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ABSTRACT
We propose a simple yet potentially very effective way of
visualizing trained support vector machines. Nomograms
are an established model visualization technique that can
graphically encode the complete model on a single page.
The dimensionality of the visualization does not depend on
the number of attributes, but merely on the properties of
the kernel. To represent the effect of each predictive feature
on the log odds ratio scale as required for the nomograms,
we employ logistic regression to convert the distance from
the separating hyperplane into a probability. Case studies
on selected data sets show that for a technique thought to
be a black-box, nomograms can clearly expose its internal
structure. By providing an easy-to-interpret visualization
the analysts can gain insight and study the effects of predic-
tive factors.

Categories and Subject Descriptors
G.6 [Probability and Statistics]: [Multivariate Statis-
tics]; H.5.2 [Information interfaces and presentation
(e.g., HCI)]: User Interfaces—Theory and methods

General Terms
Theory, Human Factors

Keywords
nomogram, visualization, support vector machines, machine
learning

1. INTRODUCTION
Within predictive data mining, methods that build classi-

fication models have received much attention. These meth-
ods consider a set of class-labelled data instances and in-
duce classification models that should both predict well and,
preferably and through the model inspection, can uncover
interesting relations and patterns. The latter is particu-
larly important when predictive data mining is used for
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knowledge discovery, where presentation of the classifica-
tion model should help the user to answer questions such as
“Which are the most important factors that determine the
class of the instance?”, and “What is the magnitude of the
effect of these?”, and “How do various factors interact?”,
and alike.

A support vector machine (SVM) [23, 22] is a popular
and much applied supervised machine learning method. It
is known for good predictive performance, but may be at a
disadvantage in terms of intuitive presentation of the clas-
sifier, particularly when compared to some other supervised
learning techniques like classification trees and rules. While
an SVM model can be presented as a weighted list of support
vectors, as a subset of learning instances that defines the de-
cision boundary, this only reduces the number of instances
to consider in the interpretation but does not answer any
of the questions posed above directly. It is possible to show
the SVM classifier directly in the attribute space, but this
is only appropriate when the attribute space does not have
more than two or three dimensions. When the SVM model
is a hyperplane, we can also present it with the hyperplane’s
normal vector, but this technique is of limited utility with
multi-valued or continuous attributes.

In the paper, we propose a new approach for visualization
of SVM models. The main advantage of our approach is that
it captures a complete classification model in a single, easy-
to-interpret graph and for all common types of attributes
and even for non-linear SVM kernels. The particular model
visualization we use is called a nomogram. Nomograms were
invented by French mathematician Maurice d’Ocagne in
1891 to graphically represent a class of mathematical func-
tions. In the beginning of 2005 a search for ‘nomogram*’ on
PubMed/MEDLINE, a database of biomedical article cita-
tions, yielded over 2400 papers (a search for ‘support vector
machine*’ yielded fewer than 400). A search for nomograms
on Google resulted in 77000 web pages. Nomograms are
not an uncertain novelty, but a milestone in the history of
visualization [6].

To visualize a logistic regression model, the use of nomo-
grams was first proposed by Lubsen and coauthors [17].
With an excellent implementation of logistic regression
nomograms in S-Plus and R statistical packages by Har-
rell [7], the idea has recently been picked up and the nomo-
grams have been used much to present probabilistic classi-
fication models in, for instance, clinical medicine and on-
cology (e.g., [15]). A näıve Bayesian classifier can too be
visualized in the form of a nomogram [19].

The nomograms for support vector machines that we in-
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Figure 1: A nomogram of the SVM model that pre-
dicts the probability of costly housing in a given
Boston area. The dots illustrate the classification of
a specific instance.

troduce in the paper use a similar presentation as those of
Harrell for logistic regression. To illustrate the general idea,
consider the nomogram in Figure 1 which represents a lin-
ear SVM model induced from the Boston Housing data set
(StatLib, http://lib.stat.cmu.edu/datasets/, also see
[8]). The Housing data set consists of 506 different instances
(areas of Boston); about 50% of the areas have the median
value of housing price lower than $21000.

For convenience of this presentation we use only four rep-
resentative attributes: the average number of rooms per
dwelling (Rooms), weighted distances to five Boston employ-
ment centers (Employment dis), pupil-teacher ratio by town
(Pupil-teacher, discretized to two nominal values), and pro-
portion of lower status population (Low status, discretized
to four nominal values). There are two classes of areas, the
expensive with the median values above $21000, and the
cheap. To make a prediction using a nomogram, the con-
tributions of attributes on the scale of the log odds ratios
[11] (topmost axis of the nomogram) are summed up, and
used to determine the probability whether the price is less
than $21000 (bottommost axis of the nomogram). For in-
stance summing the effects of 6 rooms per average dwelling,
unknown distance from employment centers, a high pupil-
teacher ratio and a high rate of lower status population re-
sults in the log odds ratio 0.21 + 0.0 + 0.49 + 0.5 = 1.20 on
the ‘Log OR Sum’ axis. This sum is then projected to the
bottommost ‘P(<= 21)’ probability axis, yielding the final
probability of the target class of approximately 0.76. On
the other hand, if the area was known to be far away from
employment centers (12.5), Employment dis contribution to
final sum would be around 1.5 instead of 0, and the final
probability would be higher than 0.93.

Besides prediction, nomograms provide a clear and com-
prehensive presentation of the underlying model. Our SVM
nomogram from Fig. 1, for instance, clearly exposes that
the housing values in Boston from a particular data set are
most associated with the average number of rooms. The
corresponding line in the nomogram is the longest, and try-
ing to predict housing values for a certain area simply with
the information that the average number of rooms is small
(3.2), the probability for price under $21000 jumps from

a priori 0.5 to over 0.9 a posteriori. The other three at-
tributes carry less importance, especially the pupil-teacher
ratio. The nomogram also exposes how different attribute
values affect the outcome; for instance, the value of hous-
ing goes up when the employment centers are nearby. Note
that we can include continuous as well as discrete attributes
in the nomogram. The nomogram also clearly exposes the
“neutral” values of the attributes near 0.0 on the Log OR
axis. They do not affect the probability of the outcome. If a
particular attribute value is not given for the test instance,
it is these neutral values that will be effectively imputed.

Nomograms – like the one from our example – are used
to assess the probability of the observed outcome, where the
effects of the attributes are independent given the class and
are added up to form the final prediction. Assume an in-
stance [x, y], where the range of the label is assumed to be
!y = {−1, 1}, and x ∈ !X is described by a set of attributes
A = {A1, A2, . . . , Ak}. The nomogram can visualize a prob-
ability function of the type

P̂ (y = 1|x) := F β0 +
k

j=1

fj(Aj(x)) (1)

where β0 is the intercept, a constant delineating the prior
probability in the absence of any attributes, fj is an ef-
fect function that maps the value of an attribute A for the
instance x into a point score, and F is the inverse link func-
tion that maps the response of an instance into the outcome
probability. The nomogram in Fig. 1 is based upon one ef-
fect function for each attribute. Each line in the nomogram
corresponds to a single attribute, and a single effect func-
tion. Because the effect function fLow status(high) = 0.05,
the tick corresponding to the value ‘high’ for the attribute
Low status is aligned with 0.05 on the ‘Log OR’ axis.

The class of models of the above type are the generalized
additive models (GAM, [9]). When each effect function is
linear, we speak of a generalized linear model (GLM). For a
GLM, the response or the systematic component is written
as β0 + j [β]j [x]j , where [x]j is the j-th coordinate of the
vector x. Using the dot product 〈·, ·〉 we may express it more
simply as β0 + 〈β, x〉. We may refer to the vector β as the
effect vector.

We start by showing how support vector machines based
on appropriate kernels can be decomposed into the above
additive model. To enable the use of the nomograms for
support vector machines, we need them to predict outcome
probabilities. The basic SVM alone does not attempt to
model the probability, but attempts to achieve the sepa-
ration of instances in the feature space with a separating
hyperplane, each side of which represents a different class.
Therefore, the effect functions need to be calibrated and
thus placed on the log odds ratio scale. In the experimen-
tal section we examine the performance of linear SVM in
comparison to other methods that can be visualized with
nomograms. We also compare linear SVM to the SVM
with the RBF kernel, which cannot be visualized with a
low-dimensional nomogram, observing that the losses are
not very large. We also show that nomograms are suitable
for graphically comparing support vector machines to other
generalized additive models, such as the näıve Bayesian clas-
sifier and logistic regression.
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2. METHODOLOGY

2.1 Overview
Not every support vector machine is appropriate for vi-

sualization using a nomogram. The first requirement is the
ability to additively separate the contribution towards the
response of an individual attribute or of a small group of
attributes as in (1). We achieve this goal by using a kernel
of a particular family. The second requirement is related
to how we represent the lack of information: ideally, zero
value of the transformed attribute should indicate missing
attribute values.

Our approach to visualization will take the following steps,
which will be addressed in detail in the subsequent sections.

1. Transform each instance x ∈ !X into the feature space
using a decomposable kernel map Φ : !X → H.

2. Train the support vector machine using the dot prod-
uct kernel, and obtain the hyperplane’s normal w and
bias b.

3. Employ univariate logistic regression to obtain two pa-
rameters ∆ and Υ, so that

logit(P̂ (y = 1|x)) = Υ + ∆(〈w,Φ(x)〉 + b)

is well-calibrated. Obtain the effect vector and the
intercept on the log-odds scale by elementary algebraic
manipulation of the above. This step is only necessary
to assure that the log-odds scale can be used in the
nomogram.

4. Collect the terms of the effect vector that belong to
a specific attribute. This results in a possibly nonlin-
ear effect function f(A(x)) for each attribute A. It is
also conceivable to visualize effect functions of multi-
ple attributes simultaneously. For example, the joint
effect of attributes A,B and C would take the form
f(A(x), B(x), C(x)). Such joint effect functions are
useful when the attributes in the group interact.

5. Visualize the effect functions and the intercept in a
nomogram.

A Simple Example. As an example, we have taken the
Fisher’s iris data, selected the I. versicolor and I. vir-
ginica species, and the petal length and the petal width
attributes. We have trained the SVM model with a linear
kernel with both attributes standardized, and have used the
cross-calibration to obtain probabilistic outputs from SVM.
The top-down visualization of the data and the model to
the left of Fig. 2 should be familiar. The true SVM’s sep-
arating hyperplane would lie at the contour corresponding
to the probability of approximately 0.49. The hyperplane is
specified with the equation 1.82length + 3.64width = 15.21.
The vector [1.82, 3.64]T can be understood as a weight vec-
tor, but we should note that it depends on the scaling of
the attributes: it should not seem that the width is more
than twice as important as the length. On the other hand,
the nomogram shown to the right of Fig. 2 clearly shows the
effect of individual attribute values on the outcome. Unlike
the top-down view which is restricted to two attributes and
two dimensions, we can include a larger number of attributes
in the nomogram without increasing the dimensionality.

2.2 The Kernel Map
Support vector machines can be applied purely with a

kernel function K(x, x′) and the resulting Gram matrix.
However, nomogram visualization requires us to concern
ourselves with the kernel map from the instance space !X
into the feature space H using the reproducing kernel map
Φ : !X → H. First we will discuss various kernel maps.
Later we will describe the notion of a decomposable kernel,
which is limited by the number of dimensions required for
visualizing the resulting classifier in the form of a nomogram.

2.2.1 Non-Linear Univariate Kernel Maps
All attributes need to be transformed into real-valued

variables before a model can be trained. We standardize
continuous attributes so that zero implies the mean, and
±1 implies one standard deviation distance from the mean.
Some m-th coordinate of the linearly transformed instance
[Φ(x)]m equals the standardized value of a continuous at-
tribute (A(x)−µA)/σA. SVM based on a purely linear ker-
nel and logistic regression both have linear effect functions,
and can therefore be seen as generalized linear models.

However, attributes may have non-linear effects on the
outcome. For example, both very high and very low body
temperatures indicate risks when predicting the health sta-
tus, and this pattern cannot be captured by a single real-
valued variable. We can allow for the nonlinear effect func-
tions by employing non-linear kernel maps. This way, a sin-
gle attribute is internally represented with more than one
dimension, and the actual support vector machine can be
trained using the dot product on the feature space H, but
not on the attribute space !X .

The simplest example of a non-linear map relates to
handling multi-valued nominal attributes. A discrete at-
tribute B with V values is transformed into a set of V fea-
tures [x]m, [x]m+1, . . . , [x]m+V −1, so that given the value of
B = bv+1, [x]m+v = 1 and ∀j = 0, . . . , v − 1, v + 1, . . . , V :
[x]m+j = 0. Thus, the kernel map assigns its own dimension
to each attribute value, and also provides ground to inter-
pret setting all corresponding [x]m+j to zero as a missing
value.

The same concept can be applied to continuous attributes.
Using discretization, we convert a continuous attribute x
into a V -valued discrete one, each value of which corre-
sponds to an interval of the range of x. This is an extremely
simple method for handling nonlinear effects. For example,
we could discretize the body temperature into a 3-valued
nominal attribute with the range {<36.6, 36.6-37.4, >37.4}.
The corresponding effect vector [b1, b2, b3]

T is obtained from
SVM, and the effect function f(x) then takes the following
form:

f(x) =

b1 ; x < 36.6

b2 ; 36.6 ≤ x ≤ 37.4

b3 ; x > 37.4

Discretization essentially involves modelling the effect of an
attribute with a piecewise-constant function.

Using polynomialization we transform a continuous at-
tribute x into a vector of features [x, x2, . . . , xd]T . The cor-
responding effect vector [a1, a2, . . . , ad]T results in a polyno-
mial effect function for x: f(x) = a1x + a2x

2 + . . . + adxd.
Other forms of transforming continuous attributes may be
employed while maintaining the dot product kernel. Such
functions can be easily rendered inside the nomogram, so
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Figure 2: A top-down projection of SVM (Left) as applied to Fisher’s iris data, separating the I. virginica
(top-right) from I. versicolor (bottom-left). The probability contours resulted from cross-calibration using a
logit link function. The support vectors are marked. The above model can be summarized in the form of a
nomogram (Right).

that f(x) is shown on the horizontal axis, and x on the ver-
tical axis or using a label.

In addition to discretization and polynomialization, other
univariate expansions can be employed, such as piecewise-
linear functions, splines, sigmoids, or even univariate radial-
basis functions.

Visualizing Non-Linear Effects. The effects of continu-
ous attributes can be shown on a single line as in Figs. 1
and 2. However, non-linear effect functions, especially non-
monotonic ones, could be confusing if presented in such a
way. An alternative approach is illustrated in Fig. 3, where
the effect of an attribute is presented in the form of a two-
dimensional graph. The vertical dimension is used to list
different values and the horizontal dimension shows the ef-
fect of the value on the outcome. The graph reveals how
the attribute’s impact on the outcome probability gradually
changes as its value changes from the lowest to the high-
est interval. This kind of presentation is also suitable for
ordered discrete attributes.

We have used the ‘Horse Colic’ data set from the UCI
repository [10]. Among the attributes, we have chosen the
respiratory rate and the body temperature, as they are con-
tinuous attributes with potentially non-linear effects. It is
clear that there is a particular range of normal body tem-
peratures centered near 38◦ with low risk. The deviations in
any direction (fever, hypothermia) carry increased risk. The
pulse appears more monotonic, but the effect of the pulse is
distinctly non-linear with respect to the pulse scale.

The intervals for the piecewise constant effect function
were set manually. The RBF effects are defined through
4 radial bases, covering separate intervals of an attribute’s
range.

2.2.2 Decomposable Kernels
Discretization and polynomialization correspond to non-

linear kernels, but the non-linearity is always restricted to
within a single attribute. We will now employ an example
to show why general non-linear kernels introduce problems
for nomogram visualization. Let us focus on the quadratic
kernel 〈x, x′〉2. Specifically, for an instance x = [x1, x2]

T

in a two-dimensional continuous attribute space, we can in-
troduce the following kernel map Φ(x) = [x2

1,
√

2x1x2, x
2
2]

T .
Then the quadratic kernel can be linearized [22]:

〈Φ(x),Φ(x′)〉 = 〈x, x′〉2 = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

We can see that in addition to polynomializing each at-
tribute to the degree of 2, the quadratic kernel introduces
interactions involving each pair of attributes and the label,
corresponding to the coordinates x1 and x2. The effect func-
tion would take the form of f(x1, x2) so that one attribute’s
effects only appear in a single place. Otherwise, the effect
of x1 would appear under [x]2 corresponding to x1x2, un-
der [x]1 corresponding to x2

1, and under the intercept term.
Such effect functions are more difficult to be effectively vi-
sualized in two dimensions: the effect of x1 depends on the
value of x2. Such visualization would involve simulating the
third dimension either with color or with shape on a two-
dimensional computer monitor.

Of course, non-linear kernels can be used for nomogram
visualization as well, under some restrictions. We will now
describe a general form of a kernel suitable for visualization.
Assume a partitioning of the set of attributes X into m
disjoint subsets S1,S2, . . . ,Sm, so that m

i=1 Si = X and
m
i=1 |Si| = |X |. The underlying assumption is that all the

interactions between attributes happen within each subset
Si, but not across the subsets. We can then visualize any
SVM based on such a kernel K that is expressible in terms
of such a sum:

K(x, x′) =
m

i=1

K̇Si([x]Si , [x
′]Si) (2)
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Figure 3: A nomogram with the univariate RBF effects (left) and the piecewise constant univariate effects
(right) in the ‘Horse Colic’ data set. We can observe that increased pulse and increased or decreased body
temperature all indicate an increased risk of death.

A kernel that can be expressed in such a way will be referred
to as an (additively) decomposable kernel. Here, K̇Si is an
arbitrary nonlinear positive semidefinite sub-kernel that acts
upon [x]Si , the subset of the coordinates of x that corre-
spond to the attributes in Si. The full reproducing kernel
Hilbert space is then a concatenation of the reproducing
kernel Hilbert spaces for each K̇Si . It is then possible to re-
trieve the the effect functions f(Si), localized for each subset
of interacting attributes. The dimensionality of the result-
ing nomogram visualization is maxi |Si| + 1. The kernel (2)
is a special case of the kernels proposed by [5, 1, 16]. In
particular, [5] motivated the choice of these kernels through
the ability to effectively visualize them.

Visualizing Interaction Effects. Fig 4 shows the compar-
ison between models that use interactions in the learning
phase and models that do not. If no interaction is assumed,
we employ the linear kernel. If an interaction between at-
tributes A and B is assumed, we employ the following sub-
kernel:

K̇{A,B} [a, b]T , [a′, b′]T :=
1 ; a = a′ ∧ b = b′

0 ; otherwise

We have used German credit risk data set that contains 20
attributes and 1000 past applicants. Each applicant was
classified according to the risk (high vs. low). The risk is
low if the applicant is very likely to return the money, and
high otherwise. Due to space restrictions, we have used only
6 attributes: the status of applicant’s account in the bank,
duration of the credit in months, purpose of the credit, the
amount of credit asked for, the duration of the applicant’s
present employment, and applicant’s duration of residence.

The joint effect can be illustrated in the nomogram by pick-
ing one attribute as the ‘control’, a condition. The other at-
tribute’s influence is then interpreted in the context of the
control. We examined the effect of employment duration,
controlling for residence duration. This pair of attributes in
‘German-credit’ has been identified as significantly interact-
ing, using the methodology of interaction analysis [14].

Both nomograms are very similar when comparing the
first four attributes. Among those four, the most influential
attribute is the purpose of the credit: buying used cars in-
curs low risk, and education incurs high risks. The difference
between two model occurs in the effect of unemployment on
the risk: without the interaction, the model regards unem-
ployment as almost unimportant, while the second regards
it as highly important for determining low risk (if residence
duration is higher than 2.5 years) and for determining high
risk (if residence duration is less than 2.5 years). It is prob-
able that people that live at this place for more than 2.5
years are unemployed because they do not need or can not
work, i.e. are retired, while people that are residents for less
than 2.5 years are unable to find a job. This comparison
stresses the importance of interactions and shows that they
can be effectively visualized with nomograms.

Through this more complex example we show that apart
from revealing the structure of the SVM classifier, nomo-
grams may be used as a data mining tool to depict differ-
ent properties of problem domains. Gunn and Kandola [5]
present examples of how interactions of real-valued variables
can be visualized using 3D plots, but not in the context of
the nomograms.
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Figure 4: A nomogram with the linear kernel (left) and the non-linear kernel that assumes a joint effect
function for the employment duration and residence duration attributes (right) in the ‘German-credit’ data set.
We can see that controlling for the residence duration amplifies and differentiates the effects of employment
duration on the assessment of credit risk.

2.3 Distance from the Separating Hyperplane
Given N training instances [x(j), y(j)], j = 1, 2, . . . , N , the

resulting support vector model can be described with the
vector α and the bias b. The (signed) separating hyperplane
distance of an instance [x, y] is denoted as δ(x). Given a
dot product kernel 〈x, x(j)〉, the distance be described as:

δ(x) := τ b′ +
N

j=1

y(j)[α]j〈Φ(x),Φ(x(j))〉 (3)

Here, b is the bias, while the scaling constant τ assures that
the distance is Euclidean. The sign of the hyperplane dis-
tance indicates the predicted value of the label.

Because of the kernel map Φ, we work in the feature space
with the dot product kernel. We can now remove the ref-
erence to support vectors x(·), and represent the distance
with the bias b and the vector w. We now define the weight
vector w′. It has the same dimensionality as the feature
space, and is defined as:

w′ :=
N

j=1

y(j)[α]jΦ(x(j)) (4)

The length of the weight vector w′ thus obtained is not 1.
For that reason we needed the normalizing constant τ in (3),
where τ = 1/‖w′‖. The signed hyperplane distance of an
instance x can thus be expressed as

δ(x) =
b′ + 〈w′,Φ(x)〉

‖w′‖ (5)

To simplify further notation, b = b′/‖w′‖, w = w′/‖w′‖.
The w is the separating hyperplane normal.

If we are working with a non-linear kernel of the form (2),
it is easy to see that a particular coordinate [w′]k corre-
sponds to one or more attributes, but only within a single
group Si. Of course, multiple coordinates can correspond
to a single attribute if nonlinear univariate sub-kernels are
used, and one coordinate may correspond to multiple at-
tributes if nonlinear multivariate sub-kernels are used. This

way, (5) can be written as:

δ(x) =
b′ + m

i=1 〈w
′
Si

, Φ̇Si([x]Si)〉
‖w′‖ (6)

Therefore, each sub-kernel K̇Si is independently linearized
by Φ̇Si . The approach works even if K̇ is an RBF kernel in-
volving a potentially infinite-dimensional reproducing kernel
Hilbert space: the dimensionality of Φ̇Si([x]Si) will depend
on the size of the data set, but will be finite for a finite data
set.

2.4 Cross-Calibration
The horizontal scale in nomogram-based visualizations is

based on the probability of the label. However, the signed
hyperplane distance δ(x) of an instance x has no probabilis-
tic meaning. This is the role of the link function. The link
function connects probability (the random component) with
the response (the systematic component). The link function
in classification maps a probability p into a response d. The
inverse link function F instead maps a response d into a
probability. The most frequently used link functions are the
identity(p) = p, probit (the inverse of the cumulative Gaus-
sian distribution) and logit(p) = log(p/(1− p)). The inverse
logit link function is F (d) = 1/(1 + exp d), and it has been
used in the past [21].

While the logistic regression too employs a generalized
linear model with the logit link, the effect vector β is op-
timized directly in order to minimize the probabilistic loss
(deviance) of the resulting model. The hyperplane distance
δ does not attempt to optimize the calibration performance
using the logit link, merely achieve the separation. For that
reason, Platt linearly transforms the SVM output with two
additional parameters, Υ and ∆, using a procedure that re-
sembles univariate logistic regression with the hyperplane
distance acting as the independent variable, and the label
as the dependent variable. The two parameters ensure that
F (d) based on d = Υδ(x) + ∆ is a well-calibrated proba-
bilistic classifier using the logit link.

It often happens that the separation of the support vec-
tor machine on the training set is perfect. In such a case,
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the inverse of the logistic link will tend towards a step func-
tion. However, on a separate test set, the same performance
is rarely as good. For that reason Platt [21] proposed per-
forming internal cross-validation where the training set is
partitioned into two sets of instances, one is used for SVM
training, and the other for learning the parameters Υ and
∆. The error arising from generalization is thus accounted
for: the two parameters capture the uncertainty associated
with generalization to unseen data.

There are two parameters to such a calibration procedure.
The first parameter is the data hiding protocol used for
separating training from test data. For example, for 10-
fold cross-calibration, 90% of the data is used for training
and 10% remains hidden for calibration. The more data we
hide, the more conservative are our predictions. The second
parameter is the number of replications. A single cross-
calibration depends on a particular shuffling of instances.
To remove this dependence, the cross-calibration procedure
should be replicated as many times as it is practical.

With the logit link the end result can be represented as

P̂ (y = 1|∆,Υ, δ(x)) =
1

1 + exp {∆ +Υ δ(x)} (7)

If we apply logistic regression to the problem of associating
the hyperplane distance with the label, we find such values
of ∆ and Υ that maximize the thus defined conditional log-
likelihood of y given x in the above model across the N
training instances [x(j), y(j)]:

∆,Υ = arg max
∆,Υ

N

j=1

P̂ (y = y(j)|∆,Υ, δ(x(j))) (8)

The calibrated response function on the log odds ratio
scale is d(x) = ∆+Υδ(x). We can now map these symbols
∆,Υ, w and b so that they will correspond to the notation
of a (linearized) generalized additive model (1) based on the
intercept β0 and the effect vector β. The intercept β0 marks
both the outcome probability of 0.5 and the log odds ratio
of 0.0, so it can be seen as probabilistically calibrated bias
b. The k-th coordinate [β]k of the effect vector corresponds
to the probabilistically calibrated coordinate of the normal
[w]k. The mapping is as follows:

β0 = ∆ + Υb, [β]k = Υ[w]k (9)

The linear effect function for the set of attributes Si is simply
fSi([x]Si) = 〈[β]Si , [Φ(x)]Si〉. Both fk and β0 are on the log
odds ratio scale, and they can thus be directly presented in a
nomogram. It is important to distinguish the weight vector
w′, the hyperplane normal w = w′/‖w′‖, the GLM effect
vector β̂, and the Lagrange multipliers α: all are different.

3. MODEL COMPARISON
In this section, we examine the performance of support

vector machines in comparison to other methods that can be
visualized with the nomograms. To address this, we compare
the nomogram-based probability estimations with those ob-
tained from SVM with RBF kernel (Did we lose anything
assuming the decomposability into effect functions?) and
two popular methods for probabilistic classification, namely
logistic regression and the näıve Bayesian classifier (What
is the overall performance in class probability prediction?).
Nomograms may be used to study the differences between
various modelling methods from the family of generalized

Figure 5: A general scheme of a cross-calibration
procedure, based on N folds, R replications, the re-
sponse learning algorithm L, the calibration learning
algorithm C, and the training data T .

R ← ∅ {Calibration training set.}
for all r : 1 ≤ r ≤ R do {for each replication}

F1 ∪ F2 ∪ . . . ∪ FN ← T {Generate folds.}
for all n : 1 ≤ n ≤ N do {for each fold}

(δ̂ : !x → R) ← L i$=n Fi {Train.}
for all x(i) ∈ Fn do {for each test instance}

R ← R ∪ δ̂(x(i)), y(j) {Record the distance.}
end for

end for
end for
(δ : !x → R) ← L(T ) {Hyperplane distance.}
(P̂ (y = 1|x) : !x → [0, 1]) ← C(R, δ) {Calibrated prob.}

additive models. We present a nomogram-based compari-
son of SVM and the näıve Bayesian classifier model.

3.1 Accuracy
As for earlier nomograms, all experiments were performed

within the Orange toolkit [4]. We employed LIBSVM [3]
with default settings for training the SVM classifiers, and
iteratively re-weighted least squares fitting [18] of the logistic
regression model, as implemented in the Orange extensions
package [12]. We experimented on 16 well-known UCI [10]
data sets with a binary outcome. For data sets with more
than 1000 examples (‘mushroom’ and ‘spam base’) we have
selected a stratified random subset of 1000 examples which
were used throughout the experiments.

We evaluated each method on three criteria: classifica-
tion accuracy, outcome probability estimation (as measured
by Brier score, the mean square error of predicted class
probabilities given the true class probabilities for each in-
stance [2]), and the area under the receiver operating charac-
teristic. Table 1 compares the näıve Bayesian classifier (NB),
logistic regression (LR), support vector machines with RBF
kernels (SVM), and support vector machines with a linear
kernel (dot and dot’) on each of these three criteria. The first
six data sets (the upper part of the table) include no contin-
uous attributes. Elsewhere, the continuous attributes were
discretized for NB and dot’ into 10 intervals with approxi-
mately equal number of examples for each discretized value,
as to provide the capacity for handling nonlinear effects. In
computation of the Brier score, the predicted probabilities
were calibrated for all methods, except for logistic regression
(which is considered not to require calibration). Note that
Brier score measures the loss, so lower values are better than
higher.

The observed methods perform similarly, with some ex-
ceptions. For instance, linear SVM performs poorly on ‘iono-
sphere’ unless the attributes are discretized. This indicates
non-linear attribute effects in this data set, and we illustrate
an example of them in Fig. 6. The SVM using the RBF ker-
nel captures this nonlinearity better than any method based
on discretization. An unexpectedly good performer is the
näıve Bayesian classifier, which achieved good probability
estimation results and reasonable ranking results.
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Classification accuracy Brier score Area under ROC
NB LR RBF dot dot’ NB LR RBF dot dot’ NB LR RBF dot dot’

breast (lju) 0.71 0.70 0.73 0.69 0.39 0.42 0.37 0.39 0.70 0.67 0.71 0.66
breast (wsc) 0.97 0.93 0.97 0.95 0.05 0.15 0.05 0.08 0.99 0.91 0.99 0.98

mushroom 0.99 1.00 0.99 1.00 0.02 0.01 0.01 0.01 0.99 1.00 1.00 1.00
shuttle 0.96 0.99 0.97 0.97 0.09 0.02 0.05 0.08 0.96 0.99 1.00 1.00
titanic 0.78 0.78 0.79 0.78 0.34 0.33 0.32 0.35 0.72 0.76 0.68 0.72
voting 0.89 0.96 0.96 0.96 0.13 0.06 0.07 0.08 0.98 0.99 0.99 0.99

australian 0.86 0.85 0.87 0.85 0.86 0.21 0.30 0.20 0.24 0.22 0.92 0.85 0.93 0.91 0.91
german 0.75 0.76 0.73 0.73 0.74 0.33 0.33 0.34 0.34 0.34 0.79 0.79 0.79 0.79 0.79

hepatitis 0.84 0.83 0.85 0.84 0.84 0.21 0.26 0.23 0.24 0.27 0.86 0.85 0.74 0.76 0.75
horse-colic 0.81 0.82 0.84 0.83 0.77 0.31 0.29 0.26 0.29 0.31 0.83 0.86 0.88 0.86 0.85

housing 0.81 0.87 0.88 0.86 0.84 0.27 0.19 0.18 0.19 0.23 0.90 0.94 0.95 0.94 0.92
ionosphere 0.91 0.84 0.94 0.84 0.89 0.15 0.26 0.11 0.28 0.19 0.93 0.84 0.98 0.83 0.94

liver 0.67 0.69 0.70 0.68 0.72 0.41 0.42 0.41 0.44 0.39 0.73 0.72 0.74 0.72 0.77
pima 0.75 0.78 0.77 0.78 0.75 0.32 0.30 0.34 0.33 0.35 0.83 0.83 0.71 0.73 0.72

post-op 0.66 0.68 0.73 0.71 0.70 0.40 0.49 0.39 0.40 0.39 0.40 0.36 0.50 0.48 0.48
spam base 0.91 0.91 0.91 0.92 0.92 0.16 0.19 0.14 0.22 0.13 0.94 0.89 0.90 0.92 0.91

Table 1: Comparison of the näıve Bayesian classifier (NB), logistic regression (LR), SVM with the RBF
kernel (RBF), SVM with the linear kernel (dot) and linear SVM with discretization (dot’) on several UCI
data sets.

Since our paper shows how to visualize SVM with linear
kernels, it is of interest how much performance needs to be
given up by not using the more powerful RBF kernels. As
expected, SVM with RBF kernels generally performs best
of all methods. Nonetheless, the difference between SVM
with RBF and dot kernels is only a few percent (except in
the already mentioned ‘ionosphere’). We expected that the
discretization would alleviate the linear restrictions of the
model, but experimental results (dot vs dot’) do not con-
firm that. Still, dot’ provided a considerable improvement
in the ‘ionosphere’ and ‘liver/BUPA’ data sets. This indi-
cates that the non-linearities appear only in certain data
sets. We need to apply the more sophisticated models and
visualizations only if the non-linearity is justified through a
higher classification performance.

3.2 Comparing Models With Nomograms
Judging from the experimental comparison of SVM to

other machine learning techniques, SVM sometimes achieves
worse results on Brier score while having comparable classifi-
cation accuracy at the same time. ‘Shuttle’ and ‘Titanic’ are
examples of such data sets. The reason for the problem can
be easily explained with a nomogram. We will compare the
näıve Bayesian classifier (NB) and SVM to predict the prob-
ability for passenger’s survival of the HMS Titanic disaster.
The NB nomogram [19] in Fig. 7 (the data set was obtained
at http://hesweb1.med.virginia.edu/biostat/s/data/),
includes three attributes: the passenger status (first, second,
and third class, or a crew member), the age (adult or child),
and the sex of the passenger.

For NB, the attribute with the biggest potential influence
on the probability of survival is gender of the passenger: be-
ing female increases the chances of survival most (log odds of
1.7), while being male decreases the odds (log odds of about
−0.6). Of the three attributes, the age is apparently the
least influential, although children had a higher probability
of survival. Most lucky were the passengers of the first class
for which – considering the status only – the probability of
survival was much higher than the prior. Comparing this
nomogram to the SVM nomogram in Fig. 7 of ‘Titanic’, we
observed a very interesting difference between them. SVM,

Figure 6: The nonlinearities in the ‘ionosphere’ data
set. Two features were used for each attribute, rep-
resenting an RBF basis.

as it is known, aims to optimize the classification accuracy
and considering this it induced a model that predicts sur-
vival of a passenger by considering only the sex attribute.
Both methods, NB and SVM, consider this attribute as very
important, but unlike NB, SVM disposes of age and status
as completely irrelevant attributes. Using only the sex at-
tribute, SVM achieves comparable classification accuracy,
but the fidelity of the outcome probability estimates are
slightly worse, as measured by Brier score.

3.3 Interpretation of Effect Functions
The role of the nomogram is to visualize the probabilis-

tic predictions of a support vector machine without losing
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Figure 7: A näıve Bayesian nomogram (left) and the SVM nomogram for the ‘Titanic’ data set.

any information. The effect function is a full representation
of the contribution of an individual attribute towards the
probability of the outcome. The visualization is not a par-
tial approximation to the SVM model: instead it captures
the SVM model completely and exactly. Clearly, our intu-
itive conception of attribute ‘importance’ might not match
that of the effect function. There are other ways of inter-
preting attribute importance that do not correspond to ef-
fect functions, perhaps the most popular of which is mutual
information.

There are some pitfalls to interpreting the importance of
attributes derived from the nomogram-based visualization
of a support vector machine. We distinguish two distinct
situations:

• If there are several highly correlated attributes, it is
difficult to distinguish the individual effect of any at-
tribute in particular. Instead, the effect functions will
somewhat arbitrarily allocate the net effect among the
attributes. If we hold the value of one attribute con-
stant, the effects of other correlated attributes will de-
crease. This problem is referred to as a negative inter-
action or as attribute redundancy [13]. We illustrated
this on an example in Fig. 7, where all attributes be-
came irrelevant once the sex attribute was accounted
for. It does not mean that the other attributes are
irrelevant, just that sex takes their credit too.

• In some cases, an attribute A appears to have no effect.
However, if we control the value of another attribute
B, the effect of A will increase. The example of this
phenomenon of a positive interaction or attribute syn-
ergy [13] are the familiar XOR and parity problems.
We illustrated this on an example in Fig. 4, where the
influence of the employment attribute increased if res-
idence duration was controlled for.

4. CONCLUSION
We have shown that support vector machines can be effec-

tively visualized even in attribute spaces with many dimen-
sions, using nomograms. Namely, individual attributes are

stacked vertically in a nomogram, packing multiple dimen-
sions into a single one. We have described the methodology
for converting a support vector machine into the form of a
generalized additive model. Furthermore, we have extended
the form of a nomogram with two-dimensional graph repre-
sentations of a nonlinear and non-monotonic effect function,
as we have seen in Sect. 2.2. In addition to nonlinear univari-
ate effects, we also show how interactions between attributes
can be modelled and visualized.

We did not discuss the problem of determining what de-
composable kernel to use in detail. There are three ways of
addressing this. First, interaction analysis [14] is a heuris-
tic that can aid the construction of kernels that capture the
interactions. Secondly, we can see it as an issue of model se-
lection. Finally, it is possible to express a preference for
sparse and smooth kernels as a part of the optimization
problem, combining the quest for decomposability and the
actual learning [5, 20].

With the example of Sect. 3.2, we pointed out that nomo-
grams may be the right tool for experimental comparison
of different models and modelling techniques, as it allows to
easily spot the similarities and differences in the structure of
the model. Furthermore, we can use nomograms to outline
possible weaknesses of models, such as those of linear mod-
els by comparing them to the models obtained on discretized
data.

KDD practitioners are often concerned with data sets that
contain hundreds or thousands of attributes. Nomograms
have no inherent problems with such situations: the dimen-
sionality of the visualization depends on the structure of
interactions, not on the number of attributes. To simplify
the interpretation, the attributes should be arranged by im-
portance, and the more important attributes would be ex-
amined first. Nomograms provide a measure of importance
that is based on the length of the effect line: it indicates the
range of the effects provided by the attribute. Although this
measure should be weighted by the frequency of individual
attribute values, it it nonetheless intuitive and useful.

An interesting question is also the stability of the model.
The effect of a particular attribute can be thought as an
uncertain quantity. To present the uncertainty, we can em-
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ploy the notion of an error bar or a confidence interval. We
obtain the error bars by training a separate SVM model for
each bootstrap resample of the original data. Each separate
model results in an effect function, and for each value of the
attribute, we can obtain the lower and upper bound of the
effect across the resamples. This yields the effect error bar.

Finally, all that was said about classification applies also
to regression. The only difference is that the range of the
dependent variable replaces the log-odds, and that the cali-
bration is not required.
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