk averse and may accept very high false alarm
rates, just as long as they catch any life-threatening possibility.

—For less critical software, cost averse managers may accept lower probabilities of
detection, just as long as they do not waste budgets on false alarms.

That is, different businesses have different goals:

Goal1:. Risk averse developments prefer high pd;

Goal2:. Cost averse developments accept mid-range pd, provided they get low
pf .

Arisholm & Briand [Arisholm and Briand 2006] propose yet another another goal:

Goal3:. A budget-conscious team wants to know that if X% of the modules
are predicted to be defective, then modules contain more than X% of the defects.
Otherwise, they argue, the cost of generating the defect predictor is not worth the
effort.

The effort-based evaluation of Goal3 uses a dimension not explored by the prior
work that reported ceiling effects (Lessmann et al. or our work [Jiang et al. 2008;
Menzies et al. 2007]). Hence, for the rest of this paper, we will assess the impacts
of the Arisholm & Briand goal of maximizing the “AUC(effort,pd)”.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

16 ·

4.1 Experimental Set Up

4.1.1 Operationalizing AUC(effort,pd). To operationalize goal3 from Arisholm
& Briand evaluation, we assume that:

—After a data miner predicts a module is defective, it is inspected by a team of
human experts.

—This team correctly recognizes some subset ∆ of the truly defective modules (and
∆ = 1 means that the inspection teams are perfect at their task).

—Our goal is to find learners that find the most number of defective modules in
the smallest number of modules (measured in terms of LOC).

For Arisholm & Briand to approve of a data miner, it must fall in the region
pd > effort. The minimum curve in Figure 9 shows the lower boundary of this
region and a “good” detector (according to AUC(effort,pd)) must fall above this
line. Regarding the x-axis and y-axis of this figure:

—The x-axis shows all the modules, sorted on size. For example, if we had 100
modules of 10 LOC, 10 modules of 15 LOC, and 1 module of 20 LOC then the
x-axis would be 111 items long with the 10 LOC modules on the left-hand side
and the 20LOC module on the right-hand side.

—Note that the y-axis of this figure assumes ∆ = 1; i.e. inspection teams correctly
recognizes all defective modules other values of ∆ are discussed below.

4.1.2 Upper and Lower Bounds on Performance. It is good practice to compare
the performance of some technique against theoretical upper and lower bounds [Co-
hen 1995a]. Automatic data mining methods are interesting if they out-perform
manual methods. Therefore, for a lower-bound on expected performance, we com-
pare them against some manual methods proposed by Koru et.al. [Koru et al. 2007;
Koru et al. 2008; Koru et al. 2009]:

—They argue that the relationship between module size and number of defects is not
linear, but logarithmic; i.e. smaller modules are proportionally more troublesome.

—The manualUp and manualDown curves of Figure 9 show the results expected
by Koru et al. from inspecting modules in increasing/decreasing order of size
(respectively).

—With manualUp, all modules are selected and sorted in increasing order of size,
so that curve runs from 0 to 100% of the LOC.

In a result consistent with Koru et.al., our experiments show manualUp usually
defeating manualDown. As shown in Figure 9, manualUp scores higher on effort-
vs-PD than manualDown. Hence, we define an upper bound on our performance
as follows. Consider an optimal oracle that restricts module inspections to just the
modules that are truly defective. If manualUp is applied to just these modules, then
this would show the upper-bound on detector performance. For example, Figure 9
shows this best curve where 30% of the LOC are in defective modules.

In our experiments, we ask our learners to make a binary decision (defective, nonDefective).
All the modules identified as defective are then sorted in order of increasing size
(LOC). We then assess their performance by AUC(effort,pd). For example, the
bad learner in Figure 9 performs worse than the good learner since the latter has a
larger area under its curve.
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 17

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
D

 (
%

 p
ro

ba
bi

lit
y

of
 d

et
ec

tio
n)

Effort (% LOC inspected)

best

m
an

ua
lU

p

m
an

ua
lD

ow
n

good

A=30 B=45

C=85

D

bad

m
in

im
um

Fig. 9. Effort-vs-PD.

In order to provide an upper-bound on our AUC, we report them as a ratio of
the area under the best curve. All the performance scores mentioned in the rest of
this paper are hence normalized AUC(effort,pd) values ranging from 0% to 100%
of the best curve.

Note that normalization simplifies our assessment criteria. If the effectiveness of
the inspection team is independent of the method used to select the modules that
they inspect then ∆ is the same across all data miners. By expressing the value of
a defect predictor as a ratio of the area under the best curve, this ∆ cancels out so
we can assess the relative merits of different defect predictors independently of ∆.

4.1.3 Details. Three more details will complete our discussion of Figure 9. De-
fect detectors usually do not trigger on all modules. For example, the good curve of
Figure 9 triggers on B=43% of the code while only detecting 85% of the defective
modules. Similarly, the bad curve stops after finding 30% of the defective modules
in 24% of the code. To complete the effort-vs-PD curve, we must fill in the gap
between the termination point and X = 100. Later in this article, we will assume
that test engineers inspect the modules referred to by the data miner. Visually, for
the good curve, this assumption would correspond to a flat line running to the right
from point C = 85 (i.e. the 85% of the code triggered by the learner that generated
the good curve).

Secondly, the following observation will become significant when we tune a learner
to AUC(effort,pd). Even though Figure 9 shows effort-vs-PD, it can also indi-
rectly show false alarms. Consider the plateau in the good curve of Figure 9, marked
with “D”, at around effort = 10, PD = 45. Such plateaus mark false alarms where
the detectors are selecting modules that have no defects. That is, to maximize the
area under an effort-vs-PD, we could assign a heavy penalty against false alarms
that lead to plateaus.

Thirdly, Figure 9 assumes that inspection effort is linear on size of module. We
make this assumption since a previous literature review reported that current in-

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

18 ·

spection models all report linear effort models [Menzies et al. 2002]. Nevertheless,
Figure 9 could be extended to other effort models as follows: stretch the x-axis to
handle, say, non-linear effects such as longer modules take exponentially more time
to read and understand.

4.2 Initial results

Figure 9’s bad and manualUp curves show our first attempt at applying this new
evaluation bias. These curves were generated by applying manualUp and the C4.5
tree learner [Quinlan 1992b] to one of the data sets studied by Lessmann et al.
Observe how the the automatic method performed far worse than a manual one.
To explain this poor performance, we comment that data miners grow their models
using a search bias B1, then we assess them using a different evaluation bias B2.
For example:

—During training, a decision-tree learner may stop branching if the diversity of the
instances in a leaf of a branch6 falls below some heuristic threshold.

—During testing, the learned decision-tree might be tested on a variety of criteria
such as Lessmann et al.’s AUC measure or our operationalization of AUC(effort,pd).

It is hardly surprising that C4.5 performed so poorly in Figure 9. C4.5 was not
designed to optimize AUC(effort,pdf) (since B1 was so different to B2). Some
learning schemes support biasing the learning according to the overall goal of the
system; for example:

—The cost-sensitive learners discussed by Elkan [Elkan 2001];
—The ROC ensembles discussed by Fawcett [Fawcett 2001] where the conclusion is

a summation of the conclusions of the ensemble of ROC curves7, proportionally
weighted, to yield a new learner.

—Our cost curve meta-learning scheme permits an understanding of the perfor-
mance of a learner across the entire space of pd-vs-pf trade-offs [Jiang et al.
2008].

At best, such biasing only indirectly controls the search criteria. If the search
criteria is orthogonal to the success criteria of, say, maximizing effort-vs-pd, then
cost-sensitive learning or ensemble combinations or cost curve meta-learning will not
be able to generate a learner that supports that business application. Accordingly,
we decided to experiment with a new learner, called WHICH, whose internal search
criteria can be tuned to a range of goals such as AUC(effort,pd).

5. WHICH

The previous section argued for a change in the goals of of data miners. WHICH [Mil-
ton 2008] is a meta-learning scheme that uses a configurable search bias to grow its
models. This section describes WHICH, how to customize it, and what happened
when we applied those customizations to the data of Figure 3.

6For numeric classes, this diversity measure might be the standard deviation of the class feature.

For discrete classes, the diversity measure might be the entropy measure used in C4.5.
7ROC= receiver-operator characteristic curves such as Lessmann et al.’s plots of PD-vs-PF or

PD-vs-precision

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 19

 0

0.2

0.4

0.6

0.8

1.0

 1 10 100 1000
T

op
-o

f-
st

ac
k

sc
or

e

Number of picks

A

Fig. 10. Top-of-stack scores of the WHICH stack seen after multiple “picks” (selection and scoring

of two conditions picked at random, then combined) for seven data sets from the UCI data mining

repository [Blake and Merz 1998]. Usually, top-of-stack stabilizes after just a dozen pick. However,
occasionally, modest improvements are seen after a few hundred “picks” (see the plot marked with

an “A”).

5.1 Details

WHICH loops over the space of possible feature ranges, evaluating various combi-
nations of features:

(1) Data from continuous features is discretized into “N” equal width bins. We
tried various bin sizes and, for this study, best results were seen using N ∈
{2, 4, 8} bins of width (max−min)/N .

(2) WHICH maintains a stack of feature combinations, sorted by a customizable
search bias B1 . For this study, WHICH used the AUC(effort,pd) criteria,
discussed below.

(3) Initially, WHICH’s “combinations” are just each range of each feature. Subse-
quently, they can grow to two or more features.

(4) Two combinations are picked at random, favoring those combinations that are
ranked highly by B1.

(5) The two combinations are themselves combined, scored, then sorted into the
stacked population of prior combinations.

(6) Go to step 4.

For the reader aware of the artificial intelligence (AI) literature, we remark that
WHICH is a variant of beam search. Rather than use a fixed beam size, WHICH
uses a fuzzy beam where combinations deeper in the stack are exponentially less
like to be selected. Also, while a standard beam search just adds child states to the
current frontier, WHICH can add entire sibling branches in the search tree (these
sibling branches are represented as other combinations on the stack).

After numerous loops, WHICH returns the highest ranked combination of fea-
tures. During testing, modules that satisfy this combination are predicted as being
“defective”. These modules are sorted on increasing order of size and the statistics
of Figure 9 are collected.

The looping termination criteria was set using our engineering judgment. In
studies with UCI data sets [Blake and Merz 1998], Milton showed that the score of

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

20 ·

top-of-stack condition usually stabilizes in less than 100 picks [Milton 2008] (those
results are shown in Figure 10). Hence, to be cautious, we looped 200 times.

The following expression guides WHICH’s search:

B1 = 1−
p
PD2 ∗ α+ (1− PF)2 ∗ β + (1− effort)2 ∗ γ

√
α+ β + γ

(1)

The (PD,PF, effort) values are normalized to fall between zero and one. The
(α, β, γ) terms in Equation 1 model the relative utility of PD,PF, effort respec-
tively. These values range 0 ≤ (α, β, γ) ≤ 1. Hence:

—0 ≤ B1 ≤ 1;
—larger values of B1 are better;
—increasing (effort, PF, PD) leads to (decreases, decreases, increases) in B1 (re-

spectively).

Initially, we gave PD and effort equal weights and ignored PF ; i.e. α = 1, β = 0, γ = 1.
This yielded disappointing results: the performance of the learned detectors varied
wildly across our cross-validation experiments. An examination of our data revealed
why: there exists a small number of modules with very large LOCs. For example,
in one data set with 126 modules, most have under 100 lines of code but a few of
them are over 1000 lines of code long. The presence of small numbers of very large
modules means that γ = 1 is not recommended. If the very large modules fall into
a particular subset of some cross-validation, then the performance associated with
WHICH’s rule can vary unpredictably from one run to another.

Accordingly, we had to use PF as a surrogate measure for effort. Recall from
the above discussion that we can restrain decreases in PD by assigning a heavy
penalty to the false alarms that lead to plateaus in a effort-vs-PD curve. In the
following experiments, we used a B1 equation that disables effort but places a
very large penalty on PF ; i.e.

α = 1, β = 1000, γ = 0 (2)

We acknowledge that the choice Equation 1 and Equation 2 is somewhat arbitrary.
In defense of these decisions, we note that in the following results, these decisions
lead to a learner that significantly out-performed standard learning methods.

5.2 Results

Figure 11 shows results from experimental runs with different learners on the data
sets of Figure 3. Each run randomized the order of the data ten times, then per-
formed a N=3-way cross-val study (N=3 was used since some of our data sets were
quite small). For each part of the cross-val study, pd-vs-effort curves were generated
using:

—Manual methods: manualUp and manualDown;
—Using standard data miners: the C4.5 decision tree learner, the RIPPER rule

learner, and our previously recommended näive Bayes method. For more details
on these learners, see Appendices I,II, and III. Note that these standard miners
included methods that we have advocated in prior publications.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 21

—Three versions of WHICH: This study applied several variants of WHICH. WHICH-
2, WHICH-4, and WHICH-8 discretize numeric ranges into 2,4, and 8 bins (re-
spectively).

—MICRO-20: MICRO-20 was another variant motivated by the central limit the-
orem. According to the central limit theorem, the sum of a large enough sample
will approximately normally distributed (the theorem explains the prevalence
of the normal probability distribution). The sample can be quite small, some-
times even as low as 20. Accordingly, MICRO-20 was a variant of WHICH-2 that
learns from just 20+20 examples of defective and non-defective modules (selected
at random).

5.2.1 Overall Results. Figure 11 shows the results for all the data sets of Fig-
ure 3, combined:

—Each row shows the normalized AUC(effort,pdf) results for a particular learner
over 30 experiments (10 repeats of a three-way). These results are shown as a
25% to 75% quartile range (and the large black dot indicates the median score).

—The left-hand-side column of each row shows the results of a Mann-Whitney
(95% confidence test) of each row. Row i has a different rank to row i+ 1 if their
median scores are different and the Mann-Whitney test indicates that the two
rows have a different wins+ties results. See the appendix for a discussion on why
the Mann-Whitney test was used on these results.

In Figure 11, WHICH performs relatively and absolutely better than all of the other
methods studied in this paper:

—Relative performance: WHICH-2 and the MICRO-20 learner have the highest
ranks;

—Absolute performance: In our discussion of Figure 9, the best curve was presented
as the upper bound in performance for any learner tackling AUC(effort,pd).
WHICH’s performance rises close to this upper bound, rising to to 70.9 and
80% (median and 75% percentile range) of the best possible performance.

Several other results from Figure 11 are noteworthy.

—There is no apparent benefit in detailed discretization: WHICH-2 outperforms
WHICH-4 and WHICH-8.

—In a result consistent with our prior publications [Menzies et al. 2007], our näive
Bayes classifier out-performs other standard data miners (C4.5 and RIPPER).

—In a result consistent with Koru et.al.’s logarithmic defect hypothesis, manualUp
defeats manualDown.

—In Figure 11, standard data miners are defeated by a manual method (manualUp).
The size of the defeat is very large: median values of 61.1% to 27.6% from
manualUp to C4.5.

This last result is very sobering. In Figure 11, two widely used methods (C4.5 and
RIPPER) are defeated by manualDown; i.e. by a a manual inspection method that
Koru et al. would argue is the worst possible inspection policy. These results calls
into question the numerous prior defect prediction results, including several papers
written by the authors

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

22 ·
2nd quartile, median

data rank treatment median Q′ and 3rd quartile

all 1 WHICH-2 70.9
s

1 MICRO-20 67.0
s

2 manualUp 61.1
s

3 näive Bayes 56.8
s

4 manualDown 49.5
s

5 WHICH-4 49.2
s

6 WHICH-8 31.2
s

6 C4.5 27.6
s

7 RIPPER 21.9
s

50%

Fig. 11. Results from all data sets of Figure 3, combined from 10 repeats of a 3-way cross-val, sorted
by median Q′. Each row shows 25 to 75% percentile range of the normalized AUC(effort,pdf)

results (and the large black dot indicates the median score). Two rows have different ranks (in
the left-hand-side column) if their median AUC scores are different and a Mann-Whitney test

(95% confidence) indicates that the two rows have a different wins+ties results. Note that we

do not recommend WHICH-4 and WHICH-8 since these discretization policies performed much
worse than WHICH-2.

5.2.2 Individual Results. Figure 11 combines results from all data sets. Figures
12, 13, 14, and 15 look at each data set in isolation. The results divide into three
patterns:

—In the eight data sets of pattern #1 (shown in Figure 12 and Figure 13), WHICH-
2 has both the highest median Q′ performance and is found to be in the top rank
by the Mann-Whitney statistical analysis.

—In the two data sets of pattern #2 (shown in Figure 14), WHICH-2 does not
score the highest median performance, but still is found in the top-rank.

—In the one data set that shows pattern #3 (shown in Figure 15), WHICH-2 is
soundly defeated by manual methods (manualUp). However, in this case, the
WHICH-2 variant MICRO-20 falls into the second rank

In summary, when looking at each data set in isolation, WHICH performs very well
in 9

10 of the data sets.

5.3 External Validity

We argue that the data sets used in this paper are far broader (and hence, more
externally valid) than seen in prior defect prediction papers. All the data sets
explored by Lessmann et al. [Lessmann et al. 2008] and our prior work [Menzies
et al. 2007] come from NASA aerospace applications. Here, we use that data,
plus three extra data sets from a Turkish company writing software controllers for
dishwashers (ar3), washing machines (ar4) and refrigerators (ar5). The development
practices from these two organizations are very different:

—The Turkish software was built in a profit- and revenue-driven commercial orga-
nization, whereas NASA is a cost-driven government entity

—The Turkish software was developed by very small teams (2-3 people) working
in the same physical location while the NASA software was built by much larger
team spread around the United States.

—The Turkish development was carried out in an ad-hoc, informal way rather than
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 23

2nd quartile, median
data rank treatment median Q′ and 3rd quartile

ar4 1 WHICH-2 58.6
s

1 manualDown 56.5
s

1 näive Bayes 56.2
s

1 manualUp 56.2
s

1 WHICH-4 49.3
s

1 RIPPER 47.3
s

2 MICRO-20 49.2
s

3 WHICH-8 42.6
s

3 C4.5 38.8
s

cm1 1 WHICH-2 68.1
s

1 MICRO-20 64.7
s

1 manualUp 59.8
s

2 näive Bayes 52.1
s

3 manualDown 47.6
s

4 WHICH-8 11.4
s

4 RIPPER 5.8
s

4 C4.5 0.1
s

4 WHICH-4 0.0
s

kc1 1 WHICH-2 76.0
s

1 MICRO-20 75.1
s

2 manualUp 67.6
s

3 näive Bayes 61.9
s

4 WHICH-4 52.9
s

5 manualDown 43.3
s

6 C4.5 27.8
s

7 RIPPER 21.3
s

8 WHICH-8 0.0
s

kc2 1 WHICH-2 81.6
s

2 MICRO-20 74.8
s

3 manualUp 69.3
s

4 WHICH-4 59.4
s

4 näive Bayes 58.7
s

5 manualDown 46.1
s

5 RIPPER 42.2
s

6 WHICH-8 41.2
s

6 C4.5 41.2
s

50%

Fig. 12. Four examples of pattern #1: WHICH-2 ranked #1 and has highest median. This figure
is reported in the same format as Figure 11.

the formal, process oriented approach used at NASA.

Our general conclusion, that WHICH is preferred to other methods for applciationx,
holds for 6

7 of the NASA data sets and 3
3 of the Turkish sets. The fact that the

same result holds for such radically different organizations is a strong argument for
the external validity of our results.

While the above results, based on ten data sets, are no promise of the efficacy of
WHICH on future data sets, these results are strong evidence that, when a learner
is assessed using AUC(effort, pd), then:

—Of all the learners studied here, WHICH or MICRO-20 is preferred over other
learners;

—Standard learners such as näive Bayes, the RIPPER rule learner, and the C4.5
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

24 ·
2nd quartile, median

data rank treatment median Q′ and 3rd quartile

kc3 1 WHICH-2 87.3
s

2 MICRO-20 76.3
s

3 näive Bayes 64.2
s

3 manualUp 64.2
s

4 WHICH-4 47.8
s

4 manualDown 47.6
s

4 WHICH-8 46.7
s

5 C4.5 23.1
s

5 RIPPER 17.7
s

mw1 1 WHICH-2 62.4
s

1 manualDown 60.2
s

1 MICRO-20 55.7
s

2 manualUp 47.8
s

3 WHICH-4 42.7
s

3 näive Bayes 41.7
s

4 WHICH-8 39.3
s

5 C4.5 20.0
s

5 RIPPER 15.8
s

pc1 1 WHICH-2 65.0
s

1 MICRO-20 64.4
s

1 manualUp 60.6
s

2 näive Bayes 51.5
s

3 manualDown 44.6
s

4 WHICH-8 22.6
s

4 C4.5 19.2
s

4 RIPPER 15.1
s

4 WHICH-4 0.0
s

50%

Fig. 13. Three examples of pattern #1: WHICH-2 ranked #1 and has highest median. This figure

is reported in the same format as Figure 11.

decision tree learner perform much worse than simple manual methods. Hence,
we must strongly depreciate their use when optimizing for AUC(effort,pd).

6. DISCUSSION

This goal of this paper was to comment on Lessmann et al.’s results by offering one
example where knowledge of the evaluation biases alters which learner “wins” a
comparative evaluation study. The current version of WHICH offers that example.

While that goal was reached, there are many open issues that could be fruit-
ful explored, in future work. Those issues divide into methodological issues and
algorithmic issues.

6.1 Methodological Issues

This paper has commented that the use of a new goal (AUC(effort,pd)) resulted
in improved performance for certain learners tuned to that new goal. It should be
noted that trying different goals for learners randomly is perhaps too expensive.
Such an analysis may never terminate since the the space of possible goals is very
large.

We do not recommend random goal selection. Quite the reverse, in fact. We
would propose that:
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 25

2nd quartile, median
data rank treatment median Q′ and 3rd quartile

ar3 1 manualDown 54.7
s

1 manualUp 52.6
s

1 C4.5 47.8
s

1 WHICH-8 42.7
s

1 WHICH-2 40.4
s

2 WHICH-4 41.8
s

2 MICRO-20 38.0
s

3 näive Bayes 34.4
s

4 RIPPER 0.2
s

ar5 1 MICRO-20 77.6
s

1 WHICH-4 71.4
s

1 manualDown 69.6
s

1 WHICH-2 67.6
s

1 C4.5 56.1
s

1 RIPPER 55.0
s

1 näive Bayes 54.1
s

2 manualUp 56.5
s

3 WHICH-8 0.0
s

50%

Fig. 14. Two examples of pattern #2: While WHICH-2 did not achieve the highest medians, it

was still ranked #1 compared to eight other methods. This figure is reported in the same format
as Figure 11.

2nd quartile, median
data rank treatment median Q′ and 3rd quartile

mc2 1 manualUp 74.3
s

2 MICRO-20 57.1
s

2 näive Bayes 55.9
s

3 C4.5 43.7
s

3 manualDown 42.8
s

4 RIPPER 28.5
s

5 WHICH-8 21.9
s

6 WHICH-4 5.6
s

6 WHICH-2 0.0
s

50%

Fig. 15. The only example of pattern #3: WHICH-2 loses (badly) but MICRO-20 still ranks high.
This figure is reported in the same format as Figure 11.

—Before commencing data mining, there must be some domain analysis with the
goal of determining the success criteria that most interests the user population.
(for a sample of such goals, recall the discussion at the start of §4 regarding
mission-critical and other systems).

—Once the business goals have been modeled, then the data miners should be
customized to those goals.

That is, rather than conduct studies with randomized business goals, we argue that
it is better to let business considerations guide the goal exploration. Of course,
such an analysis would be pointless unless the learning tool can be adapted to the
business goals. WHICH was specially designed to enable the rapid customization
of the learner to different goals. For example, while the current version supports
AUC(effort,pd), that can be easily changed to other goals.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

26 ·

6.2 Algorithmic Issues

The algorithmic issues concern the inner details of WHICH:

—Are there better values for (α, β, γ) than Equation 2?
—The above study only explored AUC(effort,pd) and this is only one possible goal

of a defect predictor. It could be insightful to explore other goals.
—It is possible to restrict the size of the stack to some maximum depth (and new

combinations that score less than bottom-of-stack are discarded). For the study
shown here, we unused an unrestricted stack size.

—Currently, WHICH sorts new items into the stack using a linear time search from
top-of-stack. This is simple to implement via a linked list structure but a faster
alternative would be a binary-search over skip lists [Pugh 1990].

—Other rule learners employ a greedy back-select to prune conditions. To im-
plement such a search, check it removing any part of the combined condition
improves the score. If not, terminate the back select. Else, remove that part
and recurse on the shorter condition. Such a back-select is coded in the current
version of WHICH, but the above results were obtained with back-select disabled.

—Currently our default value for MaxLoops is 200. This may be an overly cautious
setting. Given the results of Figure 10, MaxLoops might be safely initialized to
20 and only increased if no dramatic improvement seen in the first loop. For most
domains, this would yield a ten-fold speed up of our current implementation.

We encourage further experimentation with WHICH. The current release is released
under the GPL3.0 license and can be downloaded from http://unbox.org/wisp/
tags/which.

7. CONCLUSION

Given limited QA budgets, it is not possible to apply the most effective QA method
to all parts of a system. The manager’s job is to decide what needs to be tested
most, or tested least. Static code defect predictors are one method for auditing
those decisions. Learned from historical data, these detectors can check which
parts of the system deserve more QA effort. As discussed in §2.4, defect predictors
learned from static code measures are useful, easy to use. Hence, as shown by a list
offered in the introduction, they are very widely-used.

Based on our own results, and those of Lessmann et al., it seems natural to
conclude that many learning methods have equal effectiveness at learning defect
predictors from static code features. In this paper, we have shown that this ceiling
effect does not necessarily hold when studying performance criteria other than
AUC(pf,pd). When defect predictors are assessed by other criteria such as “read
less, see more defects” (i.e. AUC(effort,pd)), then the selection of the appropriate
learner becomes critical:

—A learner tuned to “read less, see more defects” performs best;
—A simple manual analysis out-performs certain standard learners such as NB,

C4.5, RIPPER. The use of these learners is therefore depreciated for “read less,
see more defects”.

Our conclusion is that knowledge of the goal of the learning can and should be used
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 27

to select a preferred learner for a particular domain. The WHICH meta-learning
framework is one method for quickly customizing a learner to different goals.

We hope that this paper prompts a new cycle of defect prediction research focused
on selecting the best learner(s) for particular business goals. In particularly, based
on this paper, we now caution that it is an open and urgent question whether or
not many of our learners perform not better than simple manual methods.

REFERENCES

Arisholm, E. and Briand, L. 2006. Predicting fault-prone components in a java legacy system. In

5th ACM-IEEE International Symposium on Empirical Software Engineering (ISESE), Rio de
Janeiro, Brazil, September 21-22. Available from http://simula.no/research/engineering/

publications/Arisholm.2006.4.

Blake, C. and Merz, C. 1998. UCI repository of machine learning databases. URL: http:

//www.ics.uci.edu/~mlearn/MLRepository.html.

Bradley, P. S., Fayyad, U. M., and Reina, C. 1998. Scaling clustering algorithms to large

databases. In Knowledge Discovery and Data Mining. 9–15. Available from http://citeseer.

ist.psu.edu/bradley98scaling.html.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 1984. Classification and
regression trees. Tech. rep., Wadsworth International, Monterey, CA.

Breimann, L. 2001. Random forests. Machine Learning, 5–32.

Brieman, L. 1996. Bagging predictors. Machine Learning 24, 2, 123–140.

Chapman, M. and Solomon, D. 2002. The relationship of cyclomatic complexity, essential

complexity and error rates. Proceedings of the NASA Software Assurance Symposium, Cool-
font Resort and Conference Center in Berkley Springs, West Virginia. Available from http:

//www.ivv.nasa.gov/business/research/osmasas/conclusion2002/Mike_C%hapman_The_

Relationship_of_Cyclomatic_Complexity_Essential_Complexity_and_Erro%r_Rates.ppt.

Cohen, P. 1995a. Empirical Methods for Artificial Intelligence. MIT Press.

Cohen, W. 1995b. Fast effective rule induction. In ICML’95. 115–123. Available on-line from

http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps.

Cover, T. M. and Hart, P. E. 1967. Nearest neighbour pattern classification. IEEE Transactions

on Information Theory, 21–27.

Demsar, J. 2006. Statistical comparisons of clasifiers over multiple data sets. Journal of Ma-

chine Learning Research 7, 1–30. Avaliable from http://jmlr.csail.mit.edu/papers/v7/

demsar06a.html.

Dietterich, T. 1997. Machine learning research: Four current directions. AI Magazine 18, 4,
97–136.

Domingos, P. and Pazzani, M. J. 1997. On the optimality of the simple bayesian classifier under

zero-one loss. Machine Learning 29, 2-3, 103–130.

Elkan, C. 2001. The foundations of cost-sensitive learning. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI01). Available from http:

//www-cse.ucsd.edu/users/elkan/rescale.pdf.

Fagan, M. 1976. Design and code inspections to reduce errors in program development. IBM
Systems Journal 15, 3.

Fagan, M. 1986. Advances in software inspections. IEEE Trans. on Software Engineering,

744–751.

Fawcett, T. 2001. Using rule sets to maximize roc performance. In 2001 IEEE Interna-

tional Conference on Data Mining (ICDM-01). Available from http://home.comcast.net/

~tom.fawcett/public_html/papers/ICDM-final.pdf.

Fenton, N., Pfleeger, S., and Glass, R. 1994. Science and Substance: A Challenge to Software

Engineers. IEEE Software, 86–95.

Fenton, N. E. and Neil, M. 1999. A critique of software defect prediction models. IEEE
Transactions on Software Engineering 25, 5, 675–689. Available from http://citeseer.nj.

nec.com/fenton99critique.html.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

28 ·

Fenton, N. E. and Pfleeger, S. 1995. Software Metrics: A Rigorous & Practical Approach

(second edition). International Thompson Press.

Fenton, N. E. and Pfleeger, S. 1997. Software Metrics: A Rigorous & Practical Approach.

International Thompson Press.

Freund, Y. and Schapire, R. 1997. A decision-theoretic generalization of on-line learning and
an application to boosting. JCSS: Journal of Computer and System Sciences 55.

Hall, G. and Munson, J. 2000. Software evolution: code delta and code churn. Journal of

Systems and Software, 111 – 118.

Halstead, M. 1977. Elements of Software Science. Elsevier.

Huang, J. and Ling, C. 2005. Using auc and accuracy in evaluating learning algorithms. IEEE

Transactions on Knowledge and Data Engineering 17, 3 (March), 299–310.

Jiang, Y., Cukic, B., and Ma, Y. 2008. Techniques for evaluating fault prediction models.

Empirical Software Engineering, 561–595.

Jiang, Y., Cukic, B., and Menzies, T. 2008. Does transformation help? In Defects 2008.
Available from http://menzies.us/pdf/08transform.pdf.

Khoshgoftaar, T. 2001. An application of zero-inflated poisson regression for software fault

prediction. In Proceedings of the 12th International Symposium on Software Reliability Engi-
neering, Hong Kong. 66–73.

Khoshgoftaar, T. and Allen, E. 2001. Model software quality with classification trees. In

Recent Advances in Reliability and Quality Engineering, H. Pham, Ed. World Scientific, 247–
270.

Khoshgoftaar, T. M. and Seliya, N. 2003. Fault prediction modeling for software quality

estimation: Comparing commonly used techniques. Empirical Software Engineering 8, 3, 255–
283.

Koru, A., Emam, K. E., Zhang, D., Liu, H., and Mathew, D. 2008. Theory of relative defect

proneness: Replicated studies on the functional form of the size-defect relationship. Empirical
Software Engineering, 473–498.

Koru, A., Zhang, D., El Emam, K., and Liu, H. 2009. An investigation into the functional form

of the size-defect relationship for software modules. Software Engineering, IEEE Transactions
on 35, 2 (March-April), 293 –304.

Koru, A., Zhang, D., and Liu, H. 2007. Modeling the effect of size on defect proneness for open-

source software. In Proceceedings PROMISE’07 (ICSE). Available from http://promisedata.

org/pdf/mpls2007KoruZhangLiu.pdf.

Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. 2008. Benchmarking classification models

for software defect prediction: A proposed framework and novel findings. IEEE Transactions
on Software Engineering.

Leveson, N. 1995. Safeware System Safety And Computers. Addison-Wesley.

Littlewood, B. and Wright, D. 1997. Some conservative stopping rules for the operational
testing of safety-critical software. IEEE Transactions on Software Engineering 23, 11 (Novem-

ber), 673–683.

Lowry, M., Boyd, M., and Kulkarni, D. 1998. Towards a theory for integration of mathematical
verification and empirical testing. In Proceedings, ASE’98: Automated Software Engineering.

322–331.

Lutz, R. and Mikulski, C. 2003. Operational anomalies as a cause of safety-critical requirements
evolution. Journal of Systems and Software. Available from http://www.cs.iastate.edu/

~rlutz/publications/JSS02.ps.

McCabe, T. 1976. A complexity measure. IEEE Transactions on Software Engineering 2, 4
(Dec.), 308–320.

Menzies, T. and Cukic, B. 2000. When to test less. IEEE Software 17, 5, 107–112. Available

from http://menzies.us/pdf/00iesoft.pdf.

Menzies, T., Dekhtyar, A., Distefano, J., and Greenwald, J. 2007. Problems with precision.
IEEE Transactions on Software Engineering. http://menzies.us/pdf/07precision.pdf.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 29

Menzies, T., Greenwald, J., and Frank, A. 2007. Data mining static code attributes to

learn defect predictors. IEEE Transactions on Software Engineering. Available from http:

//menzies.us/pdf/06learnPredict.pdf.

Menzies, T., Raffo, D., on Setamanit, S., Hu, Y., and Tootoonian, S. 2002. Model-based
tests of truisms. In Proceedings of IEEE ASE 2002. Available from http://menzies.us/pdf/

02truisms.pdf.

Menzies, T. and Stefano, J. S. D. 2003. How good is your blind spot sampling policy? In 2004

IEEE Conference on High Assurance Software Engineering. Available from http://menzies.

us/pdf/03blind.pdf.

Milton, Z. 2008. Which rules. M.S. thesis.

Mockus, A., Zhang, P., and Li, P. L. 2005. Predictors of customer perceived software quality.
In ICSE ’05: Proceedings of the 27th international conference on Software engineering. ACM,

New York, NY, USA, 225–233.

Musa, J., Iannino, A., and Okumoto, K. 1987. Software Reliability: Measurement, Prediction,

Application. McGraw Hill.

Nagappan, N. and Ball, T. 2005a. Static analysis tools as early indicators of pre-release defect

density. In ICSE 2005, St. Louis.

Nagappan, N. and Ball, T. 2005b. Static analysis tools as early indicators of pre-release defect

density. In ICSE. 580–586.

Nagappan, N., Murphy, B., and V, B. 2008. The influence of organizational structure on

software quality: An empirical case study. In ICSE’08.

Nikora, A. 2004. Personnel communication on the accuracy of severity determinations in nasa
databases.

Nikora, A. and Munson, J. 2003. Developing fault predictors for evolving software systems. In
Ninth International Software Metrics Symposium (METRICS’03).

Ostrand, T. J., Weyuker, E. J., and Bell, R. M. 2004. Where the bugs are. In ISSTA ’04:
Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing and

analysis. ACM, New York, NY, USA, 86–96.

Porter, A. and Selby, R. 1990. Empirically guided software development using metric-based

classification trees. IEEE Software, 46–54.

Pugh, W. 1990. Skip lists: a probabilistic alternative to balanced trees. Communications of the

ACM 33, 6, 668–676. Available from ftp://ftp.cs.umd.edu/pub/skipLists/skiplists.pdf.

Quinlan, J. R. 1992a. Learning with Continuous Classes. In 5th Australian Joint Con-
ference on Artificial Intelligence. 343–348. Available from http://citeseer.nj.nec.com/

quinlan92learning.html.

Quinlan, R. 1992b. C4.5: Programs for Machine Learning. Morgan Kaufman. ISBN: 1558602380.

Raffo, D. 2005. Personnel communication.

Rakitin, S. 2001. Software Verification and Validation for Practitioners and Managers, Second

Edition. Artech House.

Shepperd, M. and Ince, D. 1994. A critique of three metrics. The Journal of Systems and

Software 26, 3 (September), 197–210.

Shull, F., ad B. Boehm, V. B., Brown, A., Costa, P., Lindvall, M., Port, D., Rus, I.,

Tesoriero, R., and Zelkowitz, M. 2002. What we have learned about fighting defects.
In Proceedings of 8th International Software Metrics Symposium, Ottawa, Canada. 249–258.
Available from http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps.

Shull, F., Rus, I., and Basili, V. 2000. How perspective-based reading can improve requirements
inspections. IEEE Computer 33, 7, 73–79. Available from http://www.cs.umd.edu/projects/

SoftEng/ESEG/papers/82.77.pdf.

Srinivasan, K. and Fisher, D. 1995. Machine learning approaches to estimating software de-

velopment effort. IEEE Trans. Soft. Eng., 126–137.

T. Zimmermann, N. Nagappan, H. G. E. G. and Murphy, B. 2009. Cross-project defect
prediction. In ESEC/FSE’09.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

30 ·

Tang, W. and Khoshgoftaar, T. M. 2004. Noise identification with the k-means algorithm. In

ICTAI. 373–378.

Tian, J. and Zelkowitz, M. 1995. Complexity measure evaluation and selection. IEEE Trans-

action on Software Engineering 21, 8 (Aug.), 641–649.

Tosun, A., Bener, A., and Turhan, B. 2009. Practical considerations of deploying ai in defect

prediction: A case study within the turkish telecommunication industry. In PROMISE’09.

Turhan, B., Menzies, T., Bener, A., and Distefano, J. 2009. On the relative value of cross-

company and within-company data for defect prediction. Empirical Software Engineering 68, 2,

278–290. Available from http://menzies.us/pdf/08ccwc.pdf.

Turner, J. 2006. A predictive approach to eliminating errors in software code. Available from

http://www.sti.nasa.gov/tto/Spinoff2006/ct_1.html.

Voas, J. and Miller, K. 1995. Software testability: The new verification. IEEE Software, 17–28.

Available from http://www.cigital.com/papers/download/ieeesoftware95.ps.

Weyuker, E., Ostrand, T., and Bell, R. 2008. Do too many cooks spoil the broth? using the

number of developers to enhance defect prediction models. Empirical Software Engineering.

Witten, I. H. and Frank, E. 2005. Data mining. 2nd edition. Morgan Kaufmann, Los Altos,
US.

Yang, Y., Webb, G. I., Cerquides, J., Korb, K. B., Boughton, J. R., and Ting, K. M. 2006.
To select or to weigh: A comparative study of model selection and model weighing for spode

ensembles. In ECML. 533–544.

APPENDIX

Learners Used in This Study

WHICH, manualUp, and manualDown was described above. The other learners
used in this study come from the WEKA toolkit [Witten and Frank 2005] and are
described below.

Naive Bayes classifiers, or NB, offer a relationship between fragments of evidence
Ei, a prior probability for a posteriori probability an hypothesis given some evi-
dence P (H|E); and a class hypothesis P (H) probability (in our case, we have two
hypotheses: H ∈ {defective, nonDefective}). The relationship comes from Bayes
Theorem: P (H|E) =

∏
i P (Ei|H)P (H)

P (E) For numeric features, a feature’s mean µ

and standard deviation σ are used in a Gaussian probability function [Witten and

Frank 2005]: f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2 . Simple naive Bayes classifiers are called
“naive” since they assume independence of each feature. Potentially, this is a sig-
nificant problem for data sets where the static code measures are highly correlated
(e.g. the number of symbols in a module increases linearly with the module’s lines
of code). However, Domingos and Pazzini have shown theoretically that the inde-
pendence assumption is a problem in a vanishingly small percent of cases [Domingos
and Pazzani 1997]. This result explains (a) the repeated empirical result that, on
average, seemingly näive Bayes classifiers perform as well as other seemingly more
sophisticated schemes (e.g. see Table 1 in [Domingos and Pazzani 1997]); and (b)
our prior experiments where naive Bayes did not perform worse than other learn-
ers that continually re-sample the data for dependent instances (e.g. decision-tree
learners like C4.5 that recurse on each “split” of the data [Quinlan 1992b]).

This study used J48 [Witten and Frank 2005], a JAVA port of Quinlan’s C4.5
decision tree learner C4.5, release 8 [Quinlan 1992b]. C4.5 is a iterative dichotomiza-
tion algorithm that seek the best attribute value splitter that most simplifies the
data that falls into the different splits. Each such splitter becomes a root of a tree.
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 31

Sub-trees are generated by calling iterative dichotomization recursively on each of
the splits. C4.5 is defined for discrete class classification and uses an information-
theoretic measure to describe the diversity of classes within a data set. A leaf
generated by C4.5 stores the most frequent class seen during training. During test,
an example falls into one of the branches in the decision tree and is assigned the
class from the leaf of that branch. C4.5 tends to produce big “bushy” trees so the
algorithm includes a pruning step. Sub-trees are eliminated if their removal does
not greatly change the error rate of the tree.

JRip is a JAVA port of the RIPPER [Cohen 1995b] rule-covering algorithm.
One rule is learned at each pass for one class. All the examples that satisfy the
rule condition are marked as covered and are removed from the data set. The
algorithm then recurses on the remaining data. JRip takes a rather unique stance
to rule generation and has operators for pruning, description length and rule-set
optimization For a full description of these techniques, see[Dietterich 1997]. In
summary, after building a rule, RIPPER performs a back-select to see what parts of
a condition can be pruned, without degrading the performance of the rule. Similarly,
after building a set of rules, RIPPER tries pruning away some of the rules. The
learned rules are built while minimizing their description length; the size of the
learned rules, as well as a measure of the rule errors. Finally, after building rules,
RIPPER tries replacing straw-man alternatives (i.e. rules grown very quickly by
some naive method).

Details on Static Code Features

This section offers some details on the Halstead and Mccabe features.
The Halstead features were derived by Maurice Halstead in 1977. He argued that

modules that are hard to read are more likely to be fault prone [Halstead 1977].
Halstead estimates reading complexity by counting the number of operators and
operands in a module: see the h features of Figure 1. These three raw h Halstead
features were then used to compute the H: the eight derived Halstead features
using the equations shown in Figure 1. In between the raw and derived Halstead
features are certain intermediaries:

—µ = µ1 + µ2;
—minimum operator count: µ∗1 = 2;
—µ∗2 is the minimum operand count (number of module parameters).

An alternative to the Halstead features are the complexity features proposed by
Thomas McCabe in 1976. Unlike Halstead, McCabe argued that the complexity
of pathways between module symbols are more insightful than just a count of the
symbols [McCabe 1976]. The Mccabe measures are defined as follows.

—A module is said to have a flow graph; i.e. a directed graph where each node
corresponds to a program statement, and each arc indicates the flow of control
from one statement to another.

—The cyclomatic complexity of a module is v(G) = e−n+2 where G is a program’s
flow graph, e is the number of arcs in the flow graph, and n is the number of
nodes in the flow graph [Fenton and Pfleeger 1995].

—The essential complexity, (ev(G)) of a module is the extent to which a flow
graph can be “reduced” by decomposing all the subflowgraphs of G that are

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

32 ·

D-structured primes (also sometimes referred to as “proper one-entry one-exit
subflowgraphs” [Fenton and Pfleeger 1995]). ev(G) = v(G) −m where m is the
number of subflowgraphs of G that are D-structured primes [Fenton and Pfleeger
1995].

—Finally, the design complexity (iv(G)) of a module is the cyclomatic complexity
of a module’s reduced flow graph.

Choice of Statistical Test

For several reasons, this study uses the Mann Whitney test. Firstly, many au-
thors, including Demsar [Demsar 2006], remark that ranked statistical tests such
as Mann-Whitney are not susceptible to errors caused by non-Gaussian performance
distributions. Accordingly, we do not use t-tests since they make a Gaussian as-
sumption.

Also, recall that Figure 9 shows the results of a two-stage process: first, select
some detectors; second, rank them and watch the effort-vs-pd curve grow as we
sweep right across Figure 9 (this two-stage process is necessary to baseline the
learners against manualUp and manualDown, as well as allowing us to express
the results as the ratio of a best curve). The second stage of this process violates
the paired assumptions of, say, the Wilcoxon tests since different test cases may
appear depending on which modules are predicted to be defective. Accordingly, we
require a non-paired test like Mann Whitney to compare distributions (rather than
pairs of treatments applied to the same test case).

Further, while much has been written of the inadequacy of other statistical
tests [Demsar 2006; Huang and Ling 2005], to the best of our knowledge, there
is no current negative critique of Mann Whitney as a statistical test for data min-
ers.

Lastly, unlike some other tests (e.g. Wilcoxon), Mann-Whitney does not demand
that the two compared populations are of the same size. Hence, it is possible to run
one test that compares each row of (e.g.) Figure 12 to every other row in the same
division. This simplifies the presentation of the results (e.g. avoids the need for
a display of, say, the Bonferroni-Dunn test shown in Figure 2 of Demsar [Demsar
2006]).

Received March 2009; revised XXXX 2009; accepted XXXX 2009.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 33

A. REPLY TO REVIEWERS

Thank you for your careful reviews of this paper. Our replies to your many useful
suggestions are shown below in plain font (and the review comments are shown in
an italic font).

A.1 EDITOR’S SUMMARY:

I think the constructive substance of reviewer #2’s comments can be addressed in
a major revision, on top of paying close attention to reviewer #1’s suggestions. In
particular:

—Please first pay close attention to and make sure to address reviewer#1’s sugges-
tions.

Please see §2.3.1, §2.3.4, §4.1.1, §6.1.
—Second, please address Reviewer#2’s remarks, especially

—Address the regression methods discussed by reviewer#2; actually comparing
by means of adding to the study would be most preferable, but if you feel these
methods are somehow off the table, please say in detail why.

Please see §2.3.2.
—The balance of your related work seems a bit out of whack; please give more

space to the other authors in the field listed by reviewer#2, if necessary reducing
or compacting your references to your own work.

We have cut back our own self-references from 24 to 9. We also
added more references to the authors mentioned by reviewer 2.

—Please address the methodological issues raised as well, such as future-vs-present
tests and what about using project history?

Please see the discussion in Reviewer 2’s section

Also, reviewer 2 had concerns regarding the practical utility of this work.
Clearly, the previous draft was incomplete and did not detail our suc-
cessful industrial track record. That track record is now described in
§2.3.4.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

34 ·

A.2 Reviewer #1

The paper is well written. Its organization is good. I like the background section
which gives a lot of information about the related studies and different viewpoints.
Generally speaking, I have a favorable opinion of their research.

Thank you for that comment.

However, in this paper, there are important points that deserve consideration and
probably additional data analysis and discussion, which requires a major revision.
The detailed comments are as follows:

1) A simple ManualUp method gives very good results, which is surprising. A
workshop paper is given in the references but is there any other supporting publica-
tion or evidence in the literature?

Yes, we have two more journal references on this result from IEEE
TSE [Koru et al. 2009] and ESE [Koru et al. 2008].

2) On page 5, the authors try to justify the use of binary measures. However,
could this use of binary outcomes be responsible from:

* the curves in Figure 9? It is highly possible that big modules/classes will have
more faults. Therefore, counting every defective class as ”1” or ”true” regardless
of its actual count of faults can result in the curves seen in Figure 9.

* the ceiling effect observed for different learners in many different studies.

Indeed- one possible explanation for the ceiling effect is that we are
hiding critical information from our learners and that if we gave them
access to all the data, they would do better.
In fact, when we first started working on defect prediction (in 2002), we
did try using the actual numbers. However, the data defeated us. For
example, in PC1:
—1034 modules have 0 defects
—47 modules have 1 defects
—17 modules have 2 defects
—5 modules have 3 defects
—1 modules has 4 defects
—1 modules has 5 defects
—1 module has 6 defects
—1 module has 7 defects
—1 module has 9 defects
The same pattern repeats in the other data sets: most modules have
zero reported defects, and very few have more than one.
But we quite take the reviewer’s general point that this issue requires
more discussion in the paper. Accordingly, in this draft, we added a new
figure 2 (showing the distribution of defects in our data) as well notes on
implications of this defect pattern. Specifically, we can’t use regression
since regression assumes a continuous target variable.
To read that extended discussion, see §2.3.1 and §2.3.2.

3) Re: Figure 9 I am not clear on what corresponds to a point on the x-y axis in
this plot. Just for example, let’s assume that you have
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 35

—100 modules of 10 LOC
—10 modules of 15 LOC
—1 module of 20 LOC

in a product. If the x-axis is %LOC, it becomes necessary to mark the three per-
centile values for total LOC, at the points 10, 15, and 20 LOC, and their three
corresponding PD values. Or, would the authors simply sort all 100 modules of 10
LOC one after each other, and 10 modules of 15 LOC one after another, and so
on??

If the authors follow the latter approach, this can greatly affect the shape of the
curves. Please elaborate on this issue.

We follow the latter approach- but the text in the previous version was
not clear. We have hence extended the explanation text, see §4.1.1.

It might be useful to look into the mathematical properties of such curves. Solely
relying on that an earlier conference paper used this approach (first reference) seems
to be naive. Note that, with the latter approach, different distributions of LOC in
different data sets could greatly affect the shape of the curves.

Sometimes, papers can have a wider impact than it would appear, just
by looking at the publication venue. Certainly, this is the case with this
conference paper. One of the authors of that paper (Briand) is very
influential in the field. So much so that, in the period 2007 to 2009
when we conducted this research, we often came across reference to it.
Also, in discussions with other researchers on our work, the pd-vs-effort
curve of Briand was very often mentioned. So much so, in fact, that this
whole paper was motivated by those numerous questions on the nature
and value of a pd-vs-pf criteria.

4) If AUC(effort,pd) is the area under the curve, this means that the authors
always make comparisons with the worst case scenario (pd jumps to 100% at 100%
LOC). Do the authors have any idea about how a random order of modules would
perform on average when many random orderings are produced? This kind of ran-
domness must be considered because if the total area under the curve is used as a
metric, then the orderings that are indeed worse than random ordering will seem
like they are still favorable. This is because there will be always some area under
the curve.

We would defend the current ordering, in order to generate a simple
baseline result with manual methods. One of the sobering results of this
work is that methods we have advocated for nearly a decade fail (on
the AUC(effort,pdf) criteria) when compared to a very simple manual
method. We could offer random results- at which point the value of this
simple method would be lost in random noise. However, at least to our
way of thinking, the utility of this simple manual method is a major
result of this work and we want to present it here.

5) Normalizing AUC(effort,pd) by the best line in Figure 9 can result in difficul-
ties while making comparisons rather than simplifying those comparisons. This is

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

36 ·

because the best curve can be different from one product to another and normalizing
by the best curve can cause unpredictable results and comparisons. Instead, involv-
ing the performance of random orderings in the calculations seems to be necessary.

We agree that exploring random orderings would be useful to (say) show
that some learner’s conclusions is stable across a range of possible biases.
But that is not the intent of this paper- quite the opposite in fact. What
we show here is that if switch the evaluation bias from AUC(pf,pd) to
AUC(effort,pd) then the set of preferred learners changes dramatically.
our conclusion is that before embarking on a data mining study, the first
step must be to map the local business criteria to an evaluation bias (a
point we return to after your next comment).

6) The authors state that the recent results have not improved the performances of
different learners. This observation is used as a motivation to explore an alternative
to the standard goal for learners. Then, the rest of the paper continues on explaining
how the use of this new goal results in improved performance for learners. It should
be noted that trying different goals for learners randomly is an evolutionary process
for research. Consequently, this approach is perhaps too expensive because it spans
over many studies.

Could not agree with you more! Exploring all possible evaluation biases
would be a neverending task.
We therefore need research guidelines on how to NOT explore all possible
biases- an issue we return to below for your next point.

The paper presents interesting results. However, it does not discuss how model
builders should go about their research design. It is the initial decisions made in
the research design which affects all of the results (in this case, similar results
from various learners developed in different studies). Would there be more effective
research guidelines to be given to software engineering researchers so that they can
build learners that matter?

This is an important point- and one that was not addressed by the
previous draft. We have hence added text about research guidelines to
the conclusion: see §6.1.

7) Do you assume that effort is proportional to lines of code?

Yes- based on a previous literature review we conducted on this is-
sue [Menzies et al. 2002].
But your point is well taken- this issue deserves a little more elaboration
in the draft. Hence, based on your question, we added more text to
§4.1.3.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 37

A.3 REVIEWER #2

Defect prediction is an important area for software engineering research, and has
many potential practical uses in software development. Additionally, I think that
it is essential to do empirical studies and believe that replication is respectable and
important. But these authors have churned out at least several dozen papers (I think
I counted roughly two dozen by subsets of these authors cited in this paper alone)
and I have yet to see anything of practical value described in any one of them.

Thank you for this comment. Clearly, the previous draft was incomplete
and did not detail our successful industrial track record. Prompted by
this review, we have added notes on our industrial track record to §2.3.4.
Based on those notes we must, respectfully, disagree with this reviewer’s
assessment that our work has never/will never have any practical utility.
In fact, based on this reviewer’s comments, we would assert that our re-
sults are more useful, more industrially relevant that other researchers:
—This reviewer comments below that “all of the above-mentioned au-

thors whose work have gone uncited or under-cited are working in an
industrial setting and at least have some potential for showing indus-
trial technology transfer, even if their work is not being used yet”.

—On the other hand, as shown in §2.3.4, our work has been commer-
cialized and applied with demonstrable benefit in the United States
and overseas as well.

This is a paper production project, and the closing sentence predicts that more are
to come (”We hope that this paper prompts a new cycle of defect prediction research
...”)and I predict that their prediction will come true by them.

I see several major flaws in their research:
1) The point of being able to accurately predict which modules will contain defects

is to allow the user to predict the FUTURE. I want to be able to look at data that
I have NOW and be able to say which modules will contain defects LATER (and of
course get the prediction right). However, these authors persist in doing hold out
experiments in which they are making predictions about NOW from data collected
NOW, and then I suppose that they are claiming that this really tells the user what
will happen LATER.

Our evaluation methods are standard in the field. For example, many of
the other researchers that this reviewer is concerned we are not quoting
also use hold-out experiments to assess their results.
Nevertheless, the reviewer’s point may hold- is the entire field is in error?
To address that issue, we offer the following comments.
There are many ways to use these defect predictors- including the gen-
eration of the dDefects

dt curve (as mentioned above). In our reading of
the literature, we have seen that this is mostly done with post-release
failures (e.g. a Musa-style analysis). If we had an unambiguous source of
post-release failure data (e.g. date-stamped core dumps) then we would
certainly generate dDefects

dt curves. However, for other data sources such
as the ones processed in this paper, such curves cannot be created since
the oracle offer the defect data is a poor temporal oracle.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

38 ·

Without an unambiguous source of temporal data, we fall back to the
hold out experiments. Note that, in those experiments, the testing is
done on data not used in training. So under the assumption that the
test set follows the same distributions as the training set then those test
sets could be now or later data, and the predictors will still work. By
repeating these hold out experiments many times on random subsets of
data, we accumulate evidence on the generalization capabilities of these
models.
Another reason to prefer hold out studies is to eliminate bias, which -if
exists- affects the decisions of models as well as human-beings. Hold
out experiments have nothing to do with time. They are about data
points being visible or non-visible to a prediction model during training.
The assumption in this field (to the best of our knowledge, there is
currently no known way of relaxing this assumption) is that the system
producing the data will, in the future, continue to produce data with
similar characteristics. Therefore models trained now on visible data are
expected to show similar performance on the yet non-visible, or as the
reviewer calls, future data.

What is the evidence for that? Would it convince any practitioner to go ahead and
apply something from this paper? Software engineering research should ultimately
help practitioners improve the way they engineer software. I just don’t see this paper
moving forward towards this goal.

We offer above several pieces of evidence. For example, in §2.3.4, we
list field and controlled studies where our defect predictors have proved
demonstrably useful. We apologize for not offering the field study data
in the previous draft.

2) Additionally, the authors restrict attention to static code features to make
predictions when there is substantial evidence that information about the history of
modules such as whether they were defective in the past or have been extensively
changed (churn data) is at least as important as static features. But this is not
included. Of course since they are not predicting the future, there is no history.

We agree that not only churn data, but also other factors have been
shown to be effective in predicting defects. However, this does not inval-
idate the effectiveness of static code features. The reason for not using
churn data is simply a matter of availability. Industrial researchers have
access to almost all data resources within their environment, which are,
understandably, not shared with other researchers due to confidentiality
issues. On the other hand, we can only work on data that are avail-
able to us. That is also the reason for employing binary prediction (or
classification) rather than regression.
Also, the core of this paper is not model comparison. That is an is-
sue, which has been deeply investigated in our references, specifically
Lessmann et.al. We, anyway, compare the proposed method with the
currently-best-performing methods (as empirically shown in Lessmann
et.al). It is always possible to make comparisons with more and more

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

· 39

methods, like the reviewer suggests the use of binomial regression. How-
ever, the possibilities are infinite and we believe that our choices of base-
line methods are validated by recent research. The core of this paper is
to introduce an innovative, novel idea via the WHICH method: to align,
or better embed, business goals with the models used.

3) The paper restricts attention to machine learning predictors to the exclusion of
standard statistical regression models. I am not sure why. But given that there is
evidence that regression models can be very successful at defect prediction, I do not
understand why they do not consider linear or binomial regression, for example.

Thank you for this comment- it prompted us to add notes on regression
in §2.3.2. As stated in that section, Regression assumes a continuous
target variable and, as discussed in §2.3.1, our target variable is binary
and discrete. Also, there is no definitive result showing that regression
methods are better/worse than the data miners used in this study. In
one of the more elaborate recent studies, Lessmann et al. found no sta-
tistically significant advantage of logistic regression over a large range
of other algorithms [Lessmann et al. 2008]. Finally, in previous work we
have assessed various learning methods (including regression methods
and model trees) in terms of their ability be guided by various business
considerations. Specifically, we sought learners that could tune their
conclusions to user-supplied utility weights about false alarms, proba-
bility of detection, etc. Of the fifteen defect prediction methods used in
that study, regression and model trees were remarkably worst at being
able to be guided in this way. The last section of this paper discusses
a new learner, called WHICH, that was specially designed to support
simple tuning to user-specific criteria.

4) They only consider binary classifications. The module is either buggy or not.
They say that that is because they only do pre-release analysis and there might
be defects after release. Of course that is true, but that is what a project needs
predicted.

We describe above how companies have successfully (even eagerly) used
our binary defect predictors. That is, there is more to defect prediction
that just learning the dDetects

dt curve.

Another issue of concern is the set of papers cited. As mentioned above, they cite
roughly 24 papers by members of this group. You would think that they are the only
people doing research of this nature. This is certainly not true. I saw NO papers by
Zimmerman, Zeller, or Mockus all of which are certainly presences in the field and
have done high-quality defect prediction research. Both Zimmerman and Mockus
work in industry, by the way. Additionally, I only noticed one paper by Ostrand
and Weyuker who have worked in the field for many years, one paper by Briand,
and two by Nagappan (one of his papers appears twice in the references). Each of
these researchers have done major studies using industrial software, and all work in
industry. The group at AT&T have made predictions for several different systems
over many different releases. I am certain that other researchers I have forgotten

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

40 ·

have been similarly overlooked. And even when a paper by, say Nagappan or Briand
or Weyuker was cited, it was done just in passing and is not necessarily the most
relevant paper to cite. Notice that all of the above-mentioned authors whose work
have gone uncited or under-cited are working in an industrial setting and at least
have some potential for showing industrial technology transfer, even if their work
is not being used yet.

We have reduced our self-references from 24 to 9.
We note that this comment actually endorses our use of hold-out experi-
ments to validate our learned models. Many of the researchers mentioned
above interesting feature of the above comment is that the researchers
that the reviewer notes use hold out experiments in their research.
As to the specifics of the above comment, the lack of reference to Zim-
mermann and Mockus is a clear mistake. They have been added to this
paper.
As to Briand, his presence and impact on this work is very present and
clearly documented.
As to Zeller, his work (at least, his more recent work at, say, ASE 2009)
is more static code analysis than learning from static defect predictors.
As to other authors, there are many many more we could mention
(Khoshgoftaar, Srinivasan and Fisher, Porter and Selby, etc etc). But
one paper cannot cover an entire field. Some bias must be imposed,
otherwise there would be no room in this paper for new results (the
WHICH learner)- only a review of the field.
Instead, we focus on what is reproducible. All the studies you mention,
with the partial exception of some of Zimmermann’s 2009 work, are all
conducted on closed data sets. This paper is all about what can be
done with public domain data sets. The other work mentioned by this
reviewer is usually analyzes a single product or a product family of a
company, whereas our work spans a larger space of products. Hence,
we spend more time on the papers discussing reproducible results (e.g.
Lessmann; our own work) than others.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.

