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Building quality software is expensive. Software QA budgets are limited. Data miners can learn
defect predictors from static code features which can be used to control QA resources; e.g. to
focus on the parts of the code predicted to be more defective.

Recent results show that supposedly better data mining technology is not leading to better
defect predictors. We hypothesize that we have reached the limits of the standard learning goal
of maximizing area under the curve (AUC) of the probability of false alarms and probability of
detection “AUC(pf,pf)”; i.e. the area under the curve of a probability of false alarm vs probability
of detection.

Accordingly, we explore changing the standard goal. Learners that maximize “AUC(effort,pd)”
find the smallest set of modules that contain the most errors. WHICH is a meta-learner framework
that can be quickly customized to different goals. When customized to AUC(effort,pd), WHICH
out-performs all the data mining methods studied here. More importantly, measured in terms of
this new goal, certain widely used learners perform much worse than simple manual methods.

Hence, we advise against the indiscriminate use of learners. Learners must be chosen and
customized to the goal at hand. With the right architecture (e.g. WHICH), tuning a learner to
specific local business goals can be a simple task.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics—Product metrics;
Complexity metrics; U.2.8 [Computer Methdologies]: Learning

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: defect prediction, static code features, WHICH

1. INTRODUCTION

A repeated result is that static code features such as lines of code per module,
number of symbols in the module, etc can be used by a data miner to predict which
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modules are more likely to contain defects1. Such defect predictors can be used
to allocate the appropriate verification and validation budget assigned to different
code modules [Menzies and Stefano 2003b].

The current high water mark in this field has been curiously static for several
years. For example, for three years we have been unable to improve on our 2006
results [Menzies et al. 2007]. Other studies report the same ceiling effect: many
methods learn defect predictors that perform statistically insignificantly different
to the best results. For example, after a careful study 19 data miners for learning
defect predictors seeking to maximize the area under the curve of detection-vs-false
alarm curve, Lessmann et al. [2008] conclude

...the importance of the classification model is less than generally as-
sumed ... practitioners are free to choose from a broad set of models
when building defect predictors.

This article argues for a very different conclusion. The results of Lessmann et
al. are undoubtably correct, in the context of maximizing detection and minimiz-
ing false alarm rates- but this is not the only possible goal of a defect predictor.
WHICH [Milton 2008] is a meta-learning scheme where domain specific goals can
be inserted into the core of the learner. When those goals are set to one particular
business goal (“find the fewest modules that contain the most errors”) then the
ceiling effect disappears:

—WHICH significantly out-performs other learning schemes.
—More importantly, certain widely used learners perform worse than simple manual

methods.

That is, contrary to the views of Lessmann et al, the selection of a learning method
appropriate to a particular goal is very critical. Learners that appear useful when
pursuing certain goals, can be demonstrably inferior when pursuing others. We
recommend WHICH as a simple method to create such customizations.

The rest of this paper is structured as follows. §2 describes the use of static
code features for learning defect predictors. §3 documents the ceiling effect that
has stalled progress in this field. After that, §IV and §V discuss a novel method to
break through the ceiling effect.

Note that parts of §2 come from other papers [Menzies and Stefano 2003b; Turhan
et al. 2009] and §3 is summarized from [Menzies et al. 2008]. The rest of this paper
is unpublished work.

2. BACKGROUND

This section motivates the use of data mining for static code features and reviews
recent results. The rest of the paper will discuss limits with this approach, and how
to overcome them.

1e.g. [Weyuker et al. 2008; Halstead 1977; McCabe 1976; Chapman and Solomon 2002; Menzies
et al. 2004; Nagappan and Ball 2005a; Hall and Munson 2000; Nikora and Munson 2003; Nagappan
and Ball 2005b; Khoshgoftaar 2001; Tang and Khoshgoftaar 2004; Khoshgoftaar and Seliya 2003;
Menzies et al. 2003; Menzies et al. 2002; Menzies et al. 2003; Menzies and Stefano 2003b; Porter
and Selby 1990; Tian and Zelkowitz 1995; Khoshgoftaar and Allen 2001; Srinivasan and Fisher
1995; Menzies et al. 2007]
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2.1 Blind Spots

Our premise is that building high quality software is expensive. Hence, during
development, developers skew their limited quality assurance (QA) budgets towards
artifacts they believe most require extra QA. For example, it is common at NASA
to focus QA more on the on-board guidance system than the ground-based database
storing scientific data collected from a satellite.

This skewing process can introduce an inappropriate bias to quality assurance
(QA). If the QA activities concentrate on project artifacts, say A,B,C,D, then that
leaves blind spots in E,F,G,H,I,.... Blind spots can compromise high assurance
software. Leveson remarks that in modern complex systems, unsafe operations
often result from an unstudied interaction between components [Leveson 1995]. For
example, Lutz and Mikulski [Lutz and Mikulski 2003] found a blind spot in NASA
deep-space missions: most of the mission critical in-flight anomalies resulted from
errors in ground software that fails to correctly collect in-flight data.

To avoid blind spots, one option is to rigorously assess all aspects of all software
modules. But this is impractical. Software project budgets are finite and QA
effectiveness increases with QA effort. A linear increase in the confidence C that
we have found all faults can take exponentially more effort. For example, to detect
one-in-a-thousand module faults, moving C from 90% to 94% to 98% takes 2301,
2812, and 3910 black box tests (respectively)2. Lowry et.al. [Lowry et al. 1998] and
Menzies and Cukic [Menzies and Cukic 2000; 2002] offer numerous other examples
where assessment effectiveness is exponential on effort.

Exponential cost increase quickly exhausts finite QA resources. Hence, blind
spots can’t be avoided and must be managed. Standard practice is to apply the best
available assessment methods on the sections of the program that the best available
domain knowledge declares is the most critical. We endorse this approach. Clearly,
the most critical sections require the best known assessment methods, in hope of
minimizing the risk of safety or mission critical failure occurring post deployment.
However, this focus on certain sections can blind us to defects in other areas which,
through interactions, may cause similarly critical failures. Therefore, the standard
practice should be augmented with a lightweight sampling policy that (a) explores
the rest of the software and (b) raises an alert on parts of the software that appear
problematic. This sampling approach is incomplete by definition. Nevertheless, it
is the only option when resource limits block complete assessment.

2.2 Lightweight Sampling

2.2.1 Data Mining. One method for building a lightweight sampling policy is
data mining over static code features. For this paper, we define data mining to be
the process of summarizing tables of data where rows are examples and columns
are the features collected for each example3 One special feature is called the class.

2A randomly selected input to a program will find a fault with probability x. Voas observes [Voas
and Miller 1995] that after N random black-box tests, the chance of the inputs not revealing any
fault is (1−x)N . Hence, the chance C of seeing the fault is 1− (1− x)N which can be rearranged

to N(C, x) =
log(1−C)
log(1−x)

. For example, N(0.90, 10−3) = 2301.
3Technically, this is supervised learning in the absence of a background theory. For notes on
unsupervised learning, see papers discussing clustering such as [Bradley et al. 1998]. For notes on
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m = Mccabe v(g) cyclomatic complexity

iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to
closing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2
V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2
E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

Fig. 1. Static code features.

The appendix to this paper describes various kinds of data miners including:

—Näive Bayes classifiers use statistical combinations of features to predict for class
value. Such classifiers are called “naive” since they assume all the features are
statistically independent. Nevertheless, a repeated empirical result is that, on
average, seemingly näive Bayes classifiers perform as well as other seemingly
more sophisticated schemes (e.g. see Table 1 in [Domingos and Pazzani 1997]).

—Rule learners like RIPPER [Cohen 1995a] generate lists of rules. When classifying
a new code module, we take features extracted from that module and iterate over
the rule list. The output classification is the first rule in the list whose condition
is satisfied.

—Decision tree learners like C4.5 [Quinlan 1992] build one single-parent tree whose
internal nodes test for feature values and whose leaves refer to class ranges. The
output of a decision tree is a branch of satisfied tests leading to a single leaf
classification.

There are many alternatives and extensions to these learners. Much recent work
has explored the value of building forests of decision trees using randomly selected
subsets of the features [Breimann 2001; Jiang et al. 2008]. Regardless of the learning
method, the output is the same: combinations of standard features that predict for
different class values.

2.2.2 Static Code Features. Defect predictors can be learned from tables of data
containing static code features and whose class label is defective and whose values
are true or false. In those tables:

using a background theory, see (e.g.) papers discussing the learning or tuning of Bayes nets [Fenton
and Neil 1999].
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—Rows describe data from one module. Depending on the language, modules may
be called “functions”, “methods”, “procedures” or “files”.

—Columns describe one of the static code features of Figure 1. The appendix of
this paper offers further details on these features.

These static code features are collected from prior development work. The defective
class summarizes the results of a whole host of QA methods that were applied to
that historical data. If any manual or automatic technique registered a problem
with this module, then it was marked “defective=true”. For these data sets, the
data mining goal is to learn a binary prediction for defective from past projects
that can be applied to future projects.

This paper argues that such defect predictors are useful and describes a novel
method for improving their performance. Just in case we overstate our case, it
is important to note that defect predictors learned from static code features can
only augment, but never replace, standard QA methods. Given a limited budget
for QA. the manager’s task is to decide which set of QA methods M1, M2, ... that
cost C1, C2, ... should be applied. Sometimes, domain knowledge is available that
can indicate that certain modules deserve the most costly QA methods. If so,
then some subset of the system may receive more attention by the QA team. We
propose defect predictors as a rapid and cost effective lightweight sampling policy
for checking if the rest of the system deserves additional attention. As argued above,
such a sampling method is essential for generating high-quality systems under the
constraint of limited budgets.

2.3 Frequently Asked Questions

2.3.1 Why Binary Classifications?. The reader may wonder why we pursue such
a simple binary classification scheme (defective ∈ {true, false}) and not, say, num-
ber of defects or severity of defects. In reply, we say:

—We do not use number of defects since our knowledge of defects comes from a
pre-release analysis. After release, many faults may be apparent. However, pre-
release, only a few of those may have been found. For example, in our data sets,
only a vanishingly small percent of modules have more than one issue report.

—We do not use severity of defects since in large scale data collections, such as those
used below, it is hard to distinguish defect “severity” from defect “priority”. All
too often, we have found that developers will declare a defect “severe” when they
are really only stating a preference on what bugs they wish to fix next. Nikora
cautions that “without a widely agreed upon definition of severity, we can not
reason about it” [Nikora 2004].

2.3.2 Why Static Code Features?. Another common question is why just use
static code features? Fenton [Fenton et al. 1994] divides software metrics into
process, product, and personnel and uses these to collect information on how the
software was built, what was built, and who built it. Static code measures are just
product metrics and, hence, do not reflect process and personnel details. For this
reason, other researchers use more that just static code measures. For example:

—Reliability engineers use knowledge of how the frequency of faults seen in a run-
ning system changes over time [Musa et al. 1987; Littlewood and Wright 1997].
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—Other researchers reason about the development team. For example, Nagappan et

al. comment of how organizational structure effects software quality [Nagappan
et al. 2008] while Weyuker et al. document how large team sizes change defect
rates [Weyuker et al. 2008].

When replying to this question, we say that static code features are one of the few
measures we can collect in a consistent manner across many projects. Ideally, data
mining occurs in some CMM level 5 company where processes and data collection
is precisely defined. In that ideal case, there exists extensive data sets collected
over many projects and many years. These data sets are in a consistent format and
there is no ambiguity in the terminology of the data (e.g. no confusion between
“severity” and “priority”).

We do not work in that ideal situation. Since 1998, two of the authors (Men-
zies and Cukic) have been research consultants to NASA. Working with NASA’s
Independent Software Verification and Validation Facility (IV&V), we have tried
various methods to add value to the QA methods of that organization. In our
experience, the one artifact that can accessed in a consistent manner across multi-
ple different projects is the source code (this is particularly true in large projects
staffed by contractors, sub-contractors, and sub-sub contractors). Static code fea-
tures can can be automatically and cheaply extracted from source code, even for
very large systems [Nagappan and Ball 2005a]. By contrast, other methods such
as manual code reviews are labor-intensive. Depending on the review methods 8
to 20 LOC/minute can be inspected and this effort repeats for all members of the
review team, which can be as large as four or six [Menzies et al. 2002].

For all the above reasons, many industrial practitioners and researchers (including
ourselves) use static attributes to guide software quality predictions (see the list
shown in the introduction). Verification and validation (V&V) textbooks [Rakitin
2001] advise using static code complexity attributes to decide which modules are
worthy of manual inspections. At the NASA IV&V facility, we know of several
large government software contractors that will not review software modules unless
tools like McCabe predict that some of them might be fault prone.

2.3.3 What Can be Learned from Static Code Features?. The previous section
argued that, for pragmatic reasons, all we can often collect are static code measures.
This is not to say that if we use those features, then they yield useful or interesting
results. Hence, a very common question we hear about is “what evidence is that
anything useful can be learned from static code measures?”.

There is a large body of literature arguing that static code features are an inad-
equate characterization of the internals of a function:

—Fenton offers an insightful example where the same functionality is achieved via
different language constructs resulting in different static measurements for that
module [Fenton and Pfleeger 1997]. Using this example, Fenton argues against
the use of static code features.

—Shepperd & Ince present empirical evidence that the McCabe static attributes
offer nothing more than uninformative attributes like lines of code. They com-
ment “for a large class of software it (cyclomatic complexity) is no more than a
proxy for, and in many cases outperformed by, lines of code” [Shepperd and Ince
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project source language description # modules features %defective
pc1 NASA C++ flight software

for earth orbit-
ing satellites

1,109 21 6.94

kc1 NASA C++ storage manage-
ment for ground
data

845 21 15.45

kc2 NASA C++ storage manage-
ment for ground
data

522 21 20.49

cm1 NASA C++ spacecraft in-
strument

498 21 9.83

kc3 NASA JAVA storage manage-
ment for ground
data

458 39 9.38

mw1 NASA C++ a zero grav-
ity experiment
related to com-
bustion

403 37 7.69

ar4 Turkish white
goods manufac-
turer

C refrigerator 107 30 18.69

ar3 Turkish white
goods manufac-
turer

C dishwasher 63 30 12.70

mc2 NASA C++ video guidance
system

61 39 32.29

ar5 Turkish white
goods manufac-
turer

C washing ma-
chine

36 30 22.22

Total: 4,102

Fig. 2. Tables of data, sorted in order of number of examples, taken from http://promisedata.

org/data. The rows labeled “NASA” come from NASA aerospace projects while the other rows
come from a Turkish software company writing applications for domestic appliances. All this data
conforms to the format of §2.2.2.

1994].
—In a similar result, Fenton & Pfleeger note that the main McCabe’s attribute

(cyclomatic complexity, or v(g)) are highly correlated with lines of code [Fenton
and Pfleeger 1997].

To test this pessimistic view of static code measures, we can use them to build defect
predictors. In order to allow for repeatability, we use the publicly available data sets
of Figure 2. These data sets are quite diverse and are written in different languages
(C,C++,JAVA); written in different countries (United Stated and Turkey); and
written for different purposes (control and monitoring of white goods, NASA flight
systems, ground-based software).

If static code features were truly useless, then the defect predictors learned from
Figure 2 would satisfy two predictions:

Prediction1:. They would perform badly (not predict for defects);
Prediction2:. They would have no generality (predictors learned from one data

set would not be insightful on another).

Recently [Turhan et al. 2009] we have shown that at least for the Figure 2 data sets,
Prediction1 and Prediction2 are false. Before we can show that experiment, we
must first digress to define performance measures for defect prediction. When such
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module found in defect logs?

no yes
signal no A = 395 B = 67

detected? yes C = 19 D = 39

pf = Prob.falseAlarm = 5%

pd = Prop.detected = 37%

acc = accuracy = 83%

prec = precision = 67%

Fig. 3. Performance measures

a predictor fires then {A, B, C, D} denotes the true negatives, false negatives, false
positives, and true positives (respectively). From these measures we can compute:

pd = recall = D
B+D

pf = C
A+C

In the above, pd is the probability of detecting a faulty module while pf is the
probability of false alarm. Other performance measures are accuracy = A+D

A+B+C+D

and precision = D
B+D . Figure 3 shows an example of the calculation of these

measures.
Elsewhere[Menzies et al. 2007], we show that accuracy and precision are highly

unstable performance indicators for data sets like Figure 2 where the target con-
cept occurs with relative infrequency: in Figure 2, only 1

7 th (median value) of the
modules are marked as defective. Therefore, for the rest of this paper, we will not
refer to accuracy or precision.

Having defined performance measures, we can now check Predictions1&2; i.e.
static defect features lead to poor fault predictors and defect predictors have no
generality between data sets. If D denotes all the data in Figure 2, and Di denote
one particular data set Di ∈ D, then we can conduct two kinds of experiments:

SELF:. Self-learning experiments where we train on 90% of Di then test on the
remaining 10% . Note that such self-learning experiments will let us comment on
Prediction1.

RR:. Round-robin experiments where we test on 10% (randomly selected) of data
set Di after training on the remaining nine data sets D−Di. Note that such round-
robin experiments will let us comment on Prediction2.

It turns out that the round-robin results are unimpressive due to an irrelevancy
effect, discussed below. Hence, it is also useful to conduct:

RR2:. Round-robin experiments where a relevancy filter is used to filter away
irrelevant parts of the training data.

After repeating experiments RR, SELF, RR2 twenty times for each data set Di ∈ D,
the median results are shown in Figure 4. At first glance, the round-robin results
of RR seem quite impressive: a 98% probability of detection. Sadly, these high
detection probabilities are associated with an unacceptably high false alarm rate of
68%.
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.
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median
experiment notes pd% pf%

RR round-robin 94 68
RR2 round-robin + relevancy filtering 69 27

SELF self test 75 29

Fig. 4. Results of round-robin and self experiments. From [Turhan et al. 2009]. All the pd and pf
results are statistically different at the 95% level (according to a Mann-Whitney test).

In retrospect, this high false alarm rate might have been anticipated. A median
sized data set from Figure 2 (e.g. mw1) has around 450 modules. In a round-robin
experiment, the median size of the training set is over 3600 modules taken from nine
other projects. In such an experiment, it is highly likely that the defect predictor
will be learned from numerous irrelevant details from other projects.

To counter the problem of irrelevant training data, the second set of round-
robin experiments constructed training sets for Di from the union of the 10 nearest
neighbors within D − Di. The RR2 results of Figure 4 show the beneficial effects
of relevancy filtering: false alarm rates reduced by 68

27 = 252% with only a much
smaller reduction in pd of 94

69 = 136%.
Returning now to Prediction1, the SELF and RR2 pd ≥ 69% results are much

larger than those seen in industrial practice:

—A panel at IEEE Metrics 2002 [Shull et al. 2002] concluded that manual software
reviews can find ≈60% of defects4

—Raffo found that the defect detection capability of industrial review methods
can vary from pd = TR(35, 50, 65)%5. for full Fagan inspections [Fagan 1976] to
pd = TR(13, 21, 30)% for less-structured inspections [Raffo 2005].

That is, contrary to Prediction1, defect predictors learned from static code fea-
tures perform well, relative to standard industrial methods.

Turning now to Prediction2, note that the RR2 round-robin results (with rele-
vancy filtering) are close to the SELF:

—The pd results are only 1 − 75
69 = 8% different;

—The pf results are only 29
27 − 1 = 7% different.

That is, contrary to Prediction2, there is generality in the defect predictions
learned from static code features. Learning from local data is clearly best (SELF’s
pd results are better than RR2), However, nearly the same performance results as
seen in SELF can be achieved by applying defect data from one site (e.g. NASA
fight systems) to another (e.g. Turkish white good software).

2.4 Summary

For all the above reasons, we research defect predictors based on static code features.
Such predictors are:

—Useful: they out-perform standard industrial methods.

4That panel supported neither Fagan claim [Fagan 1986] that inspections can find 95% of defects
before testing or Shull’s claim that specialized directed inspection methods can catch 35% more
defects that other methods [Shull et al. 2000].
5TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.
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Fig. 5. Box plot for AUC(pf,pd) seen with 9 learners when, 100 times, a random 90% selection of
the data is used for training and the remaining data is used for testing. The rectangles show the
inter-quartile range (the 25% to 75% quartile range). The line shows the minimum to maximum
range, unless that range extends beyond 1.5 times the inter-quartile range (in which case dots are
used to mark these extreme outliers). From [Jiang et al. 2008].

—Generalizable: as the RR2 results show, the predictions of these models generalize
across data sets taken from different organizations working in different countries.

—Easy to use: they can automatically process thousands of modules in a matter
of seconds. Alternative methods such as manual inspections are much slower (8
to 20 LOC per minute).

—Widely-used: We can trace their use as far back as 1990 [Porter and Selby 1990].
We are also aware of hundreds of publications that explore this method (for a
partial sample, see the list shown in the introduction).

3. CEILING EFFECTS IN DEFECT PREDICTORS

Despite several years of exploring different learners and data pre-processing meth-
ods, the performance of our learners has not improved. This section documents
that ceiling effect and the rest of this paper explores methods to break through the
ceiling effect.

In 2006 [Menzies et al. 2007] we defined a repeatable defect prediction experiment
which, we hoped, others could improve upon. That experiment used public domain
data sets and open source data miners. Surprisingly, a simple näive Bayes classifiers
(with some basic pre-processor for the numerics) out-performed the other studied
methods. For details on näive Bayes classifiers, see the appendix.

We made the experiment repeatable in the hope that other researchers could im-
prove or refute our results. So far, to the best of our knowledge, no study using just
static code features has out-performed our 2006 result. Our own experiments [Jiang
et al. 2008] found little or no improvement from the application of numerous data
mining methods. Figure 5 shows some of those results using (in order, left to right)
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.
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Fig. 6. Range of AUC(pf,pd) ranks seen in 19 learners building defect predictors when, 10 times,
a random 66% selection of the data is used for training and the remaining data is used for testing.
In ranked data, values from one method are replaced by their rank in space of all sorted values
(so smaller ranks means better performance). In this case, the performance value was area under
the false positive vs true-positive curve (and larger values are better). Vertical lines divide the

results into regions where the results are statically similar. For example, all the methods whose
top ranks are 4 to 12 are statistically insignificantly different. From [Lessmann et al. 2008].

aode average one-dependence estimators [Yang et al. 2006]; bag bagging [Brieman
1996]; bst boosting [Freund and Schapire 1997]; IBk instance-based learning [Cover
and Hart 1967]; C4.5 C4.5 [Quinlan 1992]; jrip RIPPER [Cohen 1995b]; lgi logis-
tic regression [Breiman et al. 1984]; nb näive Bayes (second from the right); and
rf random forests [Breimann 2001]. These histograms show area under the curve
(AUC) of a pf-vs-pd curve. To generate such a “AUC(pf,pd)” curve:

—A learner is executed multiple times on different subsets of data;
—The pd, pf results are collected from each execution;
—The results are sorted on increasing order of pf ;
—The results are plotted on a 2-D graph using pf for the x-axis and pd for the

y-axis.

A statistical analysis of the Figure 5 results showed that only boosting on discretized
data offers a statistically better result than näive Bayes. However, we cannot
recommend boosting: boosting is orders of magnitudes slower than näive Bayes;
and the median improvement over näive Bayes is negligible.

Other researchers have also failed to improve our results. For example, Figure 6
shows results from a study by Lessmann et al. on statistical differences between
19 learners used for defect prediction [Lessmann et al. 2008]. At first glance, our
preferred näive Bayes method (shown as “NB” on the sixth line of Figure 6) seems
to perform poorly: it is ranked in the lower third of all 19 methods. However, as
with all statistical analysis, it is important to examine not only central tendencies
but also the variance in the performance measure. The vertical dotted lines in
Figure 6 show Lessmann et al.’s statistical analysis that divided the results into
regions where all the results are significantly different: the performance of the top
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16 methods are statistically insignificantly different from each other (including our
preferred “NB” method). Lessmann et.al. comment:

“Only four competitors are significantly inferior to the overall winner
(k-NN, K-start, BBF net, VP). The empirical data does not provide
sufficient evidence to judge whether RndFor (Random Forest), performs
significantly better than QDA (Quadratic Discriminant Analysis) or any
classifier with better average rank.

In other words, Lessmann et al. are reporting a ceiling effect where a large number
of learners exhibit performance results that are indistinguishable.

Fig. 7. Pf -vs-pd-vs-effort.

4. BREAKING THROUGH THE CEILING

This section discusses methods for breaking through the ceiling effects documented
above.

One constant in the results of Figure 5 and Figure 6 is the performance goal
used in those studies: both those results assumed the goal of the learning was to
maximize AUC(pf,pd), i.e. the area under a pf -vs-pd curve. As shown below, if we
change the goal of the learning, then we can break the ceiling effect and find better
(and worse) methods for learning defect predictors from static code measures.

Depending on the business case that funded the data mining study, different goals
may be most appropriate. To see this, consider the typical pf -vs-pd-vs-effort curve
of Figure 7:

—The pf ,pd performance measures were defined above.
—Effort is the percentage of the code base found in the modules predicted to be

faulty (so if all modules are predicted to be faulty, the 100% of the code base
must be processed by some other, slower, more expensive QA method).

For the moment, we will just focus on the pf, pd plane of Figure 7. A perfect
detector has no false alarm rates and finds all fault modules; i.e. pf, pd=0, 1. As
shown in Figure 7, the AUC(pf,pd) can bend towards this ideal point but may never
reach there:
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.
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—Detectors learned from past experience have to make some inductive leaps and,
in doing so, make some mistakes. That is, the only way to achieve high pds is to
accept some level of pfs.

—The only way to avoid false alarms is to decrease the probability that the detector
will trigger. That is, the only way to achieve low pfs is to decrease pd.

Different businesses prefer different regions of Figure 7 curve:

—Mission-critical systems are risk averse and may accept very high false alarm
rates, just as long as they catch any life-threatening possibility.

—For less critical software, cost averse managers may accept lower probabilities of
detection, just as long as they do not waste budgets on false alarms.

That is, different businesses have different goals:

Goal1:. Risk averse developments prefer high pd;
Goal2:. Cost averse developments accept mid-range pd, provided they get low

pf .

Arisholm & Briand [Arisholm and Briand 2006] propose yet another another goal:

Goal3:. A budget-conscious team wants to know that if X% of the modules
are predicted to be defective, then modules contain more than X% of the defects.
Otherwise, they argue, the cost of generating the defect predictor is not worth the
effort.

The effort-based evaluation of Goal3 uses a dimension not explored by the prior
work that reported ceiling effects (Lessmann et al. or our work [Jiang et al. 2008;
Jiang et al. 2008; Menzies et al. 2007]). Hence, for the rest of this paper, we will as-
sess the impacts of the Arisholm & Briand goal of maximizing the “AUC(effort,pd)”.

4.1 Experimental Set Up

4.1.1 Operationalizing AUC(effort,pd). To operationalize goal3 from Arisholm
& Briand evaluation, we assume that:

—After a data miner predicts a module is defective, it is inspected by a team of
human experts.

—This team correctly recognizes some subset ∆ of the truly defective modules (and
∆ = 1 means that the inspection teams are perfect at their task).

—Our goal is to find learners that find the most number of defective modules in
the smallest number of modules (measured in terms of LOC).

For Arisholm & Briand to approve of a data miner, it must fall in the region
pd > effort. The minimum curve in Figure 8 shows the lower boundary of this
region and a “good” detector (according to AUC(effort,pd)) must fall above this
line. Note that the y-axis of this figure assumes ∆ = 1; i.e. inspection teams
correctly recognizes all defective modules (other values of ∆ are discussed below).

4.1.2 Upper and Lower Bounds on Performance. It is good practice to compare
the performance of some technique against theoretical upper and lower bounds [Co-
hen 1995a]. Automatic data mining methods are interesting if they out-perform
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Fig. 8. Effort-vs-PD.

manual methods. Therefore, for a lower-bound on expected performance, we com-
pare them against some manual methods proposed by Koru et.al. [Koru et al.
2007]:

—They argue that the relationship between module size and number of defects is not
linear, but logarithmic; i.e. smaller modules are proportionally more troublesome.

—The manualUp and manualDown curves of Figure 8 show the results expected
by Koru et al. from inspecting modules in increasing/decreasing order of size
(respectively).

—With manualUp, all modules are selected and sorted in increasing order of size,
so that curve runs from 0 to 100% of the LOC.

In a result consistent with Koru et.al., our experiments show manualUp usually
defeating manualDown. As shown in Figure 8, manualUp scores higher on effort-
vs-PD than manualDown. Hence, we define an upper bound on our performance
as follows. Consider an optimal oracle that restricts module inspections to just the
modules that are truly defective. If manualUp is applied to just these modules, then
this would show the upper-bound on detector performance. For example, Figure 8
shows this best curve where 30% of the LOC are in defective modules.

In our experiments, we ask our learners to make a binary decision (defective, nonDefective).
All the modules identified as defective are then sorted in order of increasing size
(LOC). We then assess their performance by AUC(effort,pd). For example, the
bad learner in Figure 8 performs worse than the good learner since the latter has a
larger area under its curve.

In order to provide an upper-bound on our AUC, we report them as a ratio of
the area under the best curve. All the performance scores mentioned in the rest of
this paper are hence normalized AUC(effort,pd) values ranging from 0% to 100%
of the best curve.

Note that normalization simplifies our assessment criteria. If the effectiveness of
the inspection team is independent of the method used to select the modules that
Submitted to ASE Journal, Vol. V, No. N, Month 20YY.
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they inspect then ∆ is the same across all data miners. By expressing the value of
a defect predictor as a ratio of the area under the best curve, this ∆ cancels out so
we can assess the relative merits of different defect predictors independently of ∆.

4.1.3 Details. Two more details will complete our discussion of Figure 8. Defect
detectors usually do not trigger on all modules. For example, the good curve of
Figure 8 triggers on B=43% of the code while only detecting 85% of the defective
modules. Similarly, the bad curve stops after finding 30% of the defective modules
in 24% of the code. To complete the effort-vs-PD curve, we must fill in the gap
between the termination point and X = 100. Later in this article, we will assume
that test engineers inspect the modules referred to by the data miner. Visually, for
the good curve, this assumption would correspond to a flat line running to the right
from point C = 85 (i.e. the 85% of the code triggered by the learner that generated
the good curve).

Secondly, the following observation will become significant when we tune a learner
to AUC(effort,pd). Even though Figure 8 shows effort-vs-PD, it can also indi-
rectly show false alarms. Consider the plateau in the good curve of Figure 8, marked
with “D”, at around effort = 10, PD = 45. Such plateaus mark false alarms where
the detectors are selecting modules that have no defects. That is, to maximize the
area under an effort-vs-PD, we could assign a heavy penalty against false alarms
that lead to plateaus.

4.2 Initial results

Figure 8’s bad and manualUp curves show our first attempt at applying this new
evaluation bias. These curves were generated by applying manualUp and the C4.5
tree learner [Quinlan 1992] to one of the data sets studied by Lessmann et al.
Observe how the the automatic method performed far worse than a manual one.
To explain this poor performance, we comment that data miners grow their models
using a search bias B1, then we assess them using a different evaluation bias B2.
For example:

—During training, a decision-tree learner may stop branching if the diversity of the
instances in a leaf of a branch6 falls below some heuristic threshold.

—During testing, the learned decision-tree might be tested on a variety of criteria
such as Lessmann et al.’s AUC measure or our operationalization of AUC(effort,pd).

It is hardly surprising that C4.5 performed so poorly in Figure 8. C4.5 was not
designed to optimize AUC(effort,pdf) (since B1 was so different to B2). Some
learning schemes support biasing the learning according to the overall goal of the
system; for example:

—The cost-sensitive learners discussed by Elkan [Elkan 2001];
—The ROC ensembles discussed by Fawcett [Fawcett 2001] where the conclusion is

a summation of the conclusions of the ensemble of ROC curves7, proportionally
weighted, to yield a new learner.

6For numeric classes, this diversity measure might be the standard deviation of the class feature.
For discrete classes, the diversity measure might be the entropy measure used in C4.5.
7ROC= receiver-operator characteristic curves such as Lessmann et al.’s plots of PD-vs-PF or
PD-vs-precision
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—Our cost curve meta-learning scheme permits an understanding of the perfor-

mance of a learner across the entire space of pd-vs-pf trade-offs [Jiang et al.
2008; Y. Jiang and Menzies 2008].

At best, such biasing only indirectly controls the search criteria. If the search
criteria is orthogonal to the success criteria of, say, maximizing effort-vs-pd, then
cost-sensitive learning or ensemble combinations or cost curve meta-learning will not
be able to generate a learner that supports that business application. Accordingly,
we decided to experiment with a new learner, called WHICH, whose internal search
criteria can be tuned to a range of goals such as AUC(effort,pd).

5. WHICH

The previous section argued for a change in the goals of of data miners. WHICH [Mil-
ton 2008] is a meta-learning scheme that uses a configurable search bias to grow its
models. This section describes WHICH, how to customize it, and what happened
when we applied those customizations to the data of Figure 2.

5.1 Details

WHICH loops over the space of possible feature ranges, evaluating various combi-
nations of features:

(1) Data from continuous features is discretized into “N” equal width bins. We
tried various bin sizes and, for this study, best results were seen using N ∈
{2, 4, 8} bins of width (max − min)/N .

(2) WHICH maintains a stack of feature combinations, sorted by a customizable
search bias B1 . For this study, WHICH used the AUC(effort,pd) criteria,
discussed below.

(3) Initially, WHICH’s “combinations” are just each range of each feature. Subse-
quently, they can grow to two or more features.

(4) Two combinations are picked at random, favoring those combinations that are
ranked highly by B1.

(5) The two combinations are themselves combined, scored, then sorted into the
stacked population of prior combinations.

(6) Go to step 4.

For the reader aware of the artifical intelligence (AI) literature, we remark that
WHICH is a variant of beam search. Rather than use a fixed beam size, WHICH
uses a fuzzy beam where combinations deeper in the stack are exponentially less
like to be selected. Also, while a standard beam search just adds child states to the
current frontier, WHICH can add entire sibling branches in the search tree (these
sibling branches are represented as other combinations on the stack).

After numerous loops, WHICH returns the highest ranked combination of fea-
tures. During testing, modules that satisfy this combination are predicted as being
“defective”. These modules are sorted on increasing order of size and the statistics
of Figure 8 are collected.

The looping termination criteria was set using our engineering judgment. In
studies with UCI data sets [Blake and Merz 1998], Milton showed that the score of
top-of-stack condition usually stabilizes in less than 100 picks [Milton 2008] (those
results are shown in Figure 9). Hence, to be cautious, we looped 200 times.
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Fig. 9. Top-of-stack scores of the WHICH stack seen after multiple “picks” (selection and scoring
of two conditions picked at random, then combined) for seven data sets from the UCI data mining
repository [Blake and Merz 1998]. Usually, top-of-stack stabilizes after just a dozen pick. However,
occasionally, modest improvements are seen after a few hundred “picks” (see the plot marked with

an “A”).

Note that the early stabilization of WHICH’s top-of-stack is consistent with the
back door variable effect discussed in the constraint satisfaction literature [Williams
et al. 2003]; i.e. many domains have a small number of variables that control
everything else. If a domain has such “back doors” then (a) all solutions must
use them; (b) all changes to the output variables will be associated with different
ranges for the back doors; (c) a stochastic search like WHICH will suffice to find
them. Elsewhere, we offer extensive discussions on the implications of back doors
on decision making in software engineering [Menzies et al. 2003; Menzies and Singh
2003].

The following expression guides WHICH’s search:

B1 = 1 −
p

PD2 ∗ α + (1 − PF )2 ∗ β + (1 − effort)2 ∗ γ√
α + β + γ

(1)

The (PD, PF, effort) values are normalized to fall between zero and one. The
(α, β, γ) terms in Equation 1 model the relative utility of PD, PF, effort respec-
tively. These values range 0 ≤ (α, β, γ) ≤ 1. Hence:

—0 ≤ B1 ≤ 1;
—larger values of B1 are better;
—increasing (effort, PF, PD) leads to (decreases, decreases, increases) in B1 (re-

spectively).

Initially, we gave PD and effort equal weights and ignored PF ; i.e. α = 1, β = 0, γ = 1.
This yielded disappointing results: the performance of the learned detectors varied
wildly across our cross-validation experiments. An examination of our data revealed
why: there exists a small number of modules with very large LOCs. For example,
in one data set with 126 modules, most have under 100 lines of code but a few of
them are over 1000 lines of code long. The presence of small numbers of very large
modules means that γ = 1 is not recommended. If the very large modules fall into
a particular subset of some cross-valdation, then the performance associated with
WHICH’s rule can vary unpredictably from one run to another.

Submitted to ASE Journal, Vol. V, No. N, Month 20YY.



18 ·
Accordingly, we had to use PF as a surrogate measure for effort. Recall from

the above discussion that we can restrain decreases in PD by assigning a heavy
penalty to the false alarms that lead to plateaus in a effort-vs-PD curve. In the
following experiments, we used a B1 equation that disables effort but places a
very large penalty on PF ; i.e.

α = 1, β = 1000, γ = 0 (2)

We acknowledge that the choice Equation 1 and Equation 2 is somewhat arbitrary.
In defense of these decisions, we note that in the following results, these decisions
lead to a learner that significantly out-performed standard learning methods.

5.2 Results

Figure 10 shows results from experimental runs with different learners on the data
sets of Figure 2. Each run randomized the order of the data ten times, then per-
formed a N=3-way cross-val study (N=3 was used since some of our data sets were
quite small). For each part of the cross-val study, pd-vs-effort curves were generated
using:

—Manual methods: manualUp and manualDown;
—Using standard data miners: the C4.5 decision tree learner, the RIPPER rule

learner, and our previously recommended näive Bayes method. For more details
on these learners, see Appendices I,II, and III. Note that these standard miners
included methods that we have advocated in prior publications [Jiang et al. 2007;
Menzies 2001; Menzies et al. 2003; Menzies and Stefano 2003a; 2003b; Menzies
et al. 2004; Menzies et al. 2005; Menzies et al. 2007; Menzies et al. 2007].

—Three versions of WHICH: This study applied several variants of WHICH. WHICH-
2, WHICH-4, and WHICH-8 discretize numeric ranges into 2,4, and 8 bins (re-
spectively).

—MICRO-20: MICRO-20 [Menzies et al. 2008] was another variant motivated by
the central limit theorem. According to the central limit theorem, the sum of
a large enough sample will approximately normally distributed (the theorem
explains the prevelance of the normal probability distribution). The sample can
be quite small, sometimes even as low as 20. Accordingly, MICRO-20 was a
variant of WHICH-2 that learns from just 20+20 examples of defective and non-
defective modules (selected at random).

5.2.1 Overall Results. Figure 10 shows the results for all the data sets of Fig-
ure 2, combined:

—Each row shows the normalized AUC(effort,pdf) results for a particular learner
over 30 experiments (10 repeats of a three-way). These results are shown as a
25% to 75% quartile range (and the large black dot indicates the median score).

—The left-hand-side column of each row shows the results of a Mann-Whitney
(95% confidence test) of each row. Row i has a different rank to row i+1 if their
median scores are different and the Mann-Whitney test indicates that the two
rows have a different wins+ties results. See the appendix for a discussion on why
the Mann-Whitney test was used on these results.
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2nd quartile, median
data rank treatment median Q′ and 3rd quartile

all 1 WHICH-2 70.9
�

1 MICRO-20 67.0
�

2 manualUp 61.1
�

3 näive Bayes 56.8
�

4 manualDown 49.5
�

5 WHICH-4 49.2
�

6 WHICH-8 31.2
�

6 C4.5 27.6
�

7 RIPPER 21.9
�

50%

Fig. 10. Results from all data sets of Figure 2, combined from 10 repeats of a 3-way cross-val, sorted
by median Q′. Each row shows 25 to 75% percentile range of the normalized AUC(effort,pdf)
results (and the large black dot indicates the median score). Two rows have different ranks (in
the left-hand-side column) if their median AUC scores are different and a Mann-Whitney test
(95% confidence) indicates that the two rows have a different wins+ties results. Note that we
do not recommend WHICH-4 and WHICH-8 since these discretization policies performed much
worse than WHICH-2.

In Figure 10, WHICH performs relatively and absolutely better than all of the other
methods studied in this paper:

—Relative performance: WHICH-2 and the MICRO-20 learner have the highest
ranks;

—Absolute performance: In our discussion of Figure 8, the best curve was presented
as the upper bound in performance for any learner tackling AUC(effort,pd).
WHICH’s performance rises close to this upper bound, rising to to 70.9 and
80% (median and 75% percentile range) of the best possible performance.

Several other results from Figure 10 are noteworthy.

—There is no apparent benefit in detailed discretization: WHICH-2 outperforms
WHICH-4 and WHICH-8.

—In a result consistent with our prior publications [Menzies et al. 2007], our näive
Bayes classifier out-performs other standard data miners (C4.5 and RIPPER).

—In a result consistent with Koru et.al.’s logarithmic defect hypothesis, manualUp
defeats manualDown.

—In Figure 10, standard data miners are defeated by a manual method (manualUp).
The size of the defeat is very large: median values of 61.1% to 27.6% from
manualUp to C4.5.

This last result is very sobering. In Figure 10, two widely used methods (C4.5 and
RIPPER) are defeated by manualDown; i.e. by a a manual inspection method that
Koru et al. would argue is the worst possible inspection policy. These results calls
into question the numerous prior defect prediction results, including several papers
written by the authors [Jiang et al. 2007; Menzies 2001; Menzies et al. 2003; Menzies
and Stefano 2003a; 2003b; Menzies et al. 2004; Menzies et al. 2005; Menzies et al.
2007; Menzies et al. 2007].

5.2.2 Individual Results. Figure 10 combines results from all data sets. Figures
11, 12, 13, and 14 look at each data set in isolation. The results divide into three
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2nd quartile, median

data rank treatment median Q′ and 3rd quartile

ar4 1 WHICH-2 58.6
�

1 manualDown 56.5
�

1 näive Bayes 56.2
�

1 manualUp 56.2
�

1 WHICH-4 49.3
�

1 RIPPER 47.3
�

2 MICRO-20 49.2
�

3 WHICH-8 42.6
�

3 C4.5 38.8
�

cm1 1 WHICH-2 68.1
�

1 MICRO-20 64.7
�

1 manualUp 59.8
�

2 näive Bayes 52.1
�

3 manualDown 47.6
�

4 WHICH-8 11.4
�

4 RIPPER 5.8
�

4 C4.5 0.1
�

4 WHICH-4 0.0
�

kc1 1 WHICH-2 76.0
�

1 MICRO-20 75.1
�

2 manualUp 67.6
�

3 näive Bayes 61.9
�

4 WHICH-4 52.9
�

5 manualDown 43.3
�

6 C4.5 27.8
�

7 RIPPER 21.3
�

8 WHICH-8 0.0
�

kc2 1 WHICH-2 81.6
�

2 MICRO-20 74.8
�

3 manualUp 69.3
�

4 WHICH-4 59.4
�

4 näive Bayes 58.7
�

5 manualDown 46.1
�

5 RIPPER 42.2
�

6 WHICH-8 41.2
�

6 C4.5 41.2
�

50%

Fig. 11. Four examples of pattern #1: WHICH-2 ranked #1 and has highest median. This figure
is reported in the same format as Figure 10.

patterns:

—In the eight data sets of pattern #1 (shown in Figure 11 and Figure 12), WHICH-
2 has both the highest median Q′ performance and is found to be in the top rank
by the Mann-Whitney statistical analysis.

—In the two data sets of pattern #2 (shown in Figure 13), WHICH-2 does not
score the highest median performance, but still is found in the top-rank.

—In the one data set that shows pattern #3 (shown in Figure 14), WHICH-2 is
soundly defeated by manual methods (manualUp). However, in this case, the
WHICH-2 variant MICRO-20 falls into the second rank

In summary, when looking at each data set in isolation, WHICH performs very well
in 9

10 of the data sets.
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2nd quartile, median
data rank treatment median Q′ and 3rd quartile

kc3 1 WHICH-2 87.3
�

2 MICRO-20 76.3
�

3 näive Bayes 64.2
�

3 manualUp 64.2
�

4 WHICH-4 47.8
�

4 manualDown 47.6
�

4 WHICH-8 46.7
�

5 C4.5 23.1
�

5 RIPPER 17.7
�

mw1 1 WHICH-2 62.4
�

1 manualDown 60.2
�

1 MICRO-20 55.7
�

2 manualUp 47.8
�

3 WHICH-4 42.7
�

3 näive Bayes 41.7
�

4 WHICH-8 39.3
�

5 C4.5 20.0
�

5 RIPPER 15.8
�

pc1 1 WHICH-2 65.0
�

1 MICRO-20 64.4
�

1 manualUp 60.6
�

2 näive Bayes 51.5
�

3 manualDown 44.6
�

4 WHICH-8 22.6
�

4 C4.5 19.2
�

4 RIPPER 15.1
�

4 WHICH-4 0.0
�

50%

Fig. 12. Three examples of pattern #1: WHICH-2 ranked #1 and has highest median. This figure
is reported in the same format as Figure 10.

5.3 External Validity

We argue that the data sets used in this paper are far broader (and hence, more
externally valid) than seen in prior defect prediction papers. All the data sets
explored by Lessmann et al. [Lessmann et al. 2008] and our prior work [Menzies
et al. 2007] come from NASA aerospace applications. Here, we use that data,
plus three extra data sets from a Turkish company writing software controllers for
dishwashers (ar3), washing machines (ar4) and refrigerators (ar5). The development
practices from these two organizations are very different:

—The Turkish software was built in a profit- and revenue-driven commercial orga-
nization, whereas NASA is a cost-driven government entity

—The Turkish software was developed by very small teams (2-3 people) working
in the same physical location while the NASA software was built by much larger
team spread around the United States.

—The Turkish development was carried out in an ad-hoc, informal way rather than
the formal, process oriented approach used at NASA.

Our general conclusion, that WHICH is preferred to other methods for applciationx,
holds for 6

7 of the NASA data sets and 3
3 of the Turkish sets. The fact that the

same result holds for such radically different organizations is a strong argument for
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2nd quartile, median

data rank treatment median Q′ and 3rd quartile

ar3 1 manualDown 54.7
�

1 manualUp 52.6
�

1 C4.5 47.8
�

1 WHICH-8 42.7
�

1 WHICH-2 40.4
�

2 WHICH-4 41.8
�

2 MICRO-20 38.0
�

3 näive Bayes 34.4
�

4 RIPPER 0.2
�

ar5 1 MICRO-20 77.6
�

1 WHICH-4 71.4
�

1 manualDown 69.6
�

1 WHICH-2 67.6
�

1 C4.5 56.1
�

1 RIPPER 55.0
�

1 näive Bayes 54.1
�

2 manualUp 56.5
�

3 WHICH-8 0.0
�

50%

Fig. 13. Two examples of pattern #2: While WHICH-2 did not achieve the highest medians, it
was still ranked #1 compared to eight other methods. This figure is reported in the same format
as Figure 10.

2nd quartile, median
data rank treatment median Q′ and 3rd quartile

mc2 1 manualUp 74.3
�

2 MICRO-20 57.1
�

2 näive Bayes 55.9
�

3 C4.5 43.7
�

3 manualDown 42.8
�

4 RIPPER 28.5
�

5 WHICH-8 21.9
�

6 WHICH-4 5.6
�

6 WHICH-2 0.0
�

50%

Fig. 14. The only example of pattern #3: WHICH-2 loses (badly) but MICRO-20 still ranks high.
This figure is reported in the same format as Figure 10.

the external validity of our results.
While the above results, based on ten data sets, are no promise of the efficacy of

WHICH on future data sets, these results are strong evidence that, when a learner
is assessed using AUC(effort, pd), then:

—Of all the learners studied here, WHICH or MICRO-20 is preferred over other
learners;

—Standard learners such as näive Bayes, the RIPPER rule learner, and the C4.5
decision tree learner perform much worse than simple manual methods. Hence,
we must strongly depreciate their use when optimizing for AUC(effort,pd).
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6. DISCUSSION

This goal of this paper was to comment on Lessmann et al.’s results by offering one
example where knowledge of the evaluation biases alters which learner “wins” a
comparative evaluation study. The current version of WHICH offers that example.

While that goal was reached, there are many open issues with the WHICH learner
that could be fruitful explored, in future work:

—Are there better values for (α, β, γ) than Equation 2?
—The above study only explored AUC(effort,pd) and this is only one possible goal

of a defect predictor. It could be insightful to explore other goals.
—It is possible to restrict the size of the stack to some maximum depth (and new

combinations that score less than bottom-of-stack are discarded). For the study
shown here, we unused an unrestricted stack size.

—Currently, WHICH sorts new items into the stack using a linear time search from
top-of-stack. This is simple to implement via a linked list structure but a faster
alternative would be a binary-search over skip lists [Pugh 1990].

—Other rule learners employ a greedy back-select to prune conditions. To im-
plement such a search, check it removing any part of the combined condition
improves the score. If not, terminate the back select. Else, remove that part
and recurse on the shorter condition. Such a back-select is coded in the current
version of WHICH, but the above results were obtained with back-select disabled.

—Currently our default value for MaxLoops is 200. This may be an overly cautious
setting. Given the results of Figure 9, MaxLoops might be safely initialized to 20
and only increased if no dramatic improvement seen in the first loop. For most
domains, this would yield a ten-fold speed up of our current implementation.

We encourage further experimentation with WHICH. The current release is released
under the GPL3.0 license and can be downloaded from http://unbox.org/wisp/
tags/which.

7. CONCLUSION

Given limited QA budgets, it is not possible to apply the most effective QA method
to all parts of a system. The manager’s job is to decide what needs to be tested
most, or tested least. Static code defect predictors are one method for auditing
those decisions. Learned from historical data, these detectors can check which
parts of the system deserve more QA effort. As discussed in §2.4, defect predictors
learned from static code measures are useful, easy to use. Hence, as shown by a list
offered in the introduction, they are very widely-used.

Based on our own results, and those of Lessmann et al., it seems natural to
conclude that many learning methods have equal effectiveness at learning defect
predictors from static code features. In this paper, we have shown that this ceiling
effect does not necessarily hold when studying performance criteria other than
AUC(pf,pd). When defect predictors are assessed by other criteria such as “read
less, see more defects” (i.e. AUC(effort,pd)), then the selection of the appropriate
learner becomes critical:

—A learner tuned to “read less, see more defects” performs best;
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—A simple manual analysis out-performs certain standard learners such as NB,

C4.5, RIPPER. The use of these leaners is therefore depreciated for “read less,
see more defects”.

Our conclusion is that knowledge of the goal of the learning can and should be used
to select a preferred learner for a particular domain. The WHICH meta-learning
framework is one method for quickly customizing a learner to different goals.

We hope that this paper prompts a new cycle of defect prediction research focused
on selecting the best learner(s) for particular business goals. In particularly, based
on this paper, we now caution that it is an open and urgent question whether or
not many of our learners perform not better than simple manual methods.
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APPENDIX

Learners Used in This Study

WHICH, manualUp, and manualDown was described above. The other learners
used in this study come from the WEKA toolkit [Witten and Frank 2005] and are
described below.
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Naive Bayes classifiers, or NB, offer a relationship between fragments of evidence

Ei, a prior probability for a posteriori probability an hypothesis given some evi-
dence P (H |E); and a class hypothesis P (H) probability (in our case, we have two
hypotheses: H ∈ {defective, nonDefective}). The relationship comes from Bayes
Theorem: P (H |E) =

∏
i P (Ei|H)P (H)

P (E) For numeric features, a feature’s mean µ

and standard deviation σ are used in a Gaussian probability function [Witten and

Frank 2005]: f(x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2 . Simple naive Bayes classifiers are called
“naive” since they assume independence of each feature. Potentially, this is a sig-
nificant problem for data sets where the static code measures are highly correlated
(e.g. the number of symbols in a module increases linearly with the module’s lines
of code). However, Domingos and Pazzini have shown theoretically that the inde-
pendence assumption is a problem in a vanishingly small percent of cases [Domingos
and Pazzani 1997]. This result explains (a) the repeated empirical result that, on
average, seemingly näive Bayes classifiers perform as well as other seemingly more
sophisticated schemes (e.g. see Table 1 in [Domingos and Pazzani 1997]); and (b)
our prior experiments where naive Bayes did not perform worse than other learn-
ers that continually re-sample the data for dependent instances (e.g. decision-tree
learners like C4.5 that recurse on each “split” of the data [Quinlan 1992]).

This study used J48 [Witten and Frank 2005], a JAVA port of Quinlan’s C4.5
decision tree learner C4.5, release 8 [Quinlan 1992]. C4.5 is a iterative dichotomiza-
tion algorithm that seek the best attribute value splitter that most simplifies the
data that falls into the different splits. Each such splitter becomes a root of a tree.
Sub-trees are generated by calling iterative dichotomization recursively on each of
the splits. C4.5 is defined for discrete class classification and uses an information-
theoretic measure to describe the diversity of classes within a data set. A leaf
generated by C4.5 stores the most frequent class seen during training. During test,
an example falls into one of the branches in the decision tree and is assigned the
class from the leaf of that branch. C4.5 tends to produce big “bushy” trees so the
algorithm includes a pruning step. Sub-trees are eliminated if their removal does
not greatly change the error rate of the tree.

JRip is a JAVA port of the RIPPER [Cohen 1995b] rule-covering algorithm.
One rule is learned at each pass for one class. All the examples that satisfy the
rule condition are marked as covered and are removed from the data set. The
algorithm then recurses on the remaining data. JRip takes a rather unique stance
to rule generation and has operators for pruning, description length and rule-set
optimization For a full description of these techniques, see[Dietterich 1997]. In
summary, after building a rule, RIPPER performs a back-select to see what parts of
a condition can be pruned, without degrading the performance of the rule. Similarly,
after building a set of rules, RIPPER tries pruning away some of the rules. The
learned rules are built while minimizing their description length; the size of the
learned rules, as well as a measure of the rule errors. Finally, after building rules,
RIPPER tries replacing straw-man alternatives (i.e. rules grown very quickly by
some naive method).

Details on Static Code Features

This section offers some details on the Halstead and Mccabe features.
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The Halstead features were derived by Maurice Halstead in 1977. He argued that
modules that are hard to read are more likely to be fault prone [Halstead 1977].
Halstead estimates reading complexity by counting the number of operators and
operands in a module: see the h features of Figure 1. These three raw h Halstead
features were then used to compute the H : the eight derived Halstead features
using the equations shown in Figure 1. In between the raw and derived Halstead
features are certain intermediaries:

—µ = µ1 + µ2;
—minimum operator count: µ∗

1 = 2;
—µ∗

2 is the minimum operand count (number of module parameters).

An alternative to the Halstead features are the complexity features proposed by
Thomas McCabe in 1976. Unlike Halstead, McCabe argued that the complexity
of pathways between module symbols are more insightful than just a count of the
symbols [McCabe 1976]. The Mccabe measures are defined as follows.

—A module is said to have a flow graph; i.e. a directed graph where each node
corresponds to a program statement, and each arc indicates the flow of control
from one statement to another.

—The cyclomatic complexity of a module is v(G) = e−n+2 where G is a program’s
flow graph, e is the number of arcs in the flow graph, and n is the number of
nodes in the flow graph [Fenton and Pfleeger 1995].

—The essential complexity, (ev(G)) of a module is the extent to which a flow
graph can be “reduced” by decomposing all the subflowgraphs of G that are
D-structured primes (also sometimes referred to as “proper one-entry one-exit
subflowgraphs” [Fenton and Pfleeger 1995]). ev(G) = v(G) − m where m is the
number of subflowgraphs of G that are D-structured primes [Fenton and Pfleeger
1995].

—Finally, the design complexity (iv(G)) of a module is the cyclomatic complexity
of a module’s reduced flow graph.

Choice of Statistical Test

For several reasons, this study uses the Mann Whitney test. Firstly, many au-
thors, including Demsar [Demsar 2006], remark that ranked statistical tests such
as Mann-Whitney are not susceptible to errors caused by non-Gaussian performance
distributions. Accordingly, we do not use t-tests since they make a Gaussian as-
sumption.

Also, recall that Figure 8 shows the results of a two-stage process: first, select
some detectors; second, rank them and watch the effort-vs-pd curve grow as we
sweep right across Figure 8 (this two-stage process is necessary to baseline the
learners against manualUp and manualDown, as well as allowing us to express
the results as the ratio of a best curve). The second stage of this process violates
the paired assumptions of, say, the Wilcoxon tests since different test cases may
appear depending on which modules are predicted to be defective. Accordingly, we
require a non-paired test like Mann Whitney to compare distributions (rather than
pairs of treatments applied to the same test case).

Further, while much has been written of the inadequacy of other statistical
tests [Demsar 2006; Huang and Ling 2005], to the best of our knowledge, there
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is no current negative critique of Mann Whitney as a statistical test for data min-
ers.

Lastly, unlike some other tests (e.g. Wilcoxon), Mann-Whitney does not demand
that the two compared populations are of the same size. Hence, it is possible to run
one test that compares each row of (e.g.) Figure 11 to every other row in the same
division. This simplifies the presentation of the results (e.g. avoids the need for
a display of, say, the Bonferroni-Dunn test shown in Figure 2 of Demsar [Demsar
2006]).
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