
Heuristic
Risk Assessment

Using Cost Factors
RAYMOND J. MADACHY, Litton Data Systems and University of Southern California

The author describes an
expert-system tool that
can be used to analyze
patterns of cost-driver
ratings submitted for
a Cocomo cost estimate.
These results help users
determine and rank
associated sources of
project risk.

ood software risk management requires human
judgment, and is often difficult to implement
because of the scarcity of seasoned experts and
the unique characteristics of individual pro-
jects. At project inception, for example, man-
agers who are inexperienced or who lack suf-

ficient time to do a thorough analysis may have a vague idea that a
project is risky, but will not know exactly which risks to mitigate
and how. They may overlook project planning discrepancies, fail to
notice risks during cost estimation, or violate consistency con-
straints and cost model assumptions.

Approaches for identifying risks are usually separate from cost es-
timation. We can improve our risk management practices by lever-
aging on existing knowledge and expertise during cost estimation
activities through the use of cost factors to detect patterns of pro-
ject risk. The automated, heuristic technique described here iden-
tifies risks in conjunction with cost estimation to help create miti-
gation plans based on the relative risk severities and provided advice.
An automated tool identifies individual risks that an experienced
software manager might recognize but often fails to take into ac-
count. It also helps calibrate and rank collections of risks,
a process which many managers wouldn’t do otherwise.

I E E E S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 5 1

G

.

The technique is an extension of the
Constructive Cost Model, or Cocomo,1
which supports project planning by iden-
tifying, categorizing, quantifying, and
prioritizing project risks (see the accom-
panying boxed text). The extended
method also detects cost estimate input
anomalies and provides risk control ad-
vice in addition to conventional Cocomo
cost and schedule calculation.

In previous research work at the
University of Southern California, I de-
veloped a prototype knowledge-based
assistant that focused primarily on risk
assessment, provided a user-friendly in-
terface, served as an intelligent front end to
a simulation model, and performed quan-
titative validation. I later incorporated the
technique into a cost estimation tool at
Litton Data Systems.2 The latest work
builds upon those results by updating the
rule base for Cocomo II cost factors,3 re-
fining the quantitative risk assessment
scheme, and developing an application for
use on the World Wide Web.

The method described here is encap-
sulated in a tool called Expert Cocomo

II, and is intended to be used in con-
junction with other project management
techniques. It is being used in Litton
Data Systems’ intranet environment as
part of its Software Engineering Exem-
plar process and in other industrial loca-
tions, and is currently being integrated
with a suite of public-domain software
engineering tools at USC to assist in sys-
tem acquisition, project planning, and
risk management.

COST ESTIMATION AND
RISK MANAGEMENT

Cost models are often used for pro-
ject planning and estimation to predict
both the person effort and elapsed time
of a project. Cocomo is a widely used cost
model incorporating various cost factors
to calculate effort. These factors can be
used to assess risk, using sensitivity analy-
sis or Monte Carlo simulation, but the
approach described here uses them to
infer specific risk situations. See the
boxed text “Cocomo” for more details.

Risk is the possibility of an undesir-
able outcome or a loss. The discipline of
risk management attempts to identify,
address, and eliminate software risks be-
fore they become either threats to suc-
cessful software operation or major
sources of software rework.4 This activ-
ity involves both risk assessment and risk
control4,5 and is ongoing throughout a
development project.

Risk management tries to balance the
triad of cost–schedule–performance.4,5

Though cost, schedule, and product per-
formance risks are interrelated, they can
also be analyzed independently. Some
methods used to quantify these risks in-
clude table methods, analytical methods,
knowledge-based techniques, and ques-
tionnaire-based methods. In practice,
risks must be identified as specific in-
stances to be manageable.

Cost estimation and risk management
are strongly connected:

♦ Cost estimates are used to evaluate
risk and perform risk trade-offs.

♦ Risk methods such as Monte Carlo
simulation can be applied to cost models.

5 2 M A Y / J U N E 1 9 9 7

COCOMO

The Constructive Cost Model, or Cocomo, is a widely
accepted and thoroughly documented software cost model
originally developed by Barry Boehm.1 Cocomo 81 is a multi-
level model that provides formulas for estimating effort and
schedule using cost driver ratings to adjust the estimated
effort, and is incorporated in many of the estimation tools
used in industry and research. The Cocomo II research pro-
ject has been underway to update the 1981 model for new de-
velopment processes and products, and incorporates a revised
set of cost drivers and scale drivers.2

The Cocomo model estimates software effort as a nonlin-
ear function of the product size and modifies it by a geometric
product of effort multipliers associated with cost driver
ratings. The cost driver variables include product attributes,
platform attributes, personnel attributes, and project
attributes. In Cocomo II, scale drivers are attributes used to
set the size exponent. Scale drivers replace the notion of
development modes in Cocomo 81, and were originally used
in Ada Cocomo.3 See Figure 2 in this article for the complete
set of scale drivers and cost drivers.

The simplified post-architecture Cocomo formulation for
calculating effort and schedule is shown below:

where

♦ a is a constant derived from project data, provisionally
set to 2.5,

♦ size is expressed in thousand lines of source code, func-
tion points, or object points with appropriate conversions,

♦ EMi is the effort multiplier for the ith cost driver,
♦ schedule ratio refers to the compression or expansion of

the nominal schedule time, and
♦ b is an exponent for the diseconomy of scale dependent
on additive scale drivers according to

The geometric product results in an overall effort adjustment
factor to the nominal effort.

♦ c is a constant provisionally set to 3.0. Effort in the
schedule equation excludes the effect of the schedule con-
straint effort multiplier.

As Cocomo II continues to evolve, these formulations will
become more extensive to reflect different processes.

REFERENCES
1. B. Boehm, Software Engineering Economics, Prentice Hall, Englewood

Cliffs, N.J., 1981.
2. B. Boehm et al., “Cost Models for Future Software Life Cycle Processes:

Cocomo 2.0,” Annals of Software Engineering Special Volume on Software
Process and Product Measurement, J.D. Arthur and S.M. Henry, eds., J.C.
Baltzer AG, Science Publishers, Amsterdam, 1995, pp. 57-94.

3. B. Boehm and W. Royce, “Ada Cocomo and the Ada Process Model,”
Proc. 5th Int’l Forum Cocomo and Software Cost Modeling, Software Eng.
Inst., Carnegie Mellon Univ., Pittsburgh, Oct. 1989.

4. Cocomo II Model Definition Manual, version 1.4, Univ. of Southern Calif.,
Mar. 1997.

 Effort person -months

size

Schedule months

effort schedule ratio

b
i

i

b

 ()

= () EM

 ()

= () ()(.33+.2(-1.01)

a

c

=
∏

1

no.of cost drivers

b j
j

j=
=

∑. SF001
1

, where SF is a scale factor.
τ

.

♦ The likelihood of meeting cost es-
timates depends on risk management.

Another technique for combining risk
assessment with cost estimation is de-
scribed elsewhere in this issue, in
“Integrating Risk Assessment with Cost
Estimation” by Kari Känsälä. His
method differs from mine, as it uses cost
drivers to compute indirect risk exposure
for risks that are among the cost drivers
of the cost model.

Knowledge-based assistance. Knowledge-
based assistants for software project man-
agement can be classified by their uses: di-
agnosis and classification, interpretation
and analysis, system configuration, anom-
aly detection, design, or planning and
scheduling. Expert Cocomo II is primar-
ily for project analysis and input anomaly
detection, and is being extended to pro-
vide advice for risk management planning.

Much past work has focused on au-
tomating coding activities, but recent re-
search encompasses all software life cycle
activities.6 Improvements have been
made in transformational methods, but
there has been much less progress to-
wards accumulating knowledge bases
for large-scale software engineering
processes. There is great potential for
capturing expertise to assist in project
management functions such as cost esti-
mation and risk management. Incorpor-
ating expert-system rules can place con-
siderable added knowledge at the
disposal of software project planners and
managers to help avoid high-risk devel-
opment situations and cost overruns.

KNOWLEDGE ENGINEERING

Our knowledge engineering work in-
volved choosing appropriate abstractions
for formulating heuristics, iteratively elic-
iting expert knowledge, representing that
knowledge for diagnosis, and testing the
expert system. We also devised a risk
quantification scheme. Cost drivers in the
Cocomo model were identified very early
as a complete set of attributes for project

risk diagnosis. Starting with a matrix of
these drivers, we identified risk situations
as a combination of multiple cost attrib-
utes, and then formulated the risks into a
set of rules. As such, the risk assessment
scheme represents a heuristic decompo-
sition of cost driver effects into con-
stituent risk-escalating situations.

Knowledge was acquired from writ-
ten sources on cost estimation1,7 and risk
management,4,5 and by interviewing do-
main experts such as Barry Boehm and
Walker Royce and some senior Litton
software personnel. After several itera-
tions of the prototype, we again engaged
the experts to help refine and quantify
the risks. This effort has continued dur-
ing Cocomo II development.

Risk description. A risk situation can be
described as a combination of extreme
cost driver values indicating increased ef-
fort with a potential for more problems,
whereas an input anomaly is a violation of
Cocomo consistency constraints. Risks
are identified, quantified, prioritized, and
classified depending on the cost drivers
involved and their ratings. Interactions
of cost attributes that are essentially or-
thogonal to each other are not identified
as risk situations.

One risk example is a project condi-
tion whereby the schedule is tight and
the staff’s applications experience is low.
Cost and/or schedule goals may not be
met, since time will have to be spent un-
derstanding the application domain, and
this extra time may not have been

planned for. An associated rule would be

IF ((required development schedule
< nominal)

AND (applications experience
< nominal))

THEN there is a project risk.

In the next level of detail, different rat-
ing combinations are evaluated to deter-
mine the level of risk. Follow-on advice
rules would provide suggestions for re-
laxing the schedule and improving the
staffing situation.

A typical risk situation can be visual-
ized in a two-dimensional plane as shown
in Figure 1, where each axis is defined as
a cost attribute rating range. As seen in
the figure, the continuous representation
is discretized into a table. A risk condi-
tion corresponds to an individual cell
containing an identified risk level. The
rules use cost driver ratings to index di-
rectly into these tables of risk levels. The
tables constitute the knowledge base for
risk situations defined as interactions of
cost attributes.

An example of an input anomaly
would be

IF ((size > 500,000 lines of source code)
AND (precedentedness = very low)
AND (product complexity = very low))

THEN there is an input anomaly.

This is because a large application that has
never been developed before probably ne-
cessitates a complex solution. The size

I E E E S O FT W A R E 5 3

Attribute 1
Very low

Attribute 2

Very low

Extra high

Very high High

Moderate

Very high

Attribute 2

Very low
Low

Nominal
High

Very high

Very low Low High Very high Extra high
Moderate High Very high

Moderate High
Moderate

Discretized
into

Nominal
Attribute 1

Figure 1. Typical assignment of risk levels.

.

DATA

SIZE

CPLX

DOCU

DATA

DATA

AEXP

LTEX

PCAP

VEXP

PCON

SITE

PREC

FLEX

RESL

TEAM

PMAT

INCREMENTS

Overall project risk

Schedule risk
SCED

sced_cplx
sced_rely
sced_time
sced_pvol
sced_tool
sced_acap
sced_aexp
sced_pcap
sced_vexp
sced_ltex
sced_pmat
sced_docu
sced_pcon
sced_site
sced_prec
sced_flex
sced_resl
sced_team
rely_data_sced
rely_stor_sced
cplx_time_sced
cplx_stor_sced
time_stor_sced
time_pvol_sced
sced_vexp_pcap
pvol_sced_pcap
ltex_aexp_sced
cplx_time_sced
cplx_stor_sced
time_stor_sced
time_pvol_sced

Product risk
RELY

rely_acap
rely_pcap
rely_pmat
sced_rely
rely_data_sced
rely_stor_sced
rely_acap_pcap
prec_rely
ruse_rely

rely_data_sced

size_pcap

cplx_acap
cplx_acap_pcap
cplx_pcap
cplx_stor_sced
cplx_time_sced
cplx_tool
prec_cplx
sced_cplx

docu_pcon
sced_docu
ruse_docu
site_docu
prec_docu
flex_docu
resl_docu

Platform risk
TIME

sced_time
time_pcap
time_acap
cplx_time_sced
time_stor_sced
time_pvol_sced
ruse_time
time_tool
prec_time
flex_time
resl_time

stor_acap
stor_pcap
ruse_stor
cplx_stor_sced
time_stor_sced
prec_stor
flex_store
resl_stor

sced_pvol
pvol_vexp
pvol_sced_pcap
time_pvol_sced
pcon_pvol
prec_pvol

acap_risk
cplx_acap
cplx_acap_pcap
pmat_acap
rely_acap
rely_acap_pcap
ruse_acap
sced_acap
stor_acap
time_acap
tool_acap
pcon_acap
prec_acap
resl_acap

ltex_aexp_sced
ruse_aexp
sced_aexp
pcon_aexp
resl_aexp
team_aexp

ltex_aexp_sced
sced_ltex
ruse_ltex
pcon_ltex

pvol_sced_pcap
pmat_pcap
rely_pcap
cplx_pcap
sced_pcap
size_pcap
stor_pcap
time_pcap
tool_pcap
cplx_acap_pcap
rely_acap_pcap
sced_vexp_pcap
prec_pcap

pvol_vexp
sced_vexp
sced_vexp_pcap

pcon_tool
pcon_pvol
pcon_acap
pcon_aexp
pcon_ltex
pcon_site
sced_pcon
docu_pcon
prec_pcon

Personnel risk
ACAP

Process risk
TOOL

sced_tool
tool_acap
tool_pcap
cplx_tool
time_tool
tool_pmat
pcon_tool
site_tool
resl_tool

site_docu
site_tool
pcon_site
sced_site
prec_site
team_site

prec_flex
prec_rely
prec_cplx
prec_ruse
prec_docu
prec_time
prec_stor
prec_pvol
prec_acap
prec_pcap
prec_pcon
prec_site
sced_prec
resl_prec

flex_resl
flex_pmat
flex_docu
flex_time
flex_store
sced_flex
prec_flex

resl_prec
resl_pmat
resl_rely
resl_ruse
resl_docu
resl_time
resl_stor
resl_acap
resl_aexp
resl_tool
flex_resl
sced_resl

team_aexp
team_site
sced_team

sced_pmat
rely_pmat
pmat_acap
pmat_pcap
tool_pmat
resl_pmat
flex_pmat

increment_drivers

Reuse risk
RUSE

ruse_rely
ruse_aexp
ruse_ltex
ruse_acap
ruse_time
ruse_stor
ruse_docu
ruse_ruse
resl_ruse

Key:
Rule type
COST FACTOR
rulename1
rulename2
rulename3

PREC: precedentedness
FLEX: development flexibility
RESL: architecture/risk resolution
TEAM: team cohesion
PMAT: process maturity
RELY: required software reliability
DATA: database size
CPLX: product complexity
RUSE: required reusability
DOCU: documentation
TIME: execution time constraint
STOR: main storage constraint
PVOL: platform volatility
ACAP: analyst capability
PCAP: programmer capability
AEXP: application experience
PEXP: platform experience
LTEX: language and toolset experience
TOOL: use of software tools
SITE: multisite development
SCED: required development schedule

5 4 M A Y / J U N E 1 9 9 7

Figure 2. The Cocomo II rule taxonomy. The rule types appear in bolded upper and lower case; the cost factors are in all caps and bold
type. Rule names are listed below each cost factor. Italics denote that a rule shows up more than once within a category.

.

alone induces inherent complexity. The
above rule is an example of a cost estima-
tion risk, since the inputs are inconsistent.

A RISK TAXONOMY

Each risk category is associated with
various major risks. The categories are
generally aligned with the cost attribute
categories in Cocomo; for example, risks
involving product cost factors fall into
the product risk category. Most risks are
identified as an intersection of cost fac-
tors in different categories, and show up
in all categories involved. For instance,
the risk with tight schedule and low ap-
plications experience is a component of
both schedule and personnel risk.

Schedule warrants a risk category all
by itself, as it is a major component of the
risk triad (cost–schedule–performance).
Project attributes have been lumped with
scale drivers to designate process risks,
and a category for reuse risks has been
added. The category for cost estimation
risk refers to the risk of a poor estimate,
and covers those conditions found by
input anomaly rules. The following are
summary lessons learned.

♦ Schedule risks. Of all the cost factors
in Cocomo, the required development
schedule is involved in more risks than
any other. As described below, problems
trying to develop a difficult product or
with less-than-desired staff are seriously
exacerbated when there isn’t enough
time to do so. Something has to give—
some combination of increased costs,
overrunning the mandated schedule, or
delivering an unsuitable product will
occur. All other factors that might im-
pose process time delays are identified as
co-contributors to schedule risk.

♦ Product risks. Achieving high relia-
bility and developing a highly complex
product are difficult tasks, and the situa-
tion is seriously compounded with
staffing shortfalls or shortened schedules.
Solid analysis and programming skills are
needed in these situations, otherwise the
product goals will not be met and there

will likely be cost and schedule overruns
due to rework. Adequate schedule time
must also be allocated to achieve relia-
bility goals, since there are increased
verification and validation activities.
Incorporating a large database may en-
tail risk due to the inherent processing
complexities, especially if the problem is
coupled with achieving high reliability in
a compressed schedule.

♦ Platform risks. Volatility of the de-
velopment platform can induce many
headaches and rework. If the operating
system, development environment, or cus-
tom hardware is immature or changing
frequently, recompilation or workarounds
will be necessary. New and unique errors
will often surface due to “upgrades” and
will require fixing. Sometimes the new
problems are subtle and hard to find. In
extreme cases, even changes in the product
design are called for.

Since Cocomo 1981, changes in tech-
nology have minimized some of the plat-
form risks. Memory has become a cheap
commodity and computers have become
much faster, so the storage constraint and
time constraint factors are not of vital
concern (except in certain hardware-
limited situations). Additionally, turn-
around time has been eliminated as a fac-
tor since batch operations are not used
in modern environments.

♦ Personnel risks. The aggregate per-
sonnel factors have the greatest swing on
overall productivity, so they are also
a primary source of project risk.
Interaction of personnel shortfalls with
other factors are identified as risks in the
other attribute categories and don’t need
to be repeated here. Essentially, good
and experienced people should be in
place for the smoothest development. An
overly tight schedule will compound per-
sonnel problems tremendously.

♦ Process risks. Risks due to the factors
in the Cocomo project attribute category
have been renamed as process risks in this
assessment scheme. Additionally, scale
drivers in Cocomo II fall in this class of
risks. The use of tools and work meth-
ods have a large influence on meeting

project goals. Risk escalates if tools are
inadequate or proven work methods are
not used. Not finding defects early will
affect large costs and schedule in the final
testing phases. A practice such as formal
inspections will help to find and fix de-
fects early when they are cheaper to do
so compared to testing. If development
takes place at multiple sites, essential
communication becomes more difficult.

Per various process improvement mod-
els, ad hoc processes on the low end of the
maturity scale are responsible for high-risk
development. With a less defined and
measured process, there will be much un-
certainty and variations relative to initial
estimates. This situation almost always re-
sults in cost and schedule overruns.

Developing an unprecedented sys-
tem is also a risky proposition, espe-
cially when coupled with other sub-
standard attributes. By definition, a low
value of architecture/risk resolution
means there are major uncertainties re-
maining, since many interfaces are not
yet defined. A lack of development flex-
ibility may impose constraints that se-
verely hamper what is accomplished.
Good team cohesion is also needed for
timely and rational communication,
and problem resolution.

♦ Reuse risks. Reuse risk situations are
those that may impact the development
of reusable assets, and analysis of reuse
strategies is made possible with the ad-
dition of the reuse factor in Cocomo II.
A reuse goal may be distinct from or only
adjunct to project commitments.
Reusable assets require high reliability,
so specifying a low-reliability product is

I E E E S O FT W A R E 5 5

Risk impact, or
risk exposure, is
defined as the
probability of loss
multiplied by the
cost of the loss.

.

adverse to this principle. Documentation
needs are likewise high. High applica-
tions experience and analyst capability as
well as a good toolset are required for
reuse success. If reuse is to be performed
across platforms, then timing and stor-
age constraints may present problems.

♦ Cost estimation risks. Inconsistent in-
puts point to an estimate that needs re-
view and revision. Using a poorly done
estimate for planning may preload a pro-
ject with unnecessary risks. With the re-
placement of scale drivers for develop-
ment modes, many input anomalies for
Cocomo 81 are no longer relevant.
However, there are various combinations
of scale driver ratings and other cost fac-
tors that indicate inconsistency.

Rule base. Currently, we have identi-
fied 94 rules dealing with project risk, 15
rules dealing with input anomalies, and
a handful that provide advice. There are
nearly 600 risk conditions, or discrete
combinations of input parameters, that
are covered by the rule base.

Knowledge is represented as a set of
production rules for a forward-chaining
inference engine. Figure 2 shows the
Cocomo II rule taxonomy and corre-
sponding risk taxonomy, as previously
described. The four-letter identifiers in
the rule names are standard abbreviations
for the Cocomo cost drivers and scale
drivers. For each risk category, the cost
drivers involved for the particular risk
type are shown in boldface. Note that
most rules show up in more than one cat-
egory. Not shown are the cost factors and
rules for input anomalies (cost estima-
tion risk) and advice. We are now at-
tempting to extend our assessment tech-
nique by generating specific advice for
each project risk condition.

RISK QUANTIFICATION

Risk impact, or risk exposure, is de-
fined as the probability of loss multiplied
by the cost of the loss. A quantitative risk
weighting scheme accounts for the non-

linearity of the assigned risk levels and
cost multiplier data to compute overall
risks for each category and for the entire
project according to the equation in
Figure 3, where effort multiplier prod-
uct = (driver 1 effort multiplier) × (driver
2 effort multiplier) × … ×(driver n effort
multiplier). If the risk involves a sched-
ule constraint, then the effort multiplier
product = ((schedule constraint effort
multiplier) / (relative schedule)) × (dri-
ver 2 effort multiplier) × … × (driver n
effort multiplier).

In cases where a risk involves a scale
driver, the effective effort multiplier
for the scale driver is of the form
size.01 × SFi/size.01 × 3, where SFi corre-
sponds to the scale driver ratings from
extra high to very low. Risks associated
with scale drivers will correspond to con-
ditions when those drivers are rated very
low or low, so SFi will take on a value be-
tween 4 and 5. The denominator is for
the nominal condition. Thus, the delta
exponent will be on the order of either
.01 for low or .02 for very low.

The risk level corresponds to the non-
linear relative probability of the risk oc-
curring, and the effort multiplier product
represents the cost consequence of the
risk. The product involves those effort
multipliers involved in the risk situation.
Individual effort multipliers range from
.75 to 1.66, with values above the nomi-
nal multiplier of 1.0 being involved in the
risk calculations. When the risk involves
a schedule constraint, the product is di-
vided by the relative schedule to obtain
the change in the average personnel level,
since the staffing profile is compressed
into a shorter project time. The risk as-
sessment calculates general project risks,
indicating a probability of not meeting
cost, schedule, or performance goals.

The risk levels were normalized to
provide meaningful relative risk indica-
tions. Sensitivity analysis was performed
to determine the sensitivity of the quan-
tified risks with varying inputs, and ex-
treme conditions were tested. A normal-
ized scale from 0 to 100 with benchmarks
for low, medium, high, and very high

overall project risk was developed as fol-
lows: 0–5 low risk, 5–15 medium risk,
15–50 high risk, and 50–100 very high
risk. A value of 100 denotes that each cost
factor is rated at its most expensive (an
unlikely project to be undertaken). The
different risk categories are also normal-
ized relative to their maximum values.

IMPLEMENTATION

The most recent implementation is
the WWW version at http://sunset.
usc.edu/COCOMOII/expert_cocomo/
expert_cocomo.html. It consists of an
HTML interface posting data to a C
program via a common gateway inter-
face, and requires no special browser
add-ons to execute. There is also a tai-
lored version on the Litton intranet.
They are consistent with the March 1997
initial public release of the Cocomo
II.1997 cost and scale drivers. The model
definition can be found at http://
sunset.usc.edu/Tools.html.

An earlier working prototype based
on Cocomo 81 runs on a Macintosh
using HyperCard. Initial versions used
an expert-system shell, but the prototype
was recoded to eliminate the need for a
separate inference engine. The risk and
anomaly rule bases were updated to cor-
respond with the new set of cost factors
and model definitions in Cocomo II.

The Litton Data Systems’ Software
Engineering Process Group also ported
the rule base to a Windows environment
and has incorporated the risk assessment
technique into standard planning and
management practices. The tool, Litton
Cocomo, encapsulates cost equations
calibrated to historical Litton data for
different product lines and was written
in Visual Basic as a set of macros within
Microsoft Excel. It is now replaced by the
intranet version.

The Expert Cocomo prototype and
Litton Cocomo tools evaluate inputs for
risk situations or inconsistencies and per-
form calculations for the intermediate ver-
sions of Cocomo 811 and Ada Cocomo.7

5 6 M A Y / J U N E 1 9 9 7

Project risk risk level effort multiplierproduct= ×
==

∑∑ ij ij
i

No categoryrisks

j

No categories

11

..

Figure 3. The risk weighting scheme. A risk level of 1 is moderate, 2 is high, and 4 is
very high.

.

The WWW version implements Coco-
mo II exclusively. They all operate on pro-
ject inputs, encoded knowledge about the
cost drivers, associated project risks, cost
model constraints, and other information
received from the user.

The screen snapshots in subsequent
figures are from the latest WWW tool;
the other implementations have similar
interfaces. The graphical user interface
provides an interactive form for project
input using radio buttons, hypertext help,
and access to the knowledge base, and
provides output in the form of warnings,
risk summary tables and charts, calcu-
lated cost, and schedule. The original
prototype also has multiple windowing,
graphs of effort phase distributions, hy-
pertext help utilities, and several opera-
tional modes. The risk weight tables
(seen at the bottom of Figure 1) are user-
editable and can be dynamically changed
for specific environments, resulting in
different risk weights.

The following example is for a risky
project where several cost drivers are

rated at their costliest values. Figure 4a
is the input screen showing the rated at-
tributes for the project. This data also
constitutes the input for a cost estimate.
Explanatory help is suppressed; a de-
scription of the model, input definitions,
and rating guidelines are also provided
via hypertext links. In this example, the
project has a tightly constrained sched-
ule as well as some stringent product at-
tributes and less-than-ideal personnel at-
tributes. With this input data, the expert
system identifies specific risk situations
and quantifies them according to the for-
mulas described earlier.

The individual risks are ranked and
the different risk summaries are pre-
sented in a set of tables. The interface
supports embedded hypertext links, so
the user can click on a risk in a list to tra-
verse to a screen containing the associ-
ated risk table and related information.

An example output is seen in Figure
4b, showing cost and schedule estimates,
the overall project risk, risks for subcat-
egories, and a prioritized list of risk situ-

ations. The leading subcategories of risk
here are schedule, product, and person-
nel. Other outputs include prioritized
risks in each category and a list of advice
to help manage the risks. The highest
risks in this example deal with schedule
and reliability, and Cocomo would give
the user appropriate advice.

VALIDATION

We tested and evaluated the expert
system against the Cocomo 81 project
database and other industrial data, and
are continuing to do so with Cocomo II
project data. The risk quantification is
partially based on heuristic judgment,
and is partially supported by statistical
testing. In one test, correlation is per-
formed between the quantified risks ver-
sus actual cost and schedule project per-
formance. It is assumed that risks that
became problems will be borne in the re-
alized cost. Using the rule set on the
Cocomo 81 database shows a correlation

I E E E S O FT W A R E 5 7

Figure 4. (a) Sample input screen. (b) Sample risk outputs.

(a) (b)

.

coefficient of .74 between the calculated
risk and actual realized cost in person-
months per 1,000 delivered source in-
structions, as shown in Figure 5. Note
that the quantified risks are non-nor-
malized in this case.

Figure 6 shows risk by project num-
ber and grouped by project type for the
Cocomo database. This depiction also ap-
pears reasonable and provides confidence
in the method. For example, a control ap-
plication is on average riskier than a busi-
ness or support application. There are up-
dated application categories in Cocomo
II, and this analysis will be repeated.

We are also using industrial data from
Litton and other affiliates of the USC
Center for Software Engineering for
evaluation, where the calculated risks are
compared to actual cost and schedule
variances from estimates. We are still

collecting data and performing correla-
tion against the actual cost and schedule
variance from past projects. In another
test, the risk taxonomy is being used as a
basis for postmortem assessments of
completed projects.

Software engineering practitioners
have been evaluating the system and pro-
viding feedback and additional project
data. At Litton, nine evaluators consist-
ing of the Software Engineering Process
Group and other software managers have
unanimously evaluated the risk output of
the tool as reasonable for a given set of
test cases, including past projects and
sensitivity tests.

T he Cocomo cost factors served well
as a core set of abstractions for pro-

ject risk assessment. The completeness of

the attribute set for cost estimation was
vital for generating a critical mass of rules
from them. Common inputs between the
expert system and cost model also en-
sured unambiguous mapping from pro-
ject data to the rule set, a necessary con-
dition for successful knowledge-based
software engineering applications.8

Explication of risky attribute inter-
actions helps illuminate underlying
reasons for risk escalation as embodied
in cost drivers, thus providing insight
into software development risk.
Analysis has shown that risk is highly
correlated with the total effort multi-
plier product associated with the cost
drivers, and the value of this approach
is that it identifies specific risk situa-
tions that need attention.

More refined calibrations are needed
for meaningful risk scales, as well as

5 8 M A Y / J U N E 1 9 9 7

1 5 9

120

100

80

60

40

20

0

Ri
sk

Project #
6339373533312927252321191715131173 41 43 45 47 49 51 53 55 57 59 61

Human-
machine

interaction

Scientific Support SystemControlBusiness

Figure 6. Risk by Cocomo project number and grouped by project type for the Cocomo database. As you would expect, control applica-
tions are typically riskier than business or support applications.

kdsi: 1,000 delivered source instructions

0

50
45
40
35
30
25
20
15
10

5
0

Pe
rs

on
-m

on
th

s/
kd

si

Risk
20 40 60 80 100 120

Figure 5. Correlation against actual cost.

.

consistency with other risk taxonomies
and assessment schemes.9 The knowl-
edge base at Litton is being extended
for specific product lines and environ-
ments to assist in consistent estimation
and risk assessment, and is being up-
dated to Cocomo II. It is part of the de-
fined risk management process, and is
used as a basis for risk assessment of
ongoing projects.

Additional risk data from industrial
projects will be collected and reported on
during the Cocomo II project, and the
technique will continue to be enhanced
and refined as analysis dictates. One goal
is to have the method better supported
by statistical validation tests. The domain
experts will continue to provide feedback
and clarification.

The rule base will be extended to han-
dle distinct development processes (incre-

mental, evolutionary, reuse-based, and so
on), cost model constraints, rating of con-
sistency violations, and advice. Substantial
additions are expected for advice to con-
trol the risks. Program updates will be pro-
vided at the WWW address.

Expert assistance can also be used to
estimate size or rate cost drivers. For in-
stance, organizational knowledge can be
captured for sizing, or depicted in rating
profiles for individual product lines so
that estimators only need to do relative
assessment of cost factors.

This work is also coordinated with
other relevant research at the USC
Center for Software Engineering. A
working hypothesis for Cocomo II is that
risk assessment should be a feature of the
cost model. Toward this, graduate stu-
dents at USC are incorporating the
Cocomo II-updated rule base into the

next revision of the public-domain USC
Cocomo tool. Another risk feature in the
model is the output of uncertainty ranges
in lieu of point estimates.

The assessment scheme will also be
incorporated as an adjunct tool to the
WinWin spiral model prototype10 to
support negotiation based on Cocomo
parameters. Stakeholders collaborate
with the tool and negotiate project win
conditions, and their trade-off decisions
are supported by cost and risk analyses.

The method described here solves
only part of the puzzle for project plan-
ning. Though no tool can totally replace
humans in the loop for risk management,
this technique goes a long way to mini-
mize effort by killing two birds—cost es-
timation and risk management—with
one stone, and help prevent risks from
falling through the cracks. ◆

I E E E S O FT W A R E 5 9

ACKNOWLEDGMENTS
I thank Barry Boehm for his guidance and inspiration in this work in addition to serving as a domain ex-
pert, Walker Royce for his time and expertise, Prasanta Bose for his comments and suggestions on earlier
work, and Brad Clark for programming assistance. Thanks also to the Litton Data Systems Software
Engineering Process Group personnel and management for their support.

REFERENCES
1. B. Boehm, Software Engineering Economics, Prentice Hall, Englewood Cliffs, N.J., 1981.
2. R. Madachy, “Knowledge-Based Risk Assessment and Cost Estimation,” Automated Software

Engineering, W. L. Johnson and A. Finkelstein, eds., Kluwer Academic Publishers, Hingham, Mass.,
Sept. 1995, pp. 219-230.

3. B. Boehm et al., “Cost Models for Future Software Life Cycle Processes: Cocomo 2.0,” Annals of
Software Engineering Special Volume on Software Process and Product Measurement, J.D. Arthur and S.M.
Henry, eds., J.C. Baltzer AG, Science Publishers, Amsterdam, 1995, pp. 57-94.

4. B. Boehm, Software Risk Management, IEEE Computer Soc. Press, Los Alamitos, Calif., 1989.
5. R. Charette, Software Engineering Risk Analysis and Management, Intertext Publications/Multiscience

Press and McGraw-Hill, New York, 1989.
6. C. Green et al., “Report on a Knowledge-Based Software Assistant,” Tech. Report RADC TR83-

195, Kestrel Inst., Rome Air Development Center, N.Y., 1983.
7. B. Boehm and W. Royce, “Ada Cocomo and the Ada Process Model,” Proc. 5th Int’l Forum Cocomo

and Software Cost Modeling, Software Eng. Inst., Carnegie Mellon Univ., Pittsburgh, Oct. 1989.
8. B. Boehm and P. Bose, “Critical Success Factors for Knowledge-Based Software Engineering

Applications,” Automated Software Engineering, W. L. Johnson and A. Finkelstein, eds., Kluwer
Academic Publishers, Hingham, Mass., Sept. 1995, pp. 193-202.

9. G. Toth, “Automated Method for Identifying and Prioritizing Project Risk Factors,” Automated
Software Engineering, W. L. Johnson and A. Finkelstein, eds., Kluwer Academic Publishers,
Hingham, Mass., Sept. 1995, pp. 231-248.

10. B. Boehm et al., “Software Requirements Negotiation and Renegotiation Aids: A Theory-W Based
Spiral Approach,” Proc. 17th Int’l Conf. Software Eng., IEEE Computer Soc. Press, Los Alamitos,
Calif., Mar. 1995, pp. 243-253.

Address questions about this article to Madachy at
the Center for Software Engineering, University of
Southern California, Los Angeles, CA 90089-0781;
madachy@usc.edu; http://www-rcf.usc.edu/
~madachy.

Raymond J. Madachy is a
senior engineering special-
ist in the Software Tech-
nology group at Litton
Data Systems. As a mem-
ber of the Software Engi-
neering Process Group, he
is the division lead for soft-
ware metrics, cost estima-
tion, and risk management.
He is also an adjunct assis-

tant professor in the Computer Science and Indus-
trial and Systems Engineering departments at the
University of Southern California, and a research
collaborator with the USC Center for Software
Engineering.

Madachy received a PhD in industrial and sys-
tems engineering from USC, an MS in systems sci-
ence from the University of California, San Diego,
and a BS in mechanical engineering from the Uni-
versity of Dayton. He is a member of the IEEE
Computer Society.

.

