
Can We Build Software Faster and Better and Cheaper?

Tim Menzies, Oussama
El-Rawas

CS&EE, West Virginia
University, USA

tim@menzies.us,
oelrawas@mix.wvu.edu

Jairus Hihn
Jet Propulsion Laboratory

California, USA
jairus.hihn@jpl.nasa.gov

Barry Boehm
Computer Science Dept.
Uni. S. California, USA

boehm@sunset.usc.edu

ABSTRACT
“Faster, Better, Cheaper” (FBC) was a development philos-
ophy adopted by the NASA administration in the mid to
late 1990s. that lead to some some dramatic successes such
as Mars Pathfinder as well as a number highly publicized
mission failures, such as the Mars Climate Orbiter & Polar
Lander.

The general consensus on FBC was“Faster, Better, Cheaper?
Pick any two”. According to that view, is impossibly to op-
timize on all three criteria without compromising the third.
This paper checks that view using an AI search tool called
STAR. We show that FBC is indeed feasible and produces
similar or better results when compared to other methods
However, for FBC to work, there must be a balanced con-
cern and concentration on the quality aspects of a project.
If not, “FBC” becomes “CF” (cheaper and faster) with the
inevitable lose in project quality.

Categories and Subject Descriptors
B.4.8 [Programming techniques]: PerformanceModeling
and prediction; I.6.4 [Computing Methodologies]: Model
Validation and Analysis

Keywords
software engineering, predictor models, COCOMO, Faster
Better Cheaper, simulated annealing, software processes

1. INTRODUCTION
Previously, PROMISE researchers have used induction

(summary of data into a model) to generate predictor models
for software engineering. While useful, induction has several
drawbacks:

• It only explores half the story. As Murray Cantor ob-
served in his PROMISE 2008 keynote, once predictive
models are generated, they are used within some busi-
ness context. While we need more papers on predictive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE ’09 Vancouver, Canada USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

model generation, it may be time to ask the PROMISE
community to write more papers on predictive model
usage.

• Automatic induction assumes the existence of data.
Many domains are data starved where it is hard to
obtain local data.

• More generally, we ask the question: why do we persist
on generating new predictive models all the time? If
there is any generality in software engineering it should
be possible to reuse predictive models. We should at
least experiment with this approach rather than always
assuming the best predictive model is a new model.

Hence, we explore predictive model use and reuse rather
than predictive model generation. Model reuse is compli-
cated by extreme data starvation: the tuning variance prob-
lem arises if there is insufficient data to generate precise
tunings. Our STAR tool [9, 23, 27] uses AI methods to con-
duct large scale “what-if” queries over software predictive
models. If parts of a predictive models are not known with
certainty, STAR seeks stable conclusions within the space of
possible values.

In previous publications [24], we had explored the benefits
to using STAR for the purpose of presenting a concise strat-
egy to software project managers. This paper applies STAR
to assess the infamous “Faster, Better, Cheaper” (FBC) de-
velopment practices used at NASA in the 1990s. FBC was
advocated in the 1990s by the then-administrator of NASA,
Daniel Goldin, as a method for reducing the expenditure of
NASA. FBC was in-line with the direction that the Clin-
ton administration’s approach of doing more for less. FBC
was initially successful: projects that usually cost over a
billion were implemented at 1

4
th of that cost (e.g. Mars

Pathfinder). However, subsequent failures (Mars Climate
Orbiter and Polar Lander; the Columbia Shuttle disaster)
lead to much criticism of FBC.

STAR is a natural tool for assessing FBC, since it uses
COCOMO based software engineering models that have al-
ready been usesd within NASA. These COCOMO models
represent FBC in the following manner:

• Faster is represented by the Months model, which es-
timates the total development months needed for a
software project.

• Better is represented by the Defects model, which es-
timates the number of delivered defects per KLOC
(thousand lines of code).

• Cheaper is represented by the Effort model, which es-
timates the effort that is needed for a software project
in person-months, and hence can be used to estimate
the cost of the development of the project.

Note that for all the models, lower is better. The tool
combines estimates with utility weights {f, b, c} (short for
Faster, Better, Cheaper):

score =

p
f.M2 + b.D2 + c.E2

√
f + b+ c

(1)

This score value represents the Euclidean distance to the
normalized values of the predictions of development effort
“E”; total development months “M”; and “D”, the number
of delivered defects per KLOC. This is the utility function
that is used in order to assess any given set of “policies” that
might be presented to be implemented in a given software
project. Given that we normalize the predictions min..max
to 0..1 then Equation 1 has the range one to zero and lower
scores are better. STAR searches for the minimal set of
project changes that most reduces this score.

By adjusting the various values of (f, b, c), we can compare
the effects of methodologies that emphasize different project
goals:

• BF = “better, faster” i.e. c = 0 and b = f = 1;

• BC = “better, cheaper” i.e. f = 0 and b = c = 1;

• CF = “cheaper, faster” i.e. b = 0 and f = c = 1;

• FBC = “faster, better, cheaper” i.e. b = f = c = 1.

This paper reports the results of such a comparison. After a
discussion of related work, we will review the sad history of
“Better, Faster, Cheaper” at NASA. We will then describe
the case studies will be explore, as well as the STAR sys-
tems. In the subsequent results section we will offer the sur-
prising observation that, contrary to the prevailing wisdom
at NASA, FBC is not necessarily a disastrous development
methodology. In fact, in 7

9
of our studies,

FBC produces results that are within 5% of the
minimum estimates generated by any of BF,BC,CF.

Our results suggest that (a) FBC is in fact a viable devel-
opment methodology but (b) what really went wrong with
FBC at NASA was that it was used as a front for CF; i.e.
built it faster and cheaper, while almost disregarding quality
considerations.

Our more general conclusion is that we can make more
use and reuse of predictive models. If stable conclusions
exist across the tuning space, then AI tools like STAR can
offer conclusions from predictive models, even when their is
insufficient data for tuning. This is an powerful aspect of
AI tools like STAR since we often lack the data required
to precisely tune an imported model to a local domains. It
is hoped that that this paper will inspire more papers at
future PROMISE conferences that explore not just model
generation, but also the reuse of those generated model in
new domains. To facilitate that discussion, we have made
all our code openly available1 and we are building a web
interface to an executable version of STAR2. That interface
will be on-line by the time of the PROMISE’09 conference.

1http://unbox.org/wisp/tags/STAR/2.1/
2http://nova.unbox.org

domain experts no domain experts
data
starved
(little or
no data)

build predictive
models manually

reuse predictive
models from other
sites, without tun-
ing; sample across
range of possi-
ble options. E.g.
STAR.

data poor
(small
amounts
of data)

build predictive
models manually;
tune with local
data; e.g. [10]

reuse predictive
models from other
sites; tune with
local data; E.g.
Boehm’s local
calibration of CO-
COMO models [3].

data rich
(much
data)

build predictive models automatically
e.g. [6, 14,19,21,26].

Figure 1: Predictive model construction options.

• Metrics-guru Norman Fenton study data collec-
tion [11] for many years. Recently, he has despaired
of that approach. At a keynote address PROMISE
20073, Fenton shocked his audience by saying:

“....much of the current software metrics
research is inherently irrelevant to the in-
dustrial mix ... any software metrics pro-
gram that depends on some extensive met-
rics collection is doomed to failure.”

• The COCOMO experience is similar to that of Fen-
ton. After 26 years of trying, the COCOMO team
has collected less than 200 sample projects for the
COCOMO database. Also, even after two years
of effort we were only able to add 7 records to a
NASA-wide software cost metrics repository [19].

Figure 2: Evidence for data starvation in SE.

2. RELATED WORK
Figure 1 places STAR in the context of related work. Pre-

dictive models can be build automatically or manually. Au-
tomatically generated predictive models can be automati-
cally validated using many methods including (e.g.) the
cross-validation procedures used in much data mining re-
search [37]. Manually generated predictive models, built us-
ing human expertise, can be remarkably effective: see Fen-
ton’s PROMISE’07 paper reported a validation study of one
such predictive model [10]).

As shown top right of Figure 1, STAR is appropriate in
domains that lack both domain experts and data. Many
domains are data starved (see Figure 2) in which case there
is neither sufficient data to automatically learn predictive
models .

In the completely opposite circumstance, a domain is data
rich. In such domains, automatic methods can learn pre-
dictive models. There are many examples of work in this

area including [6, 14, 19, 21, 26]. We recommend automatic
methods for data rich domains since manual modeling can
be very expensive (for example, Fenton manually built his
Bayes nets over a two year period [10]).

In the middle case of Figure 1, small amounts of local data
can be used to tune either:

• Local predictive models either built manually; or

• Predictive models imported from other sites.

For example, Boehm et at. [5] advocate a certain functional
form for generating software development effort estimates.
In that form, the development effort is linear on a set of effort
multipliers EMi and exponential on a set of scale factors
SFj :

effort = A ·KSLOCB+0.01·
P

j βjSFj ·
Q
i αiEMi (2)

The particular effort multipliers and scale factors recom-
mended by Boehm et al. are shown in Figure 3. While
Boehm et al offer default values for the Equation 2 vari-
ables, linear regression on local data can tune the αi, βj
values to the particulars of a local site. Also, if there is in-
sufficient data for a full tuning of α, β, then a coarse grain
tuning can be achieved by just adjusting the A,B4. linear
and exponential tuning parameters.

A problem that has been under-explored in the literature
is tuning variance. In data starved domains, there is in-
sufficient data to produce precise tunings. For example, At
PROMISE 2005, we have reported very large tuning variance
in the post-tuning values of α and β [25]. Baker [2] offers
a similar finding. After thirty 90% random samples of that
data, the A,B ranges found during tuning were surprisingly
wide:

(2.2 ≤ A ≤ 9.18) ∧ (0.88 ≤ B ≤ 1.09) (3)

We are not the only research group to be concerns about
tuning variance. At PROMISE 2007, Korte & Port [17] ex-
plore the variance of automatically learned effort predictors.
They comment that this variance is large enough to confuse
standard methods for assessing different predictive model
generators.

Since 2005 [6, 20], we have been trying to reduce tuning
variance. using feature subset selection (FSS). However, de-
spite years of work, we now report that FSS reduces but
does not tame the variance of A,B, α, β.

Having failed to tame tuning variance, we have been ex-
ploring a new approach. The STAR tool [9, 23, 27]. that
we describe below checks for stable conclusions within the
space of possible tunings.

3. “FASTER, BETTER, CHEAPER”
This paper applies STAR to an analysis of FBC. In the

1990s, the main approach to implementing FBC within NASA
was to down size projects and reduce their cost and complex-
ity, concentrating on producing missions in volume. Reduc-
ing funding naturally meant that less verification and testing
was possible within budget and schedule constraints. The
reasoning behind this however was to be able to produce a
larger volume of unmanned missions, which would counter-
act the expected higher rate of mission failure. This would,

4We will use uppercase B to denote the COCOMO linear
tuning variable of Equation 2 and lower b to denote the busi-
ness utility associated with defect predictions of Equation 1

optimally, yield more successful missions as well as more
scientific data produced by these projects. Another focus
in this policy was allowing teams to take acceptable risks
in projects to allow for cost reduction, and possibly using
new technology that could reduce cost while possibly pro-
viding more capabilities. This was accompanied by the new
view, being pushed at NASA by Goldin, that “it’s ok to
fail” [33], which was rather misunderstood. This new policy
was meant to eliminate huge budget missions of the past,
that upon possible failure would yield large losses. Project
cost used to routinely exceed the $1 billion mark, while the
first FBC project, the Mars Pathfinder, was completed for
a fraction of the cost, netting at about $270 million [18].

Some within NASA, like 30 year veteran Frank Hoban,
supported these policies [18] who viewed these new policies
as a necessary break from traditional policies that were very
risk averse. The additional cost reduction, accompanied by
the additional risk, was to allow for a path to cheap and
commercial space flight. Even given the reduced funding,
the Mars Pathfinder mission, along with other first genera-
tion FBC missions, were successes. This fueled enthusiasm
to apply FBC across all of NASA to further reduce spend-
ing per mission as well cutting the work force by one third.
FBC was extended to be applied on manned space missions
as well, where funding was also reduced. Coming into a
space shuttle program that was starting to age and in need
of updates, the new policies imposed cuts in funding from
48% of the NASA budget to 38% [15], further straining that
program. Further more, a single prime contractor (Lock-
heed Martin) was used for missions in another bid to reduce
cost and managerial complexity [29,38].

This produced opposition within NASA, where tradition-
ally issues pertaining to the shuttle were designated LOVC
(Loss of Vehicle and Crew) and given priority over all other
issues, including cost. However the cost cuts and layoffs
that ensued damaged morale leading to a string of early
retirements of veteran scientists, skilled engineers and man-
agers [15].

Despite this, additional projects were planned including
Mars Climate Orbiter and Polar Lander. These two projects
were more aggressive implementations of FBC, especially
when it came to the Faster-Cheaper part of those policies.
Costs of the Orbiter and the Lander were brought down to
$125 million and $165 million respectively [35]. This was
much less than the previous Pathfinder mission (which itself
cost slightly less than $300 million) and a huge reduction
from the previous Viking Mars missions (cost about $935
million in 1974 Dollars, equivalent to $3.5 billion in 1997
dollars). The success of these missions would’ve strengthen
FBC within NASA and JPL, and been seen to break new
ground in terms of mission completion with the reduced staff
and budget [12].

Both of these missions failed. Using a single contractor
had weakened quality assurance and caused loss of vehicle.
These flaws where software issues that could have easily been
rectified if they had been discovered on the ground (e.g.
a failure to convert from imperial to metric units, causing
the loss of the Climate Orbiter [28]). The Mars Program
Independent Assessment Team Report [38] found that these
missions were under-staffed, under-funded by at least 30%,
and too tightly scheduled.

Elsewhere, across the Atlantic in the UK, another Mars
mission to deliver a lander, designated the Beagle 2, was un-

Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}

Defect removal features
execution-
based
testing
and tools
(etat)

all procedures and tools used for
testing

none basic testing at unit/ inte-
gration/ systems level; ba-
sic test data management

advanced test oracles, as-
sertion checking, model-
based testing

automated
analysis
(aa)

e.g. code analyzers, consistency
and traceability checkers, etc

syntax checking with
compiler

Compiler extensions for
static code analysis, Basic
requirements and design
consistency, traceability
checking.

formalized specification
and verification, model
checking, symbolic exe-
cution, pre/post condi-
tion checks

peer re-
views
(pr)

all peer group review activities none well-defined sequence of
preparation, informal as-
signment of reviewer roles,
minimal follow-up

formal roles plus exten-
sive review checklists/
root cause analysis, con-
tinual reviews, statistical
process control, user
involvement integrated
with life cycle

Scale factors:
flex development flexibility development process

rigorously defined
some guidelines, which can
be relaxed

only general goals de-
fined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built

this kind of software
before

somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined
or few risks eliminated

most interfaces defined or
most risks eliminated

all interfaces defined or
all risks eliminated

team team cohesion very difficult interac-
tions

basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write

statements
e.g. use of simple interface
widgets

e.g. performance-critical
embedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases

not documented
extensive reporting for
each life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years

pvol platform volatility

(frequency of major changes
frequency of minor changes)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight incon-
venience

errors are easily recover-
able

errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to
75% of the original
estimate

no change deadlines moved back to
160% of original estimate

site multi-site development some contact: phone,
mail

some email interactive multi-media

stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 3: Features of the COCOMO and COQUALMO models used in this study.

der way. This mission was also developed cheaply, applying
the same concepts in design and implementation that NASA
was at the time using. The lander however was declared lost
after not establishing contact after separation from the mars
express vehicle [1].

One other failure that FBC was blamed for was the Columbia
Shuttle disaster in 2003. This was post-Goldin, at a point
where NASA had realized the excessive cost cutting and staff
reducing policies needed to be changed. After that disaster,
critics quickly pointed the finger to these missions being un-
der funded due to FBC. There were many calls, especially
politically, for throwing FBC “in the waste basket” [8, 31].

4. CASE STUDIES
Despite the above, this paper advocates FBC using the

case studies of Figure 4. These studies represent the NASA
flight software, at increasing levels of specificity:

• Flight is a general description of flight software at NASA’s
Jet Propulsion Laboratory.

• OSP is a specific flight system: the GNC (guidance,
navigation, and control) component of NASA’s 1990s
Orbital Space Plane;

• OSP2 is a later version of OSP.

ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 3 5 tool 2
JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

Figure 4: Three case studies. Nu-
meric values {1, 2, 3, 4, 5, 6} map to
{verylow, low, nominal, high, veryhigh, extrahigh}. The
terms in column 2 come from Figure 3.

Figure 4 describes the details of flight, OSP, and OSP2.
Note that Figure 4 does not mention all the features listed
in Figure 3 inputs. For example, our defect predictor has in-
puts for use of automated analysis, peer reviews, and execution-
based testing tools. For all inputs not mentioned in Figure 4,
values are picked at random from the full range of Figure 3.

One aspect to note from Figure 4 is the number of open
options not specified in the description of the projects. Some
of the features in Figure 4 are known precisely (see all the
features with single values). But many of the features in
Figure 4 do not have precise values (see all the features that
range from some low to high value). Sometimes the ranges
are very narrow (e.g., the process maturity of JPL ground
software is between 2 and 3), and sometimes the ranges are
very broad. In fact, our case studies can be ranked

flight > OSP > OSP2

according to the options open to a project manager:

• In the case of flight systems, the description is very
general and managers have many options.

• In the case of OSP2, most of the project options are

pre-determined and project managers have very little
opportunity to effect the course of a project.

• OSP is an early version of OSP2 and, measured in
terms of the number of open options, falls in between
flight and OSP2.

As we shall, the number of open options in a project will
have an important impact on our results.

5. STAR
STAR uses Figure 4 as the inputs to a Monte Carlo simu-

lation over a set of software models. STAR contains the CO-
COMO effort E estimator [5] but also the COCOMO devel-
opment months M estimator [5, p29-57], and COQUALMO
D defects estimator [5, p254-268], These estimator generate
the {E,M,D} variables used by Equation 1 in the introduc-
tion.

We base our analysis on COCOMO and COQUALMO
for several reasons. These are mature models which have
been developed, refined, and constrained over a very long
period of time. The range of tuning options explored by
STAR are taken from 30 years of modeling experience and
regression studies of hundreds of projects [4]. COCOMO
and COQUALMO have been selected and tested by a large
community of academic and industrial researchers led by
Boehm (this large group has meet annually since 1985). Un-
like other models such as PRICE TRUE PLANNING [30],
SLIM [32], or SEER-SEM [13], the COCOMO family of
models are fully described in the literature. Also, at least
for the effort model, there exist baseline results [7]. Further,
we work extensively with government agencies writing soft-
ware. Amongst those agencies, these models are frequently
used to generate and justify budgets.

But the most important reason we use COCOMO & CO-
QUALMO is that the space of possible tunings within these
models is well defined. Hence, it is possible to explore the
space of possible tunings. Recall from Equation 2 that the
COCOMO model includes {A,B, α, β} tuning values. Many
of these variables are shared with the COQUALMO defect
predictor which also has a separate set of tuning variables,
which we will call γ. Using 26 years of publications about
COCOMO-related models, we inferred the minimum and
maximum values yet seen for {A,B, α, β, γ}. For example,
the A,B min/max values come from Equation 3. We use
the variable T to store the range of possible values for these
tuning variables.

STAR runs as follows. First, a project P is specified as
a set of min/max ranges to the input variables of STAR’s
models:

• If a variable is known to be exactly x, then then
min = max = x.

• Else, if a variable’s exact value is not known but the
range of possible values is known, then min/max is
set to the smallest and largest value in that range of
possibilities.

• Else, if a variable’s value is completely unknown then
min/min is set to the full range of that variable in
Figure 3.

Second, STAR’s simulated annealer5 seeks constraints on
the project options P that most reduce the score of Equa-
tion 1 (for examples of P , see Figure 4). A particular subset
of P ′ ⊆ P is scored by using P ′ as inputs to the COCOMO
and COQUALMO. When those predictive models run, vari-
ables are selected at random from the min/max range of
possible tunings T and project options P .

In practice, the majority of the variables in P can be re-
moved without effecting the score; i.e. our predictive mod-
els exhibit a keys effect where a small number of variables
control the rest [22]. Finding that minimal set of vari-
ables is very useful for management since it reveals the least
they need to change in order to most improve the outcome.
Hence, after simulated annealing, STAR takes a third step.

In this third step, a Bayesian sensitivity analysis finds
the smallest subset of P ′ that most effects the output. The
scores seen during simulated annealing are sorted into the
(10,90)% (best,rest) results. Members of P ′ are then ranked
by their Bayesian probability of appearing in best. For ex-
ample, 10, 000 runs of the simulated annealer can be divided
into 1,000 lowest best solutions and 9,000 rest. If the range
rely = vh might appears 10 times in the best solutions, but
only 5 times in the rest then:

E = (reply = vh)

Prob(best) = 1000/10000 = 0.1

Prob(rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · Prob(best) = 0.001

like(rest|E) = freq(E|rest) · Prob(rest) = 0.000504

Prob(best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (4)

Equation 4 is a poor ranking heuristic since it is distracted
by low frequency (freq) evidence. For example, note how
the probability (Prob) of E belonging to the best class is
moderately high even though its support is very low; i.e.
Prob(best|E) = 0.66 but freq(E|best) = 0.01. To avoid
such unreliable low frequency evidence, we augment Equa-
tion 4 with a support term. In Equation 5, likelihood (like)
is chosen as our support term. Support should increase
as the frequency of a range increases, i.e. like(x|best) is a
valid support measure since it does exactly so. High support
would indicate a higher number of examples that ”support”
that E can be part of the best set. STAR1 hence ranks
ranges via

Prob(best|E) ∗ support(best|E) =
like(x|best)2

like(x|best) + like(x|rest)
(5)

After ranking members of P ′, STAR then imposes the
top i-th ranked items of P ′ on the predictive model inputs,
then running the models 100 times. This continues until the
scores seen using i + 1 items is not statistically different to
those seen using i (t-tests, 95% confidence). STAR returns

5Simulated annealers randomly alter part of the some
current solution. If this new solution scores better than
the current solution, then current = new. Else, at some
probability determined by a temperature variable, the sim-
ulated annealer may jump to a sub-optimal new solution.
Initially the temperature is “hot” so the annealer jumps all
over the solution space. Later, the temperature “cools” and
the annealer reverts to a simple hill climbing search that
only jumps to new better solutions. For more details, see
[16].

items 1..i of P ′ as the least set of project decisions that most
reduce effort, defects, and development time. We call these
returned items the policy.

Note that STAR constraints the project options P but
never the tuning options T . That is, the policy generated
by STAR contains parts of the project options P that most
improve the score, despite variations in the tunings T . This
approach has the advantage that it can reuse COCOMO
models without requiring local tuning data. The following
is a description that further details the manner in which
STAR operates:

1. SAMPLE: To sample the ranges from the models, STAR
runs the simulated annealer K1 times. Note that here,
we sample across the ranges of all the attributes. While
most of the time we sample randomly across the range,
we also have a heuristic optimization called extreme
sampling. This form of sampling works in the follow-
ing manner: for x% (x is set to 5 by default), STAR
samples only the extremums of the attributes.

2. DISCRETIZE: The data seen in the K1 samples is
then discretized into D = 10 bins. Discretization con-
verts a continuous range into a histogram with n break
points b1 . . . bn where (∀i < j : bi ≤ bj). After discretiza-
tion, many observations can fall into the same range
between bi and bi+1 at frequency counts ci. This study
used equal width discretization; i.e.

∀i, j : (bi − bi−1) = (bj − bj−1)

3. CLASSIFY: The ranges are then classified into those
seen in BEST% best or rest.

4. RANK: The ranges are then ranked in increasing order
using Support-Based Bayesian Ranking using Equa-
tion 5.

5. PRUNE: Also called the back select stage. STAR
runs K2 experiments with the models where the top
ranked ranges 1..X ranges are pre-set and the remain-
ing ranges can be selected at random.

6. REPORT: STAR returns the 1..X settings that opti-
mize the best for the fitness function being used ac-
cording to the weights applied to effort, defects, de-
velopment time, and threats. These settings are de-
termined by iterating back from the minimum point
achieved towards the first point that is statistically
similar to the minimum point. This statistical differ-
ence is tested via a standard t-test.

To run our experiments, we had to apply our engineer-
ing judgment to set the parameters. The following are the
default values:

K1 = 10, 000,K2 = 1, 000, D = 10, BEST = 10%

Previously [23] we have shown that this approach (that
does not use local tuning) generates estimates very similar to
those generated by “LC” method proposed by Boehm (that
does tune the model to local data) [3]. We have explained
this effect as follows. Uncertainty in the project options P
and the tuning options T contribute to uncertainty in the
estimates generated by STAR’s models. However, at least
for the COCOMO and COQUALMO models used by STAR,
the uncertainty created by P dominates that of T . Hence,
any uncertainty in the output can be tamed by constraining
P and not T .

case rank (Mann median 2nd quartile, median,
estimated study Whitney 95%) what estimate 3rd quartile

defects flight 1 BC 1
r

1 FBC 2
r

2 BF 4
r

2 CF 7
r

3 do nothing 98
r

OSP 1 BC 6
r

2 FBC 7
r

3 BF 9
r

4 CF 62
r

5 do nothing 96
r

OSP2 1 FBC 10
r

1 BF 11
r

1 BC 11
r

2 do nothing 54
r

3 CF 97
r

months flight 1 FBC 39
r

2 BF 42
r

2 CF 43
r

2 BC 44
r

3 do nothing 100
r

OSP 1 CF 61
r

2 BF 64
r

3 FBC 66
r

4 BC 85
r

5 do nothing 99
r

OSP2 1 CF 74
r

2 BF 83
r

3 FBC 89
r

4 do nothing 94
r

5 BC 100
r

effort flight 1 FBC 9
r

2 BF 11
r

2 CF 12
r

3 BC 14
r

4 do nothing 98
r

OSP 1 CF 45
r

1 FBC 47
r

2 BC 49
r

2 BF 53
r

3 do nothing 97
r

OSP2 1 BC 65
r

2 FBC 77
r

3 BF 81
r

4 CF 91
r

4 do nothing 95
r

50%

Figure 5: Results

6. RESULTS

6.1 Stability of STAR
Before we delve into the results, we need to show that any

results produced by STAR are actually stable despite the
stocastic nature of the algortihms used. For this purpose
we use two sample projects: one that is highly constrained
(OSP) and one that is loosely constrained (flight). Both
projects are defined in Figure 4. STAR was run ten times
for both, and then the policy results produced were com-
pared. Each of the projects were run through STAR ten
times while using the all strategy, where all the model fea-
tures are included in the search to produce policies. Figure 6

and Figure 7 below presents the percentage of times that a
certain policy appears: the higher the percentage, the more
that is indicative of the stability of that policy.

As we can see, there is a high rate of stability with respect
to the policies being produced by STAR for these two sample
projects. Any degree of instability that is indicated is a
normal occurrence given that the core algorithm used in
STAR is a meta-heuristic search algorithm, and also given
that we are actively varying the internal parameters of the
models used.

6.2 Format of Results
Figure 5 shows the defects, months, and effort estimates

seen imposing the policy learned by STAR:

Policy % Used Policy % Used
acap = 5 100 stor = 4 70
apex = 5 100 data = 3 60
flex = 6 100 time = 3.5 60
ltex = 4 100 data = 2.5 50
pcon = 5 100 cplx = 3.5 40
plex = 4 100 peer = 6 40
pmat = 3 100 stor = 3.5 40
rely = 5 100 pmat = 2.5 30
resl = 6 100 data = 2 20
site = 6 100 docu = 1.5 20
team = 6 100 pvol = 2.5 20
ett = 6 90 pvol = 4 20
pcap = 5 90 rely = 4.5 20
prec = 6 90 ruse = 2.5 20
aa = 6 80 pvol = 3 10
time = 4 80

Figure 6: Stability of the policies produced for run-
ning the flight project.

Policy % Used Policy % Used
aa = 6 100 pcon = 2.5 60
acap = 3 100 prec = 1.5 60
apex = 3 100 team = 2.5 60
ett = 6 100 tool = 2.5 60
flex = 5 100 apex = 2.5 40
ltex = 4 100 time = 3 40
pcon = 3 100 aa = 5.5 30
peer = 6 100 acap = 2.5 30
pmat = 4 100 stor = 3.5 30
prec = 2 100 docu = 4 20
resl = 3 100 ett = 5.5 20
team = 3 100 ruse = 2 20
tool = 3 100 sced = 2.5 20
cplx = 5.5 90 docu = 2.5 10
cplx = 5 80 ltex = 3.5 10
pmat = 3.5 80 resl = 2.5 10
sced = 2 80 sced = 3 10
ruse = 2.5 70 time = 4 10
time = 3.5 70

Figure 7: Stability of the policies produced for run-
ning the OSP project.

• The results have divisions for defects, months, and ef-
fort.

• Division are sub-divided into results for flight, OSP,
and OSP2.

Within each sub-division, the rows are sorted by median
scores. The “Do nothing” row comes from Monte Carlo sim-
ulations over the project range P , without any restrictions.

The rank results shown in column three show the results
of a statistical comparison of each sub-division. Two rows
have the same rank if there is no statistical difference in their
distributions. We use Mann-Whitney for this comparison for
the following reasons:

• The random nature of Monte Carlo simulations, the
inputs to each run are not paired;

• Ranked tests make no, possibly inappropriate, assump-
tion about normality of the results.

Each row shows results from 100 calls to Equation 1:

• Results in each division are normalized 0..100, min..max.

• Each row shows the 25% to 75% quartile range of the
normalized scores collected during the simulation.

• The median result is shown as a black dot.

All the performance scores (effort, months, defects) get bet-
ter when the observed scores get smaller; i.e. move over the
left.

6.3 Observations and Recommendations
Three aspects of Figure 5 deserve our attention.
Firstly, it is almost always true that some optimizations

on any pair or triple from “Faster, Better, Cheaper” can
reduce defects and months and effort from the levels seen
in the baseline “do nothing” scenario. This result argues for
the use of tools like STAR.

Secondly, STAR is most useful when applied to projects
with many project options. As evidence of this, note how in
Figure 5 that as we move from flight to OSP to OSP2, the
median performance scores get worse. In order to explain
this effect, we repeat remarks made above: our case studies
are sorted in decreasing order of “number of open options”
(there is much that can be adjusted within the general de-
scription of flight systems; fewer adjustments options are
possible in OSP; and even fewer adjustments are possible
in OSP2). As we decrease the number of open options, our
ability to find “fixes” to the current project also decreases.

Thirdly, the goal of faster and better and cheaper is not
overly ambitions. Prior to running these experiments, we
believed that to optimize for three criteria, it may be some-
times necessary to accept non-minimal results for one of the
criteria. However, contrary to our expectations, we observe
that FBC achieves the best (lowest) median results in the
case of:

• defects for OSP2 and

• months for flight systems and

• effort for flight systems

In the remaining cases, FBC is statistically indistinguishable
from the best (lowest) median result in the case of

• defects for flight systems and

• effort for OSP

Lastly, in the remaining cases, FBC’s median is within 5%
of the best (lowest) median result in the case of

• defects for OSP

• months for OSP

That is, FBC achieves minimum (or very close to mini-
mum) values. in 7

9
of Figure 5’s division, Hence, we endorse

STAR’s default setting of b = f = c = 1; i.e. try to optimize
on all three criteria.

7. CONCLUSION
Our results show that FBC can be achieved with minimal

compromises on individual criteria. How can we reconcile
this result with NASA very negative experience with FBC?

One thing forgotten about FBC is that, usually, it worked.
Despite all the criticism against it, FBC successful/partially
successful in 136 of the total of 146 missions launched during

the period that Goldin was administrator. This would be
called an overall success if it hadn’t been for the largely
publicized failures. That is, FBC was mostly a technical
success, but a PR failure [36].

However, one way to explain the very large failures within
the FBC program is to speculate that, sometimes, FBC was
a front for CF (i.e.. cheaper and faster, as the expense of
quality). Figure 5 shows the disastrous effects of CF:

• In the case of OSP CF’s defects where 62
9

= 689%
worse than the worst policy seen using any of BC, BF,
or BFC.

• In the case of OSP2 CF’s defects where 97
11

= 881%
worse than the worst policy seen using any of BC, BF,
or BFC.

Some of the decisions made under the banner of FBC are
questionable; i.e. staff reductions leading to loss in veteran
engineers and managers to retirement and causing experi-
enced managerial staff to be stretched too thin given tight
scheduling [38]. This forced projects to use inexperienced
managers which caused management mix ups and human
error.

Like Spear [34] , we would endorse FBC, but under the
condition that it is better managed. Tony Spear, a JPL
veteran engineer from 1962 to 1998, testified to the possi-
ble effectiveness of FBC. Despite mentioning problems with
FBC (a fixation on cost, causing cost cuts that were too
much for 2nd generation FBC projects), he recommended
not to discard it. Rather, he argued for a more focused way
of implementing it, concentrating on aspects such as build-
ing and retaining talent, taking advantage of advancements
in technology such as the Internet, and advancing methods
used in project development and verification [33,34].

To Spear’s recommendation we would add that when ap-
plying FBC, never surrender the quest of “better”. Observe
how, in Figure 5, whenever we optimize for “Better” using
b = 1, we always reduce defects by about an order of mag-
nitude over the baseline “do nothing” result. The only time
that our optimizer does not reduce defects is when the “bet-
ter” utility is set to zero (see the CF detect results). Hence,
we recommend always setting b = 1.

8. REFERENCES
[1] Beagle 2 mission profile. http://solarsystem.nasa.

gov/missions/profile.cfm?MCode=Beagle_02.

[2] D. Baker. A hybrid approach to expert and
model-based effort estimation. Master’s thesis, Lane
Department of Computer Science and Electrical
Engineering, West Virginia University, 2007. Available
from https://eidr.wvu.edu/etd/documentdata.eTD?

documentid=5443.

[3] B. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[4] B. Boehm. Safe and simple software cost analysis.
IEEE Software, pages 14–17, September/October
2000. Available from http://www.computer.org/

certification/beta/Boehm_Safe.pdf.

[5] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and
C. Abts. Software Cost Estimation with Cocomo II.
Prentice Hall, 2000.

[6] Z. Chen, T. Menzies, and D. Port. Feature subset
selection can improve software cost estimation. In
PROMISE’05, 2005. Available from
http://menzies.us/pdf/05/fsscocomo.pdf.

[7] S. Chulani, B. Boehm, and B. Steece. Bayesian
analysis of empirical software engineering cost models.
IEEE Transaction on Software Engineerining, 25(4),
July/August 1999.

[8] K. Cowig. Nasa responds to the columbia accident
report: Farewell to faster - better - cheaper,
September 2003.
http://www.spaceref.com/news/viewnews.html?id=864.

[9] O. El-Rawas. Software process control without
calibration. Master’s thesis, 2008. Available from
http:

//unbox.org/wisp/var/ous/thesis/thesis.pdf.

[10] N. Fenton, M. Neil, W. Marsh, P. Hearty,
L. Radlinski, and P. Krause. Project data
incorporating qualitative factors for improved software
defect prediction. In PROMISE’09, 2007. Available
from http://promisedata.org/pdf/

mpls2007FentonNeilMarshHeartyRadlinskiKrause.

pdf.

[11] N. E. Fenton and S. Pfleeger. Software Metrics: A
Rigorous & Practical Approach (second edition).
International Thompson Press, 1995.

[12] M. hardin. Mars climate orbiter nearing sept. 23
arrival, September 1999. JPL Universe, Vol. 29, No.
19.

[13] R. Jensen. An improved macrolevel software
development resource estimation model. In 5th ISPA
Conference, pages 88–92, April 1983.

[14] Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow.
Comparing design and code metrics for software
quality prediction. In Proceedings of the PROMISE
2008 Workshop (ICSE), 2008. Available from
http://menzies.us/pdf/08compare.pdf.

[15] S. Key. Columbia, the legacy of ”better, faster,
cheaper”?, July 2003.
http://www.space-travel.com/reports/Columbia_

_The_Legacy_Of_Better__Faster__Cheaper.html.

[16] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,

Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[17] M. Korte and D. Port. Confidence in software cost
estimation results based on mmre and pred. In
PROMISE ’08: Proceedings of the 4th international
workshop on Predictor models in software engineering,
pages 63–70, 2008.

[18] leonard david. nasa report: too many failures with
faster, better, cheaper, march 2000.
http://www.space.com/businesstechnology/

business/spear_report_000313.html.

[19] T. Menies, K. Lum, and J. Hihn. The deviance
problem in effort estimation. In PROMISE, 2006,
2006. Available from
http://menzies.us/06deviations.pdf.

[20] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
best practices for effort estimation. IEEE Transactions
on Software Engineering, November 2006. Available
from http://menzies.us/pdf/06coseekmo.pdf.

[21] T. Menzies, Z. Chen, D. Port, and J. Hihn. Simple
software cost estimation: Safe or unsafe? In
Proceedings, PROMISE workshop, ICSE 2005, 2005.
Available from
http://menzies.us/pdf/05safewhen.pdf.

[22] T. Menzies, D.Owen, and J. Richardson. The
strangest thing about software. IEEE Computer, 2007.
http://menzies.us/pdf/07strange.pdf.

[23] T. Menzies, O. Elrawas, B. Barry, R. Madachy,
J. Hihn, D. Baker, and K. Lum. Accurate estimates
without calibration. In International Conference on
Software Process, 2008. Available from
http://menzies.us/pdf/08icsp.pdf.

[24] T. Menzies, O. Elrawas, J. Hihn, M. Feathear,
B. Boehm, and R. Madachy. The business case for
automated software engineerng. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, pages 303–312, New York, NY, USA,
2007. ACM. Available from
http://menzies.us/pdf/07casease-v0.pdf.

[25] T. Menzies and A. Orrego. Incremental discreatization
and bayes classifiers handles concept drift and scaled
very well. 2005. Available from
http://menzies.us/pdf/05sawtooth.pdf.

[26] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic,
and Y. Jiang. Implications of ceiling effects in defect
predictors. In Proceedings of PROMISE 2008
Workshop (ICSE), 2008. Available from
http://menzies.us/pdf/08ceiling.pdf.

[27] T. Menzies, S. Williams, O. El-waras, B. Boehm, and
J. Hihn. How to avoid drastic software process change
(using stochastic statbility). In ICSE’09, 2009.
Available from
http://menzies.us/pdf/08drastic.pdf.

[28] NASA. Mars climate orbiter mishap investigation
board phase i report. November 1999.

[29] T. o. F. B. C. NASA watch. Faster - better - cheaper
under fire. http://www.nasawatch.com/fbc.html.

[30] R. Park. The central equations of the price software

cost model. In 4th COCOMO UsersÃŢ Group
Meeting, November 1988.

[31] I. F. O. PROFESSIONAL and A.-C.

TECHNICAL ENGINEERS. Ifpte report on the
effectiveness of nasa’s workforce & contractor policies,
March 2003.
http://www.spaceref.com/news/viewsr.html?pid=10275.

[32] L. Putnam and W. Myers. Measures for Excellence.
Yourdon Press Computing Series, 1992.

[33] T. Spear. Nasa fbc task final report, March 2000.
mars.jpl.nasa.gov/msp98/misc/fbctask.pdf.

[34] T. Spear. Testimony on nasa fbc task before the
subcommittee on science, technology, and space,
March 2000.
www.nasawatch.com/congress/2000/03.22.00.spear.pdf.

[35] D. Tuite. Better, faster, cheaperâĂŤpick any two:
That old mantra used to be a touchstone for
development. but does it still ring true?, March 2007.
http://electronicdesign.com/Articles/Index.

cfm?AD=1&ArticleID=14997.

[36] M. Turner. Faster, cheaper, and more ... metric?,
August 2003.
http://www.spacedaily.com/news/oped-03zz.html.

[37] I. H. Witten and E. Frank. Data mining. 2nd edition.
Morgan Kaufmann, Los Altos, US, 2005.

[38] T. Young, J. Arnold, T. Brackey, M. Carr, D. Dwoyer,
R. Fogleman, R. Jacobson, H. Kottler, P. Lyman, and
J. Maguire. Mars program independent assessment
team report. NASA STI/Recon Technical Report N,
pages 32462–+, Mar. 2000.

