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Previously, PROMISE researchers have used induction
(summarization of data into a model) to generate predic-
tor models for software engineering. While useful, induction
has several drawbacks:

e It only explores half the story. As Murray Cantor ob-
served in his PROMISE 2008 keynote, once models are
generated, they are used within some business context.
While we need more papers on induction, it may be
time to ask the PROMISE community to write more
papers on model usage.

e Automatic induction assumes the existence of data. As
discussed in Figure 1, many domains are data starved
and it may be difficult to obtain that local data.

e More generally, we ask the question: why do we persist
in building new models all the time? If there is any
generality in software engineering it should be possible
to reuse models. We should at least experiment with
this approach rather than always assuming the best
model is a new model.

For all the above reasons, we are motivated to explore
model use and reuse rather than model (re)generation. Ac-
cordingly, in this paper, we see what conclusions we can draw
from reusing models that predict for effort, defect, and soft-
ware development time. Our focus will be an assessment of
infamous “Faster, Better, Cheaper” development practices
used at NASA in the 1990s. Within the NASA commu-
nity, “Faster, Better, Cheaper” (FBC) is a strongly depre-

e David Raffo spent two years tuning and validating one
process model to one site [25].

o Metrics-guru Norman Fenton spent years advocating
careful data collection [9]. Recently, he has despaired of
that approach. At a keynote address PROMISE 20071,
Fenton shocked his audience by saying:

“....much of the current software metrics re-
search is inherently irrelevant to the indus-
trial miz ... any software metrics program
that depends on some extensive metrics col-
lection is doomed to failure.”

e The COCOMO experience is similar to that of Fenton.
After 26 years of trying, the COCOMO team has col-
lected less than 200 sample projects for the COCOMO
database. Also, even after two years of effort we were
only able to add 7 records to a NASA-wide software cost
metrics repository [16].

Figure 1: Evidence for data starvation in SE.



cated management practice (to say the least). FBC was
advocated in the 1990s by the then-administrator of NASA,
Daniel Goldin, as a method for reducing the expenditure of
NASA. FBC was in-line with the direction that the Clinton
administration’s approach of doing more for less. FBC was
initially successful: projects that usually cost over a billion
were implemented at th that cost (e.g. Mars Pathfinder).
However, subsequent failures (Mars Climate Orbiter and Po-
lar Lander; the Columbia Shuttle disaster) caused a wealth
of criticism of FBC.

When reusing models, one technical challenge is the tuning
problem in data starved domains. When a model is reused
from another site, it is often tuned to the local site. For ex-
ample, Boehm et at. [4] advocate a certain functional form
for generating software development effort estimates. In that
form, the development effort is linear on a set of effort mul-
tipliers EM; and exponential on a set of scale factors SFj}:
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The particular effort multipliers and scale factors recom-
mended by Boehm et al. are shown in Figure 2. While
Boehm et al offer default values for the Equation 1 vari-
ables, linear regression on local data can tune the «;,f;
values to the particulars of a local site. Also, if there is in-
sufficient data for a full tuning of «, 3, then a coarse grain
tuning can be achieved by just adjusting the A, B linear and
exponential tuning parameters.

In data started domains, there is insufficient data to pro-
duce precise tunings. For example, At PROMISE 2005, we
have reported very wide ranges in the post-tuning values of
a and 3 [20]. Baker [2] offers a similar finding. After thirty
90% random samples of that data, the A, B ranges found
during tuning were surprisingly wide:

(2.2 < A<9.18) A (0.88 < B < 1.09) (2)

Elsewhere we have been partially successful in reducing these
wide ranges with feature subset selection (FSS) [5,17]. How-
ever, despite years of work, we now report that F'SS reduces
but does not sufficiently narrow the ranges of A, B, o, 52

Having failed to generate narrow tunings, we have been
exploring a new approach The STAR tool [8,19,21]. tool
checks for stable conclusions within a wide range of possible
tunings. As shown below, we can find stable conclusions
using a combination of simulated annealing and Bayesian
sensitivity analysis.

STAR is an excellent candidate for exploring issues related
to “Faster, Better, Cheaper”. STAR combines estimates for
effort F/, development time in months M and number of de-
livered defects D in an equation that weights each estimates
utilities {f, ¢, b} (short for faster, cheaper, better®.

VM2 +b.D? + c.E2
score = (3)
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2We are aware of only one other report, by Korte & Port
at PROMISE 2007 [14] of these large post-tuning ranges.
It is an open question why other researchers have not re-
ported these large ranges. Perhaps these large post-tuning
ranges have been missed since researchers rarely check for
this effect.

3We will use uppercase B to denote the COCOMO linear
tuning variable of Equation 1 and lower b to denote the busi-
ness utility associated with defect predictions of Equation 3

This score value models the Euclidean distance to minimum
values for all the {M, D, E'} predictions. If we normalize the
predictions min..max to 0..1 then Equation 3 has the range
one to zero and lower scores are better.

In this study, we run STAR in three modes:

e BF, or {better, faster}, where c=0and b= f =1 (so
we are ignoring development cost);

e BC, or {better, cheaper}, where f =0and b=c=1
(so we are ignoring delivery time);

e CF, or {faster, cheaper}, where b=0and f =c=1
(so we are ignoring delivered defects).

e FBC, or {faster, better, cheaper}, whereb=f=c=1
(so we are trying to achieve all goals).

The surprise result of this paper is that, contrary to the
prevailing wisdom at NASA, FBC is not necessarily a disas-
trous development methodology. In fact, in % of our stud-
ies, it produces results within 1% of the minimum estimates
generated by any of BF ,BC,FBC. We speculate that what
really went wrong with FBC at NASA is that it was used
as a front for FC; i.e. built it faster and cheaper, but forget
any considerations of quality.

The rest of this paper is structures as follows. XXXX

Before beginning, we digress to make one point. This pa-
per is only commenting on FBC as a software development
practice. STAR only models software development. so we
cannot comment on the more general field of systems en-
gineering. In future work, we plan to (a) implement hard-
ware development models inside STAR; then (b) make an
informed comment on NASA’s use of FBC in the 1990s for
building complex combinations of software and hardware de-
vices.

2. HISTORY

The main approach to implementing FBC within NASA
was to down size projects and reduce their cost and com-
plexity, concentrating on producing missions in volume. Re-
ducing funding naturally meant that less verification and
testing was possible within budget and schedule constraints.
The reasoning behind this however was to be able to pro-
duce a larger volume of unmanned missions, which would
counteract the expected higher rate of mission failure. This
would, optimally, yield more successful missions as well as
more scientific data produced by these projects. Another
focus in this policy was allowing teams to take acceptable
risks in projects to allow for cost reduction, and possibly
using new technology that could reduce cost while possibly
providing more capabilities. This was accompanied by the
the new view that was being pushed at NASA by Goldin
that “it’s ok to fail” [26], which was rather misunderstood.
This new policy was meant to eliminate huge budget mis-
sions of the past, that upon possible failure would yield large
losses. Project cost used to routinely exceed the $1 billion
mark, while the first FBC project, the Mars Pathfinder, was
completed for a fraction of the cost, netting at about $270
million [15].

Some within NASA, such as 30 year veteran Frank Hoban,
supported these policies [15]. Some viewed these new poli-
cies as a necessary break from traditional policies that were
very risk averse. The additional cost reduction, accompa-
nied by the additional risk, was to allow for a path to cheap
and commercial space flight. Even given the reduced fund-
ing, the Mars Pathfinder mission, along with other first gen-



Definition

[ Low-end = {1,2}

[ Medium ={3,4}

[ High-end= {5,6}

Defect removal features

execution- | all procedures and tools used for | none basic testing at unit/ inte- | advanced test oracles, as-
based testing gration/ systems level; ba- | sertion checking, model-
testing sic test data management based testing
and tools
(etat)
automated | e.g. code analyzers, consistency | syntax checking with | Compiler extensions for | formalized specification
analysis and traceability checkers, etc compiler static code analysis, Basic | and verification, model
(aa) requirements and design | checking, symbolic exe-
consistency, traceability | cution, pre/post condi-
checking. tion checks
peer re- | all peer group review activities none well-defined sequence of | formal roles plus exten-
views preparation, informal as- | sive review checklists/
(pr) signment of reviewer roles, | root cause analysis, con-
minimal follow-up tinual reviews, statistical
process control, user
involvement integrated
with life cycle
Scale factors:
flex development flexibility development  process | some guidelines, which can | only general goals de-
rigorously defined be relaxed fined
pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built | somewhat new thoroughly familiar
this kind of software
before
resl architecture or risk resolution few interfaces defined | most interfaces defined or | all interfaces defined or
or few risks eliminated | most risks eliminated all risks eliminated
team team cohesion very difficult interac- | basically co-operative seamless interactions
tions
Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write | e.g. use of simple interface | e.g. performance-critical
statements widgets embedded systems
data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases extensive reporting for
not documented each life-cycle phase
Itex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity 48% 12% 3%
(% turnover per year)
plex platform experience 2 months 1 year 6 years
pvol platform volatility 71? IZZZEZ& 76272‘”";;2’;5 722 “(’iieykss
(frequency of major cha,w,QES)
frequency of minor changes
rely required reliability errors are slight incon- | errors are easily recover- | errors can risk human life
venience able
ruse required reuse none multiple program multiple product lines
sced dictated development deadlines moved to | no change deadlines moved back to
schedule 75% of the original 160% of original estimate
estimate
site multi-site development some contact: phone, | some email interactive multi-media
mail
stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 2: Features of the COCOMO and COQUALMO models used in this study.

eration FBC missions, were successes. This fueled enthusi-
asm to apply FBC across all of NASA and further reduce
spending per mission, as well as reduce NASA expenditure
by reducing the work force by a third. FBC was extended to
be applied on manned space missions as well, where funding
was also reduced. Coming into a space shuttle program that
was starting to age and in need of updates, the new policies
imposed cuts in funding from 48% of the NASA budget to
38% [11], further straining that program. Further more,
a single prime contractor (Lockheed Martin) was used for
missions in another bid to reduce cost and managerial com-
plexity [23,31].

This produced opposition within NASA,| where tradition-
ally issues pertaining to the shuttle were designated LOVC
(Loss of Vehicle and Crew) and given priority over all other
issues, including cost. However the cost cuts and layoffs
that ensued were too much for teams, and caused a blow to
morale. In addition there was a progressive loss of veteran
scientists, engineers and managers who had accepted offers
for early retirement that were extended to them [11].

Despite this, additional projects were on the way in the
form of the Mars Climate Orbiter and the Mars Polar Lan-
der. These two projects were more aggressive implementa-
tions of FBC, especially when it came to the Faster-Cheaper



part of those policies. Costs of the Orbiter and the Lan-
der were brought down to $125 million and $165 million
respectively [28]. This was much lower that the previous
Pathfinder mission, which itself cost slightly less than $300
million. The success of these missions would’ve furthered
the FBC mantra within NASA and JPL, and would’ve been
seen as breaking new ground in terms of mission completion
with the kind of staff and cost reductions they had compared
to previous missions, even the Pathfinder [10].

Given its early success in terms of mission delivery, FBC
started being more aggressively applied to missions in NASA.
One product of this were the above mentioned Mars Cli-
mate Orbiter and Polar Lander. Each cost about 40% less
than the previous Pathfinder mission, which is extraordinary
given that Pathfinder had been touted as a money saver
by NASA when compared to previous missions like Viking,
which cost about $935 million in 1974 Dollars (equivalent to
$3.5 billion in 1997 dollars). Both of these missions however
failed. Using a single contractor had weakened quality as-
surance and resulted in flaws that caused the loss of these
two Mars missions. These flaws had been software flaws
that could have easily been rectified if they had been dis-
covered on the ground. One of these flaws was a failure to
convert from imperial to metric units, causing the loss of the
Climate Orbiter [22]. The Mars Program Independent As-
sessment Team Report [31] found that these missions were
under-staffed, under-funded by at least 30%, and too tightly
scheduled.

Elsewhere, across the Atlantic in the UK, another Mars
mission to deliver a lander, designated the Beagle 2, was un-
der way. This mission way also developed cheaply, applying
the same concepts in design and implementation that NASA
was at the time using. The lander however was declared lost
after not establishing contact after separation from the mars
express vehicle [1].

One other failure that FBC was blamed for was the Columbia

Shuttle disaster in 2003. This was post-Goldin, at a point
where NASA had realized the excessive cost cutting and staff
reducing policies needed to be changed. After that disaster,
critics quickly pointed the finger to these missions being un-
der funded due to FBC. There were many calls, especially
politically, for throwing FBC “in the waste basket” [7,24].

3. CASE STUDIES

This paper assess the value of “Faster, Better, Cheaper”
using the three cases studies of Figure 3. These cases studies
represent the same class of NASA flight software, at increas-
ing levels of specificity:

e Flightis a general description of flight software at NASA’s

Jet Propulsion Laboratory.

e OSP is a specific flight system: the GNC (guidance,
navigation, and control) component of NASA’s 1990s
Orbital Space Plane;

e OSP2is a later version of OSP;

In the sequel, the following will be important. Our case
studies can be ranked

flight > OSP > OSP2

according to how many open options they offer a project
manager:

e In the case of flight systems, the description is very
general and managers have many options.

ranges values
project feature low high | feature setting
prec 1 2 | data 3
OSP: flex 2 5 | pvol 2
Orbital | resl 1 3 | rely 5
space team 2 3 | pcap 3
plane pmat 1 4 | plex 3
stor 3 5 | site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 | flex 3
OSP2 pmat 4 5 | resl 4
docu 3 4 | team 3
ltex 2 5 | time 3
sced 2 4 | stor 3
KSLOC 75 125 | data 4
pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6
rely 3 5 | tool 2
JPL data 2 3 | sced 3
flight cplx 3 6
software | time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
Figure 3: Three case studies. Nu-
meric values {1,2,3,4,5,6} map to

{verylow, low, nominal, high, veryhigh, extrahigh}. The
terms in column 2 come from Figure 2.

e In the case of OSP2, most of the project options are
pre-determined and project managers have very little
opportunity to effect the course of a project.

e OSP is an early version of OSP2 and, measured in
terms of the number of open options, falls in between
flight and OSP2.

Figure 3 describes the details of flight, OSP, and OSP2.
Note that Figure 3 does not mention all the features listed
in Figure 2 inputs. For example, our defect predictor has in-
puts for use of automated analysis, peer reviews, and execution-
based testing tools. For all inputs not mentioned in Figure 3,
values are picked at random from the full range of Figure 2.

The important thing to note from Figure 3 is the num-
ber of open options not specified in the description of the
projects. Some of the features in Figure 3 are known pre-
cisely (see all the features with single values). But many of
the features in Figure 3 do not have precise values (see all
the features that range from some low to high value). Some-
times the ranges are very narrow (e.g., the process maturity
of JPL ground software is between 2 and 3), and sometimes
the ranges are very broad. The broader the range of options,



the more freedom a manager has to adjust with the internals
of their project. As we shall see below, this ability to make
project adjustments will critically effect our results.

4. STAR

STAR uses the cases studies of Figure 3 as inputs to a
Monte Carlo simulation. STAR contains the COCOMO ef-
fort E estimator [4] but also the COCOMO development
months M estimator [4, p29-57], and COQUALMO D de-
fects estimator [4, p254-268], These estimator generate the
{E, M, D} variables of Equation 3.

While STAR’s effort and months models share the same
{A, B, a, 8} values, the defect model has a separate set of
tuning variables, which we will call 7. Using 26 years of pub-
lications about COCOMO-related models, we inferred the
minimum and maximum values yet seen for {4, B, a, 3,7}
For example, the A, B min/max values come from Equa-
tion 2. We use the variable T' to store the range of possible
values for these tuning variables.

STAR runs as follows. First, a project P is specified as
a set of min/max ranges to the input variables of STAR’s
models:

e Ifa variable is known to be exactly x, then then min = maz = ap(best|E) * support(best|E) =

e Else, if a variable’s exact value is not known but the
range of possible values is known, then min/max is
set to the smallest and largest value in that range of
possibilities.

e Else, if a variable’s value is completely unknown then
min/min is set to the full range of that variable in
Figure 2.

Second, STAR’s simulated annealer? secks constraints on
P that most reduce the score of Equation 3. A particu-
lar subset of P' C P is scored by using P’ as inputs to
the COCOMO and COQUALMO. When those models run,
variables are selected at random from the min/max range of
possible tunings 7" and project options P. In practice, the
majority of the variables in P’ can be removed without ef-
fecting the score; i.e. our models exhibit a keys effect where
a small number of variables control the rest [18]. Finding
that minimal set of variables is very useful for management
since it reveals the least they need to change in order to most
improve the outcome. Hence, simulated annealing, STAR
takes a third step.

In STAR’s third step, a Bayesian sensitivity analysis finds
the the smallest subset of P’ that most effects the output.
The scores seen during simulated annealing are sorted into
the 10% best and the 90% rest. Members of P’ are then
ranked by their Bayesian probability of appearing in best.
For example, after K = 10,000 runs of the simulated an-
nealing, the output scores are divided into 1,000 lowest 10%
best solutions and 9,000 rest. The range rely = vh might
appears 10 times in the best solutions, but only 5 times in

4Simulated annealers randomly alter part of the some
current solution. If this new solution scores better than
the current solution, then current = new. Else, at some
probability determined by a temperature variable, the sim-
ulated annealer may jump to a sub-optimal new solution.
Initially the temperature is “hot” so the annealer jumps all
over the solution space. Later, the temperature “cools” and
the annealer reverts to a simple hill climbing search that
only jumps to new better solutions. For more details, see

[12].

the rest. Hence:

E = (reply=wvh)

P(best) = 1000/10000 = 0.1
P(rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01
freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) - P(best) = 0.001
like(rest|E) = freq(E|rest) - P(rest) = 0.000504
P(best|E) = Like(best|F) = 0.66(4)

like(best|E) + like(rest|E)

Previously [6] we have found that Equation 4 is a poor rank-
ing heuristic since it is distracted by low frequency evidence.
For example, note how the probability of E belonging to
the best class is moderately high even though its support is
very low; i.e. P(best|E) = 0.66 but freq(E|best) = 0.01. To
avoid such unreliable low frequency evidence, we augment
Equation 4 with a support term. Support should increase
as the frequency of a range increases, i.e. like(x|best) is a
valid support measure. STAR]1 hence ranks ranges via

like(z|best)?
" like(x|best) + like(x|rest)

()

After ranking members of P/, STAR then imposes the top i-
th ranked items of P’ on the model inputs, then running the
models 100 times. This continues until the scores seen using
i+ 1 items is not statistically different to those seen using
i (t-tests, 95% confidence). STAR returns items 1..i of P’
as the least set of project decisions that most reduce effort,
defects, and development time. We call these returned items
the policy.

Note that STAR constraints the project options P but
never the tuning options 7. That is, the policy generated
by STAR contains parts of the project options P that most
improve the score, despite variations in the tunings 7. This
approach has the advantage that it can reuse COCOMO
models without requiring data for local tuning.

Previously [19] we have shown that this approach, that
does not use local tuning, generates estimates very simi-
lar to those generated after using local tuning via the “LC”
method proposed by Boehm and in widespread use in the
COCOMO community [3]. We have explained this effect as
follows. Uncertainty in the project options P and the tuning
options T' contribute to uncertainty in the estimates gener-
ated by STAR’s models. However, at least for the COCOMO
and COQUALMO models used by STAR, the uncertainty
created by P dominates that of 7. Hence, any uncertainty
in the output can be tamed by constrain P and not T'.

5. RESULTS
5.1 Format of Results

Figure 4 shows the defects, months, and effort estimates
seen imposing the policy learned by simulated annealing and
Bayesian sensitivity analysis.

e The results have separate divisions for defects, months,
and effort.

e Each division is sub-divided into the results for flight,
OSP, and OSP2 results.
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Figure 4: Results



Within each sub-division, the rows are sorted by median
scores. The “Do nothing” row comes from Monte Carlo sim-
ulations over the project range P, without any restrictions.

The rank results shown in column three show the results
of a statistical comparison of each sub-division. Two rows
have the same rank if there is no statistical difference in their
distributions. We use Mann-Whitney for this comparison for
the following reasons:

e The random nature of Monte Carlo simulations, the
inputs to each run are not paired;

e Ranked tests make no, possibly inappropriate, assump-
tion about normality of the results.

Each row shows results from 100 calls to Equation 3:

e Within each division, the results are normalized to run
0..100, min..max.

e Each row shows the 256% to 75% quartile range of the
normalized scores collected during the simulation.

e The median result is shown as a black dot.

All the performance scores (effort, months, defects) get bet-
ter when the observed scores get smaller; i.e. move over the
left.

5.2 Observations and Recommendations

Three aspects of Figure 4 deserve out attention. Firstly, it
is almost always true that some optimizations on any pair or
triple from “Faster, Better, Cheaper” can reduce defects and
months and effort from the levels seen in the baseline “do
nothing” scenario. Hence, we recommend the widespread
use of tools like STAR.

Secondly, we also recommend we advise applying tools like
STAR as early as possible in the life cycle of a project while
there still exists a wide range of process options. Note in
Figure 4 that as we move from flight to OPS to OSP2, the
median performance scores get worse. In order to explain
this effect, we repeat remarks made above: our case studies
are sorted in decreasing order of “number of open options”
(there is much that can be adjusted within the general de-
scription of flight systems; fewer adjustments options are
possible in OSP; and even fewer adjustments are possible
in OSP2). As we decrease the number of open options, our
ability to find “fixes” to the current project also decrease.

Thirdly, the goal of faster and better and cheaper is not
overly ambitions. Pre-experimentally, we agreed with the
standard view of “Faster, Better, Cheaper? Pick any two”.
We believed that when optimizing for three criteria, it may
be sometimes necessary to accept non-minimal results for
one of the criteria. However, contrary to our expectations,
in the case of:

e defects for OSP2,
e months for flight systems, and
o cffort for flight systems

FBC achieves the best (lowest) median results. Also, for:

e defects for flight systems and
e defects for OSP2 and
e cffort for OSP

FBC is statistically indistinguishable from the best (lowest)
median result. Lastly, in the case of

o defects for OSP

FBC’s median is within 1% of the best (lowest) median re-
sult. That is, in £ of the divisions of Figure 4, FBC achieves
either minimum or very close to minimum values. Hence, we
still endorse STAR’s default setting of b = f = ¢ = 1; i.e.
try to optimize on all three criteria.

5.3 Discussion

These results appear to contradict the historical record.
Our last paragraph concluded that “Faster, Better, Cheaper”
can usually be achieved with minimal compromises on indi-
vidual criteria. How are we to reconcile this result with the
NASA experience, described above?

One way to explain the very large failures within the FBC
program is to speculate that, sometimes, FBC was a front
for CF (i.e.. cheaper and faster, as the expense of quality).
Figure 4 shows the disastrous effects of CF. CF leads to poor
defect results in the case of OSP and the worst defect results
in the case of OSP2.

Also, one thing forgotten about FBC is that, usually, it
worked. Despite all the criticism against it, FBC success-
ful/partially successful in 136 of the total of 146 missions
launched during the period that Goldin was administrator.
This would be called an overall success if it hadn’t been for
the largely publicized failure. That is, FBC was mostly a
technical success, but a PR failure [30].

Some the decisions made under the banner of FBC are
questionable; i.e. staff reductions leading to loss in veteran
engineers and managers to retirement and causing experi-
enced managerial staff to be stretched too thin given tight
scheduling [31]. This forced projects to use inexperienced
managers which caused management mix ups and human
error.

Like Spear [27] , we would endorse FBC, but under the
condition that it is better managed. Tony Spear, a JPL
veteran engineer from 1962 to 1998, testified to the possi-
ble effectiveness of FBC. Despite mentioning problems with
FBC (a fixation on cost, causing cost cuts that were too
much for 2% generation FBC projects), he recommended
not to discard it. Rather, he argued for a more focused way
of implementing it, concentrating on aspects such as build-
ing and retaining talent, taking advantage of advancements
in technology such as the Internet, and advancing methods
used in project development and verification [26,27].

To Spear’s recommendation we would add that when ap-
plying FBC, never surrender the quest of “better”. Observe
how, in Figure 4, whenever we optimize for “Better” using
b =1, we always reduce defects by about an order of mag-
nitude over the baseline “do nothing” result. The only time
that our optimizer does not reduce defects is when the “bet-
ter” utility is set to zero (see the CF detect results). Hence,
we recommend always setting b = 1.

6. RELATED WORK

This paper explores a unique solution to data starvation:
sample across the space of possible model tunings. Else-
where, we have explored solving local data starvation using
imported data. With Turhan et al. [29], we have compared
the performance of defect prediction models built from local
data or imported data. Imported data, we found, can have
impractically high false alarm rates when applied to local
data. However, we also found that, with the right relevancy
filtering, we can sometimes solve the data drought problem
using imported data. For example, building a Bayes classi-



fier from the 10 training instances nearest each test instance
can reduce that false alarm rate by 300%.

In other work, Kitchenham et.al. [13] study effort estima-
tion models built from local or imported data. They conduct
a systematic review of ten projects, comparing estimates us-
ing historical data within the same company or imported
from another. In no case was it better to use data from
other sites, and sometimes importing such data yielded sig-
nificantly worse estimates.

Note that the Kitchenham et al. result is the complete
reverse of the Turhan et al. That is, the results of [29] may
not always apply and local data starvation can not always
we solved with data from another site. Hence, this work.

7. CONCLUSION

BFC not a bad thing

STAR rules

more process options than you know

Time to turn PROMISE from model generation to model
conclusion. One thing we are very interested in is the kind
of discussion this paper inspires. Will our conclusions be
rejected because they are “just” based on COCOMO? If our
models are bad, where are ones that are better? Is there
some better model that a large community endorses as a
valid source of insight into software engineering? Is there
no generality in software engineering? We look forward to a
lively discussion on these issues.
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