
JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 1

Limits of Learning Defect Predictors

Abstract—

I. INTRODUCTION

Exponential cost increase quickly exhausts finite QA resources.
Hence, blind spots can’t be avoided and must be managed. Standard
practice is to apply the best available assessment methods on the
sections of the program that the best available domain knowledge
declares is the most critical. However, this focus on certain sections
can blind us to defects in other areas which, through interactions,
may cause similarly critical failures. Therefore, the standard prac-
tice should be augmented with a lightweight sampling policy that
(a) explores the rest of the software and (b) raises an alert on parts
of the software that appear problematic. This sampling approach is
incomplete by definition. Nevertheless, it is the only option when
resource limits block complete assessment.

One such lightweight sampling policy is the use of fault predictors.
To learn such prediction models, either from projects previously
developed in the same environment or from a continually expanding
base of current project’s artifacts, tables of examples are formed
where one column has a boolean value for “faults detected” and
the other columns describe software features such as (i) lines of
code, (ii) number of unique symbols [1], or (iii) max. number
of possible execution pathways [2]. Each row in the table holds
data from one “module”; i.e. the unit of functionality. Depending
on the language, modules may be called “functions”, “methods”,
“procedures” or “files”. The data mining task is to find combinations
of features that predict for the value in the defects column. Once
such combinations are found, managers can use them to determine
where to best focus their QA effort. Better yet, if they have already
focused their QA effort on the most critical portions of the system,
the detectors can “nudge” them towards areas that are also in need
of quality improvement.

For many years we relied upon straightforward application of
data mining algorithms to learn quality predictors from the artifacts
generated by a software project; see [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44].

Standard verification and validation (V&V) textbooks [45] advise
using static code complexity attributes to decide which modules are
worthy of manual inspections. For several years, the PIs have worked
on-site at the NASA Independent software Verification and Validation
facility where large government software contractors won’t review
software modules unless tools like the McCabe static source code
analyzer predicts that they exhibit high code complexity measures.

Nevertheless, static code attributes are hardly a complete charac-
terization of the internals of a program module. Fenton offers an
insightful example where the same functionality is achieved using
different programming language constructs resulting in different static
measurements for that module [46]. Fenton uses this example to argue
the uselessness of static code attributes for fault prediction.

An alternative interpretation of Fenton’s example is that static
attributes can never be a certain indicator of the presence of a fault.
Nevertheless, they are useful as probabilistic statements that the
frequency of faults tends to increase in code modules that trigger
the predictor.

Shepperd & Ince and Fenton & Pfleeger might reject the alternative
interpretation. They present empirical evidence that the McCabe
static attributes offer nothing more than uninformative attributes that

are mostly the derivatives of the lines of code. Fenton & Pfleeger note
that the main McCabe’s attribute (cyclomatic complexity, or v(g)) is
highly correlated with lines of code [46]. Also, Shepperd & Ince
remark that “for a large class of software it (cyclomatic complexity)
is no more than a proxy for, and in many cases outperformed by,
lines of code” [47].

If Shepperd & Ince and Fenton & Pfleeger are right, then the
performance of predictors learned by data mining static code features
should be poor. However, this is not true, at least for the NASA
code we have studied [10], [17], [19], [25], [27], [30], [31], [40],
[41], [48]. Using NASA data, our fault prediction models find defect
predictors [40] with a probability of detection (pd) and probability
of false alarm (pf) of mean(pd, pf) = (71%, 25%). These values
can be best understood via a comparison against known industrial
baselines [49], [50].

The research work referenced above has produced useful results.
However, there is much room for improvement; e.g. probabilities of
detection reported in recent repeatable studies, should not only be
achievable on a regular basis but improved.

It has proved difficult to achieve those improvements. In our
January 2007 TSE study [40] we set out to define a repeatable
experiment in learning defect predictors. The intent of that work was
to offer a benchmark in defect prediction that other researchers could
repeat/ improve/ refute. That experiment included:
• Public domain data sets (from the the PROMISE repository1);
• Open source data mining tools (the WEKA toolkit [51]);
• Repeated randomization of the order of training data (to avoid

order effects);
• 10-way cross-validation (to assess the results via data not used

in training);
• Learning via multiple types of machine learning algorithms (rule

learners, decision tree learners, Bayes classifiers);
• Assessment via multiple criteria such as probability of detection

(pd), probability of false alarm (pf), and balance that combines
{pd, pf} ;

• Statistical hypothesis tests over the assessment criteria;
• Novel visualization methods for the results;
• Feature subset selection to find the most important subset of the

static code features;
Since that study, we have tried to find better data mining algo-

rithms for defect prediction. To date, we have failed. Our recent
(as yet, unpublished) experiments have found no additional statis-
tically significant improvement from the application of the following
data mining methods: logistic regression; average one-dependence
estimators [52]; under- or over-sampling [53] random forests [54],
RIPPER [55], J48 [56], OneR [57] and bagging [58]. Only boost-
ing [59] on discretized data offers a statistically better result than
a Bayes classifier. However, we cannot recommend boosting: the
median improvement is quite negligible and boosting is orders of
magnitudes slower than a simple Bayes classifier.

Other researchers have also failed to improve our results. For
the past four years, we participated in the PROMISE workshop
on repeatable software engineering experiments. The rule of that
workshop reauires that if a paper offers an empirical conclusion, then
it must also offer the data used to reach the conclusions. That data
is stored on-line in the PROMISE repository, which we administer
and maintain for the PROMISE community. Our work on that web
site, plus our interaction with the PROMISE community, gives us
a unique insight into the empirical analysis as well as access to,
as yet, unpublished results. Consequently, we are aware of studies
by other researchers (currently under review) that tried 25 other

1http://promisedata.org/repository

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 2

 0

 50

 100
 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

 1
80

00

ba
la

nc
e

PC5

 0

 50

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

ba
la

nc
e

MC1

Fig. 1. Training set size vs balance.

data mining methods in fault prediction experiments. Those studies
investigated the statistical difference of the results from 25 learners
on the same datasets using the Wilcoxon signed ranked test [60].
The Bayesian method discussed above ties in first place along with
15 other methods.

How can we explain all these failed attempts to improve fault
prediction models in repeatable experiments using same (PROMISE)
data sets? One possibility is that all these experiments use simplistic
static code features such as lines of code, number of unique symbols
in the module, etc. We agree with Shepperd & Ince and Fenton &
Pfleeger that such simplistic static code features are hardly a complete
characterization of the internals of a module. Static code features
might be best described having limited information content, with two
properties. Firstly, they can be quickly and completely discovered
by even simple Bayesian classifiers. Secondly, more sophisticated
methods will discover no further information.

Based on all that work we make the following assertion:
There has been too much emphasis on machine learning,
and too little attention on the use of specific software
engineering knowledge.

Decades of AI research into data mining have resulted in automatic
and rapid methods, which can be easily applied to the learning
of software quality predictors. While the current generation of de-
tectors are demonstrably useful and better than current industrial
best practice [37], [40], we believe that these AI methods have
hit a performance ceiling; i.e., some inherent upper bound on the
amount of information offered by, say, static code features when
identifying modules which contain faults. Hence, we doubt that better
quality predictors can be found just by trying better machine learning
methods.

II. VALIDATION OF LIMITED INFORMATION CONTENT

We have made two tests of this limited information conjecture.
Test one checked how little information was required to learn a
defect predictor. Test two augmented the static code features with
other features. In test one, fault predictors were learned from
N ∈ {100, 200, 300, ...} instances then Tested on another 100 in-
stances. For each N , 10 experiments were performed where training
was conducted on Train = 90% ∗N instances. For all experiments,
the N, Train, Test instances were selected at random.

Test one was conducted on twelve data sets, all of which yielded
results like those depicted in Figure 1 [61]. In that figure, the X-axis
is the size of training set and the Y-axis is the balance measure. Note
that the performance foes not change much regardless of whether the
model is inferred from 100 instances or from up to several thousand
instances. In fact, learning from too many training examples was

Fig. 2. {pd, pf} curves seen when using code and/or requirements features.
From [10].

actually detrimental (witness the widening variance as the training set
increases). A Mann Whitney U test [62] (95% confidence) confirms
the visual pattern apparent in Figure 1: static code features used as
the basis for predicting module’s fault content reveal all that they can
reveal after as little as 100 instances.

To implement test two, we linked code modules to the requirements
that prompted their development. Features were extracted from the
requirements using a lightweight linear-time text parser. Those fea-
tures included weak words such as “TBD” and “but not limited to”;
imperatives such as “must”, “should”; and options such as “can”, and
“may”. Training instances for the fault prediction models were then
created using just static code features, just requirements features, or
both (using a database inner join operation to connect requirements
with modules in which they have been implemented).

The results are shown in Figure 2. This figure plots pd vs pf
seen in the two data sets after a 10-way cross validation. The ideal
spot on these ROC curves is top left; i.e. no false alarms and perfect
detection ({pd, pf} = {1, 0}). The dashed lines on those plots show
{pd, pf} results when fault prediction models used requirements or
code features in isolation. The solid lines show the results of models
which used these two kinds of features in combination. Note the
remarkable improvement: learning from multiple perspectives such as
code and requirements measures in conjunction, lead to dramatically
improved pd and pf .

The knowledge of the values of multiple feature sets from different
sources along the project’s development life cycle leads to conclusion
that the resulting models likely represent domain-specific, if not
project-specific solutions. Figure 2 strongly suggest in favor of for
using multiple feature sets from different software artifacts. While an

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 3

r3.5in

0.100

 0.075

0.050

 0.025

 0

 38 32 24 16 8 1

In
fo

G
ai

n(
F

i)

38 features Fi, sorted by InfoGain

Fig. 3. Mean and standard deviation (t-bars) of InfoGain in 10*90% random
samples of defect data.

exciting result, it has some drawbacks. Different projects use different
tools and build software using different processes. Hence, different
projects have access to different sets of features which may be useful
for predicting where faults hide; e.g. an agile process may have no
access to the detailed requirement documents used to build model in
Figure 2.

Other experiments also suggest that the best set of features are
domain specific. Feature subset selection (FSS) checks if feature
subsets performs as well as supersets. In all the data sets studied
in [40], 38 static code features could be pruned down to three without
reducing the efficacy of the defect predictor. Significantly, in each
data sets, FSS selected different features. That is, FSS found no
universally best features for defect prediction. An analogous result
has been been reported by Shepperd and Ince [47]. They reviewed 18
publications in which no best predictive feature was found. In those
publications, an equal number of studies reported that cyclomatic
complexity is the same, is better, or is worse than LOC in predicting
defects.

Figure 3 explains the FSS results and the results of Shepperd
and Ince. It also cautions that the best set of features will change
from domain to domain. This figure plots the information gain
associated with 38 static code features. This infogain measure is used
in decision tree learners [56] to select the feature that best divides
up the examples2. The first 16 features have very similar information
content. In fact, given the standard deviations shown in the error bars
of that figure, the 16th-ranked feature is statistically insignificantly
different to the top-ranked features. Hence, minor changes in the
training sample change what features are found to be the best software
quality predictors.

Based on the above, in contrast with the current trend in the lit-
erature, we recommend against trying supposedly better AI methods
to learn defect predictors. We make this recommendation for two
reasons.

Firstly, different data miners have failed to improve the state of the
art in learning defect predictors. The early plateau effect of Figure 1
suggests that static code features yield all they can yield after as
little as a few hundred examples. This information can be found by
relatively simple learners such as Naive Bayes. That is, the added
value of more sophisticated AI data miners must be questioned.

Secondly, there is a limited generality in the predictors learned by
standard AI data miners. Figure 2 showed that combining data sources
can yield fault predictors that out-perform predictors learned from
either source in isolation. Different domains and different projets offer
different data sources and, consequently, the best set of features to use

2Infogain compares the number of bits required to encode the distribution of
defective/non-defective classes before and after dividing the examples amongst
the range of feature F.

in a quality prediction will be domain-dependent. Further evidence
for the domain dependent nature of quality predictors comes from
Figure 3. Given a set of features, many of them compete to be the
“best” one and minor variations in the sampling methods can yield
different selection of best predictors.

III. OVER-UNDER SAMPLING

Over and under-sampling are well known techniques in the field
of Data Mining. Both of these preprocessing techniques have the
potential to improve the results of a learner. To sample, you must
first pick a particular class as a goal. For the MDP datasets, we
picked true. Your sampling program will take two passes through the
data. During the first pass, a table of frequency counts is built. If the
desired goal is reached in fewer instances than the other classes, a
second pass is taken through the data. This is where the two sampling
techniques differ. In the case of under-sampling, instances are printed
until the combined number of instances with other classes is equal
to the number of instances with the desired goal. This results in a
much smaller dataset, but your desired goal is not lost in the great
big data soup.

Over-sampling follows a similar procedure. Instead of limiting the
number of instances with other classes, the sampling program instead
add new instances with your desired goal. Ultimately, you have a
much larger dataset. We have used a fairly simple sampling method.
For both sampling techniques, half of the final dataset will consist of
instances with the desired goal.

In this field, many hold the opinion that more data is better. If you
are looking for the diamonds in the dust, youll find more diamonds
when you have more dust. Through this experiment, we hope to
show the effects of over and under-sampling on the MDP datasets
as they are processed with the Nave Bayes classifier and the J48
implementation of the C4.5 tree learner. We actually believe that
under-sampling will yield the best results, challenging the more is
better mantra.

A. Experiment

To confirm our hypothesis, and to test the general effects of
the sampling techniques, we put together a 10-way cross-validation
experiment. We first created two sets, each with a different sampling
method. For each of these and the original dataset, we split into a
training set (90%) and a test set (10%). We then learned on the data
using the Weka implementations of Nave Bayes and J48. We repeated
each of these steps ten times for each of the MDP datasets.

We compared the results based on the balance (a combination
of {pd, pf}that decreases if pd decreases or pf increases). We ran
Mann-Whitney U tests and formed win-loss-tie tables based on the
learner and the sampling method used. We also created win-loss-tie
tables for learner, sampling method, and dataset.

B. Results

We can see from Figure 4 that when processing datasets with
the J48 learner, under-sampling dramatically improves our results.
Oversampling shows a slight advantage over no sampling at all.
These results arent quite so clear for Nave Bayes. Under-sampling
tied with filter, and over-sampling produced worse results. This didnt
quite produce the level of detail that we would like, so we have also
looked at quartile results.

Naive Bayes, Under-Sampled [19.9, 67.1, 74.1, 81.6,100.0]

0% u 100%

Naive Bayes, Over-Sampled [17.5, 42.0, 62.5, 72.2,100.0]

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 4

Fig. 4. W-L-T table for learner and sampling policy.

0% u 100%

Naive Bayes, No Sampling [21.9, 67.7, 74.6, 81.9,100.0]

0% u 100%

J48, Under-Sampled [21.6, 64.8, 73.6, 82.6,100.0]

0% u 100%

J48, Over-Sampled [0.0, 29.3, 45.6, 56.2,100.0]

0% u 100%

J48, No Sampling [0.0, 29.3, 42.3, 54.5,100.0]

0% u 100%

We can more clearly see the difference from the quartile data. The
balance increase from under-sampling for J48 is huge. Over-sampling
only presents a small improvement, only a three percent increase
in balance. The Nave Bayes results were higher to begin with. On
sets with no sampling policy, Nave Bayes had a midpoint of 74.6
compared with J48s 42.3. In fact, Nave Bayes performed slightly
better when no sampling was done at all, scoring a midpoint of 74.6
when not sampling and 74.1 when under-sampling. Over-sampling
hurt the results, bringing the midpoint down to 62.5.

Figure 7 shows the results of an under-sampling study where N ∈
{25, 50, 75, ...} defective modules were selected along with an equal
N number of defect-free modules. Note the same visual pattern as
before: increasing data does not necessarily improve balance.

Mann-Whitney tests were applied to test this visual pattern. De-
tectors learned from just N instances do as well as detectors learned
from any other number of instances:
• N=25 for {CM1,KC2,KC3,MC1,MC2,MW1,PC1,PC2}
• N=75 for {PC3} (and N=25 losses three times out of 11).
• N=200 for {PC4} (but N=25 losses once out of 13 trials)
• N=575 for {KC1} (for N=25 only lost once out of 25 trials)
• N=1025 for {PC5} (but at N=25, the lost lose only once our of

25 trials)

IV. HOW MUCH DATA IS REQUIRED?

A. Design

A curious aspect of the above results is that defect predictors were
learned using only a handful of defective modules. For example,
consider a 90%/10% train/test split on pc1 with 1,109 modules, only
6.94% of which are defective. On average, the test set will only
contain 1109 ∗ 0.9 ∗ 6.94/100 = 69 defective modules. Despite this,
pc1 yields an adequate median {pd, pf} results of {88, 34.5}%.

Experiment #2 was therefore designed to check how little data is
required to learn defect predictors. Experiment #2 was essentially
the same as the last experiment, but without treatment #1 (the cross-
company study). Instead, experiment #2 took the 12 example tables
and learned predictors using:
• Treatment 3 (reduced WC): a randomly selected subset of the

90% rows of this table;
Specially, after randomizing the order of the rows, training sets were
built using just the first 100,200,300,. . . rows in the tables. After
training, the learned theory was applied to 100 rows not used in
training (selected at random).

Experiment #1 only used the features found in all tables of data. For
this experiment, we imposed no such restrictions and used whatever
features were available in each data set.

B. Results from Experiment #2

Recall that ”balance” is defined to be a combination of {pd, pf}
that decreases if pd decreases or pf increases. As shown in Figure 5,
there was very little change in balanced performance after learning
from 100,200,300,... examples. Indeed, there is some evidence that
learning from larger training sets had detrimental effects: the more
training data, the larger the variance in the performance of the learned
predictor. Observe how, in pc2, as the training set size increases
(moving right along the x-axis) the dots showing the on balance
performance start spreading out. A similar, but smaller, spread effect
can be see in kc2 and mc1.

The Mann-Whitney U test was applied to check the visual trends
seen in Figure 5. For each table, all results from training sets of
size 100,200,300. . . were compared to all other results from the same
table. The issue was “how much data is enough?” i.e. what is the
minimum training set size that never lost to other training set of a
larger size. Usually, that min value was quite small:
• In seven tables {cm1, kc2, kc3, mw1, pc3, pc4}, min = 100;
• In {kc1, pc1}, min = {200, 300} instances, respectively.
In other tables of data, min was much larger. In {pc2, mc1, pc5}

the min values were found at {4900, 8300, 11000}, respectively.
However, much smaller training set sizes performed nearly as well
as these larger training sets:
• In pc5, predictors learned from 300 examples only lost to other

sizes twice in 169 trials;
• In mc1, predictors learned from 400 examples only lost to other

sizes once out of 92 trials);
• In pc2, predictors learned from 800 examples only lost to other

size twice out of 53 trials.
We explain the experiment #2 results as follows. These experiments

used simplistic static code features such as lines of code, number
of unique symbols in the module, etc. Such simplistic static code
features are hardly a complete characterization of the internals of
a function. Fenton offers an insightful example where the same
functionality is achieved using different programming language con-
structs resulting in different static measurements for that module [46].
We would characterize such static code features as having limited
information content. Limited content is soon exhausted by repeated
sampling. Hence, such simple features reveal all they can reveal after
a small sample

C. Sanity Checks on Experiment #2

This section checks for precedents on the Experiment #2 results
and can be skipped at first reading of this paper.

There is also some evidence that the results of Experiment 2 (that
performance improvements stop after a few hundred examples) has

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 5

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

CM1

 0

 50

 100

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

ba
la

nc
e

KC1

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

ba
la

nc
e

KC2

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

KC3

 0

 50

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

ba
la

nc
e

MC1

 0

 50

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

ba
la

nc
e

MC2

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

MW1

 0

 50

 100

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

ba
la

nc
e

PC1

 0

 50

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

ba
la

nc
e

PC2

 0

 50

 100

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

ba
la

nc
e

PC3

 0

 50

 100

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

ba
la

nc
e

PC4

 0

 50

 100

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

 1
80

00

ba
la

nc
e

PC5

Fig. 5. Results from experiment #2. Training set size grows in units of 100 examples, moving left to right over the x-axis. The MC2 results only appear at
the maximum x-value since MC2 has less than 200 examples.

 400

 200

 0
 800 600 400 200 0

pl
at

ea
u

dataset size

j48
nbk

 400

 200

 0
 800 600 400 200 0

pl
at

ea
u

dataset size

lsr
m5

Fig. 6. Y-axis shows plateau point after learning from data sets that have
up to X examples (from [63]). The top plot shows results from using Naive
Bayes (nbk) or a decision tree learner (j48) [56] to predict for discrete classes.
Bottom plot shows results from using linear regression (lsr) or model trees
(m5) [64] to learn predictors for continuous classes. In this study, data sets
were drawn from the UC Irvine data repository [65].

been seen previously in the data mining literature (caveat: to the
best of our knowledge, this is first report of this effect in the defect
prediction literature):

• In their discussion on how to best handle numeric features, Lan-
gley and John offers plots of the accuracy of Naive Bayes clas-
sifiers after learning on 10,20,40,..200 examples. In those plots,
there is little change in performance after 100 instances [66].

• Orrego [63] applied four data miners (including Naive Bayes) to
20 data sets to find the plateau point: i.e. the point after which
there was little net change in the performance of the data miner.

To find the plateau point, Oreggo used t-tests to compare the
results of learning from Y or Y + ∆ examples. If, in a 10-way
cross-validation, there was no statistical difference between Y
and Y +∆, the plateau point was set to Y . As shown in Figure 6,
many of those plateaus where found at Y ≤ 100 and most were
found at Y ≤ 200. Note that these plateau sizes are consistent
with the results of Experiment 2.

V. CONCLUSIONS

From these results, it is clear that J48 is improved by both
over and under-sampling. Under-sampling, in fact, represents a huge
improvement. Less data is clearly better than more. It is less clear
how Nave Bayes is affected by sampling policies. When looking
at results by dataset, under-sampling and no sampling policy are
usually indistinguishable. In some cases, one outperforms the other.
Over-sampling universally produced worse results. This does clearly
show that for Nave Bayes, more data is not better. It also shows that
narrowing your current data will not hurt the results, even if it does
not improve them.

In summary, the research challenge is clear:
• We should stop trying out supposedly better AI data miners.

Instead, we must look to other sources of information based on
the software engineering knowledge and project’s business en-
vironment if we are going to improve on our current generation
of quality predictors.

• We must acknowledge that it is insufficient to merely apply
one machine learning method and then use the model on all
future problems. Rather, we need to find cost-effective methods
to quickly learn domain dependent quality predictors.

REFERENCES

[1] M. Halstead, Elements of Software Science. Elsevier, 1977.

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 6

 0

 50

 100

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

ba
la

nc
e

CM1

 0

 50

 100

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

ba
la

nc
e

KC1

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

ba
la

nc
e

KC2

 0

 50

 100

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

ba
la

nc
e

KC3

 0

 50

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

ba
la

nc
e

MC1

 0

 50

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

ba
la

nc
e

MC2

 0

 50

 100

 0 1
0

 2
0

 3
0

 4
0

 5
0

ba
la

nc
e

MW1

 0

 50

 100

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

 1
40

 1
60

ba
la

nc
e

PC1

 0

 50

 100

 0 5 1
0

 1
5

 2
0

 2
5

ba
la

nc
e

PC2

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

ba
la

nc
e

PC3

 0

 50

 100

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

ba
la

nc
e

PC4

 0

 50

 100

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

ba
la

nc
e

PC5

Fig. 7. Under-sampling results

[2] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, Dec. 1976.

[3] Z. Chen, T. Menzies, and D. Port, “Feature subset selection can improve
software cost estimation,” in Proceedings, PROMISE workshop, ICSE
2005, 2005, available from http://menzies.us/pdf/05/fsscocomo.pdf.

[4] M. Connell and T. Menzies, “Quality metrics: Test coverage analysis
for smalltalk,” in Tools Pacific, 1996, Melbourne, 1996, available from
http://menzies.us/pdf/96conel.pdf.

[5] A. Dekhtyar, J. H. Hayes, and T. Menzies, “Text is software too,” in
International Workshop on Mining Software Repositories (submitted),
2004, available from http://menzies.us/pdf/04msrtext.pdf.

[6] M. Feather and T. Menzies, “Converging on the optimal attainment of
requirements,” in IEEE Joint Conference On Requirements Engineering
ICRE’02 and RE’02, 9-13th September, University of Essen, Germany,
2002, available from http://menzies.us/pdf/02re02.pdf.

[7] P. Haynes, T. Menzies, and G. Phipps, “Using the size of classes and
methods as the basis for early effort prediction; empirical observations,
initial application; a practitioners experience report,” in OOPSLA Work-
shop on OO Process and Metrics for Effort Estimation, 1995.

[8] P. Haynes and T. Menzies, “C++ is Better than Smalltalk?” in Tools
Pacific 1993, 1993, pp. 75–82.

[9] ——, “The Effects of Class Coupling on Class Size in Smalltalk
Systems,” in Tools ’94. Prentice Hall, 1994, pp. 121–129.

[10] Y. Jiang, B. Cukic, and T. Menzies, “Fault prediction using early
lifecycle data,” in ISSRE’07, 2007, available from http://menzies.us/pdf/
07issre.pdf.

[11] K. Lum, J. Hihn, and T. Menzies, “Sudies in software cost model
behavior: Do we really understand cost model performance?” in ISPA
Conference Proceedings, 2006, available from http://menzies.us/pdf/
06ispa.pdf.

[12] T. Menzies and E. Sinsel, “Practical large scale what-if queries: Case
studies with software risk assessment,” in Proceedings ASE 2000, 2000,
available from http://menzies.us/pdf/00ase.pdf.

[13] T. Menzies, “Practical machine learning for software engineering and
knowledge engineering,” in Handbook of Software Engineering and
Knowledge Engineering. World-Scientific, December 2001, available
from http://menzies.us/pdf/00ml.pdf.

[14] T. Menzies and H. Singh, “How AI can help SE; or: Randomized
search not considered harmful,” in AI’2001: the Fourteenth Canadian

Conference on Artificial Intelligence, June 7-9, Ottawa, Canada, 2001,
available from http://menzies.us/pdf/00funnel.pdf.

[15] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J. Kiper, “Condensing
uncertainty via incremental treatment learning,” in Software Engineering
with Computational Intelligence, T. M. Khoshgoftaar, Ed. Kluwer,
2003, available from http://menzies.us/pdf/02itar2.pdf.

[16] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian,
“Model-based tests of truisms,” in Proceedings of IEEE ASE 2002, 2002,
available from http://menzies.us/pdf/02truisms.pdf.

[17] T. Menzies, R. Lutz, and C. Mikulski, “Better analysis of defect
data at NASA,” in SEKE03, 2003, available from http://menzies.us/pdf/
03superodc.pdf.

[18] T. Menzies and J. D. Stefano, “More success and failure factors in
software reuse,” IEEE Transactions on Software Engineering, May 2003,
available from http://menzies.us/pdf/02sereuse.pdf.

[19] J. D. Stefano and T. Menzies, “Machine learning for software engineer-
ing: Case studies in software reuse,” in Proceedings, IEEE Tools with
AI, 2002, 2002, available from http://menzies.us/pdf/02reusetai.pdf.

[20] Y. Liu, T. Menzies, and B. Cukic, “Data sniffing - monitoring of machine
learning for online adaptive systems,” in IEEE Tools with AI, 2002,
available from http://menzies.us/pdf/03datasniffing.pdf.

[21] T. Menzies and Y. Hu, “Data mining for very busy people,” in IEEE
Computer, November 2003, available from http://menzies.us/pdf/03tar2.
pdf.

[22] E. Chiang and T. Menzies, “Position paper: Summary of simulations for
very early lifecycle quality evaluations,” in Prosim ’03, 2003, available
from http://menzies.us/pdf/03prosim.pdf.

[23] S. L. Cornford, M. S. Feather, J. Dunphy, J. Salcedo, and T. Men-
zies, “Optimizing spacecraft design optimization engine development:
Progress and plans,” in Proceedings of the IEEE Aerospace Conference,
Big Sky, Montana, 2003, available from http://menzies.us/pdf/03aero.pdf.

[24] E. Chiang and T. Menzies, “Simulations for very early lifecycle quality
evaluations,” Software Process: Improvement and Practice, vol. 7, no.
3-4, pp. 141–159, 2003, available from http://menzies.us/pdf/03spip.pdf.

[25] T. Menzies, J. D. Stefano, and M. Chapman, “Learning early lifecycle
IV&V quality indicators,” in IEEE Metrics ’03, 2003, available from
http://menzies.us/pdf/03early.pdf.

[26] T. Menzies, J. Kiper, and M. Feather, “Improved software engineer-
ing decision support through automatic argument reduction tools,” in
SEDECS’2003: the 2nd International Workshop on Software Engineer-

JOURNAL OF ???, VOL. 6, NO. 1, JANUARY 2007 7

ing Decision Support (part of SEKE2003), June 2003, available from
http://menzies.us/pdf/03star1.pdf.

[27] T. Menzies and J. S. D. Stefano, “How good is your blind spot sam-
pling policy?” in 2004 IEEE Conference on High Assurance Software
Engineering, 2003, available from http://menzies.us/pdf/03blind.pdf.

[28] D. Geletko and T. Menzies, “Model-based software testing via incre-
mental treatment learning,” in 28th Annual NASA Goddard Software
Engineering Workshop (SEW’03), December 2003.

[29] T. Menzies, S. Setamanit, and D. Raffo, “Data mining from process
models,” in PROSIM 2004, 2004, available from http://menzies.us/pdf/
04dmpm.pdf.

[30] T. Menzies, J. S. D. Stefano, C. Cunanan, and R. M. Chapman, “Mining
repositories to assist in project planning and resource allocation,” in In-
ternational Workshop on Mining Software Repositories, 2004, available
from http://menzies.us/pdf/04msrdefects.pdf.

[31] T. Menzies, J. DiStefano, A. Orrego, and R. Chapman, “Assessing
predictors of software defects,” in Proceedings, workshop on Predictive
Software Models, Chicago, 2004, available from http://menzies.us/pdf/
04psm.pdf.

[32] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes, “Validation
methods for calibrating software effort models,” in Proceedings, ICSE,
2005, available from http://menzies.us/pdf/04coconut.pdf.

[33] T. Menzies, Z. Chen, D. Port, and J. Hihn, “Simple software cost
estimation: Safe or unsafe?” in Proceedings, PROMISE workshop, ICSE
2005, 2005, available from http://menzies.us/pdf/05safewhen.pdf.

[34] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Finding the right data
for software cost modeling,” IEEE Software, Nov 2005.

[35] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes, “Specialization and
extrapolation of induced domain models: Case studies in software effort
estimation,” 2005, iEEE ASE, 2005, Available from http://menzies.us/
pdf/05learncost.pdf.

[36] T. Menzies and J. Richardson, “Making sense of requirements, sooner,”
IEEE Computer, October 2006, available from http://menzies.us/pdf/
06qrre.pdf.

[37] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices
for effort estimation,” IEEE Transactions on Software Engineering,
November 2006, available from http://menzies.us/pdf/06coseekmo.pdf.

[38] T. Menzies and J. Hihn, “Evidence-based cost estimation for better
quality software,” IEEE Software, July/August 2006, available on-line
at http://menzies.us/pdf/06costs.pdf.

[39] T. Menies, K. Lum, and J. Hihn, “The deviance problem in effort
estimation,” 2006, available from http://menzies.us/06deviations.pdf.

[40] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Soft-
ware Engineering, January 2007, available from http://menzies.us/pdf/
06learnPredict.pdf.

[41] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems
with precision,” IEEE Transactions on Software Engineering, September
2007, http://menzies.us/pdf/07precision.pdf.

[42] T. Menzies, O. Elwaras, J. Hihn, F. n. B. B. M, and R. Madachy, “The
business case for automated software engineerng,” in IEEE ASE, 2007,
available from http://menzies.us/pdf/07casease-v0.pdf.

[43] S. Ramakrishnan and T. Menzies, “An ongoing experiment in o-o
software process and product measurements,” in Proceedings SEEP’96,
New Zealand, 1996.

[44] S. Ramakrishnan, T. Menzies, M. Hasslinger, P. Bok, H. McCarthy,
B. Devakadadcham, and D. Moulder, “On building an effective measure-
ment system for oo software process, product and resource tracking,” in
Tools Pacific, 1996, 1996.

[45] S. Rakitin, Software Verification and Validation for Practitioners and
Managers, Second Edition. Artech House, 2001.

[46] N. E. Fenton and S. Pfleeger, Software Metrics: A Rigorous & Practical
Approach. International Thompson Press, 1997.

[47] M. Shepperd and D. Ince, “A critique of three metrics,” The Journal of
Systems and Software, vol. 26, no. 3, pp. 197–210, September 1994.

[48] T. Menzies, J. S. DiStefeno, M. Chapman, and K. Mcgill, “Metrics that
matter,” in 27th NASA SEL workshop on Software Engineering, 2002,
available from http://menzies.us/pdf/02metrics.pdf.

[49] M. Fagan, “Advances in software inspections,” IEEE Trans. on Software
Engineering, pp. 744–751, July 1986.

[50] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port,
I. Rus, R. Tesoriero, and M. Zelkowitz, “What we have learned about
fighting defects,” in Proceedings of 8th International Software Metrics
Symposium, Ottawa, Canada, 2002, pp. 249–258, available from http:
//fc-md.umd.edu/fcmd/Papers/shull defects.ps.

[51] I. H. Witten and E. Frank, Data mining. 2nd edition. Los Altos, US:
Morgan Kaufmann, 2005.

[52] G.I.Webb, J. Boughton, and Z. Wang, “Not so naive bayes: Aggregating
one-dependence estimators,” Machine Learning, vol. 58, no. 1, pp. 5–
24, 2005, available from http://www.csse.monash.edu.au/∼webb/Files/
WebbBoughtonWang05.pdf.

[53] C. Drummond and R. C. Holte, “C4.5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling,” in Workshop on
Learning from Imbalanced Datasets II, 2003.

[54] L. Breiman, “Random forests,” Machine Learning, pp. 5–32, October
2001.

[55] W. Cohen, “Fast effective rule induction,” in ICML’95, 1995, pp. 115–
123, available on-line from http://www.cs.cmu.edu/∼wcohen/postscript/
ml-95-ripper.ps.

[56] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufman,
1992, iSBN: 1558602380.

[57] R. Holte, “Very simple classification rules perform well on most com-
monly used datasets,” Machine Learning, vol. 11, p. 63, 1993.

[58] L. Brieman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[59] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” JCSS: Journal of Computer
and System Sciences, vol. 55, 1997.

[60] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics,
vol. 1, pp. 80–83, 1945.

[61] T. Menzies, B. Turhan, A. Bener, and J. Distefano, “Cross- vs within-
company defect prediction studies,” Computer Science, West Virginia
University, Tech. Rep., 2007, available from http://menzies.us/pdf/
07ccwc.pdf.

[62] H. B. Mann and D. R. Whitney, “On a test of whether one
of two random variables is stochastically larger than the other,”
Ann. Math. Statist., vol. 18, no. 1, pp. 50–60, 1947, available on-
line at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=
Display&handle=euclid.aoms/1177730491.

[63] A. Orrego, “Sawtooth: Learning from huge amounts of data,” Master’s
thesis, Computer Science, West Virginia University, 2004.

[64] J. R. Quinlan, “Learning with Continuous Classes,” in 5th Australian
Joint Conference on Artificial Intelligence, 1992, pp. 343–348, available
from http://citeseer.nj.nec.com/quinlan92learning.html.

[65] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998, uRL: http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[66] G. John and P. Langley, “Estimating continuous distributions in bayesian
classifiers,” in Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence Montreal, Quebec: Morgan Kaufmann, 1995,
pp. 338–345, available from http://citeseer.ist.psu.edu/john95estimating.
html.

