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Abstract

It can be difficult to determine which verification strategy is best for a particular software system.2

Researchers have observed complementary relationships between verification tools and argued that

there is no single best verification tool: as users’ needs change, the choice of tool should change4

as well. We provide further evidence of complementary relationships between verification strategies,

specifically considering tools for automatically translating from the Software Cost Reduction (SCR)6

modeling language to several different verification and debugging tools for formal models. We show

how verification strategies—each with its own formal modeling languages, automatic translator and8

verification tool—may be considered complementary in terms of both accuracy and scalability. Rather

than providing guidance for users deciding between strategies, we argue that a verification strategy10

combining results from multiple tools will yield the most accurate results, i.e., the results worthy of the

greatest trust.12

Index Terms

Software verification, model checking, mutation of specifications, automatic translation, fault de-14

tection, scalability of verification and debugging tools.

I. INTRODUCTION16

There are a variety of ways to improve the scalability of automated verification tools. Some

verification strategies limit the scope of verification to improve scalability. For example, the18

scope may be limited by restricting the types of input models or properties that can be verified.

Or the results of verification—properties proved or errors detected—may have to be validated20

manually or with another tool.

Diverse verification strategies, each attempting to improve scalability in different ways, tend22

to be complementary. In the experiments below, for example, verification of a given input

model may require require much more or much less time and memory, depending on the model24

translation and verification tools used. In addition, because different translation tools implelement

different scalability-improving assumptions, property violations present in a model may be missed26

by one verification strategy but caught by another. And even when two different strategies catch

the same property violation, one strategy may be much faster, require much less memory, or28

produce simpler and more useful information for correcting the input model.
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Cobleigh et.al. recognize complementary relationships between modeling languages, transla-30

tion and verification tools and recommend the use of a verification framework in which a variety

of strategies are available, so that, as software models and users’ needs change, the right strategy32

is available [1]. In this article we consider the basic verification challenge, to determine whether

a software model is consistent with a formal specification of correctness properties, and argue for34

the use of several verification strategies—each with its own automatic translation and verification

tools—together.36

Using multiple complementary translation and verification tools together on the same input

model yields two types of advantages. First, hidden assumptions and idiosyncrasies of the tools38

are brought to light, so that individual tools may be used more effectively and the user has

reason for increased confidence in the results. This is especially important when tools are used40

in a verification framework that includes elements not developed by the user, e.g., automatic

translators or modeling tools, as in the experiments we present below. If automated verification42

tools are to be practical and cost-effective, expert knowledge of the inner workings of a tool

must not be a prerequisite for use. If multiple tools, representing diverse modeling languages,44

translation assumptions, and verification algorithms, can be run on the same input to produce

consistent results, the user can be much more confident in the results’ correctness.46

A second advantage of multiple-tool verification strategies is improved scalability. Tools may

be cascaded in such a way that input models difficult for one tool are passed on to another. If48

tools’ performance is sufficiently complementary, most imput models will be easy for at least one

tool even if they are difficult for one or more other tools. Cascading multiple tools may result in50

an overall verification strategy much less sensitive, in terms of time and memory requirements,

to minor changes in the input model [2].52

In previous work we experimented with a simple random search to detect errors in software

models [3]. Our strategy was as follows: start at the initial state of the model; choose the next state54

at random from those possible; quit when no next state is possible or a user-specified depth limit

is reached. Search results followed a pattern: at first, many unique states were explored, but soon56

the number of unique states explored reached a peak and stopped increasing; from then on the

same states were explored over and over. When allowed to run to this saturation point, at which58

the proportion of unique states drops off, the random search produces surprisingly consistent

results. We concluded that random search, in spite of its general (worst-case) unreliability, was60
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sufficiently consistent to pursue as an efficient strategy for detecting errors in software models

[4]–[6].62

Further work on random search led to the development of Lurch, a tool for detecting violations

of generic and user-defined logical properties in finite-state machine models [7]. We compared64

Lurch’s performance to the model checkers SPIN [8] and Cadence SMV [9] and found that

with random search it is often possible to detect property violations far more quickly and with66

orders of magnitude less memory. We also showed how Lurch could be used together with a

conventional verification tool to greatly improve average verification performance: use Lurch68

first for a relatively short time and only run the verification tool on input models for which

Lurch finds no property violations [10].70

In addition, random search can be used as a sanity check on verification results produced by a

model checker: to improve performance in real-world applications of model checking, the input72

model may be simplified, based on assumptions about its structure. If the model checker detects

no faults in this simplified model, random search can be run on an un-simplified version of the74

model. Assuming the random search also detects no faults, we can be more confident in the

simplifying assumptions used to make the input model small enough for verification with the76

model checker [11].

In the experiments below we consider complementary relationships between diverse verifica-78

tion strategies including random search, different types of model checking, and a specialized tool

for proving invariant properties. We found complementary relationships between these different80

strategies, especially between the translation tools used to generate the different input models

needed for each strategy. Our primary contribution is to show how complementary strategies like82

those we considered can be used together in a single robust verification strategy. Complementary

relationships considered include both complementary scope—tools performing different types of84

analysis—and complementary performance—execution time and memory consumption.

In this article, we propose and evaluate a multiple-tool verification strategy for software system86

and property specifications written in the Software Cost Reduction (SCR) modeling language

[12]. In addition, we suggest the following more general claim: diverse verification strategies,88

each attempting to improve scalability in different ways, may be integrated to produce a single

strategy that is both more scalable and more reliable. Improved reliability is the result of insight90
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into the use of each tool gained by comparing results from different tools.

II. RELATED WORK92

This section provides a brief overview of the research behind the tools used in the experiments

described later: symbolic and explicit-state model checking tools, increasingly powerful testing94

tools influenced by ideas from model checking research, and random search as a way to efficiently

detect faults in formal software models.96

A. Model Checking

Model checking is probably the most widely used automated verification technique. Model98

checking tools carry out an exhaustive exploration of the behavior represented by an abstract

program model to check for consistency with a specification of desired properties [13]. Model100

checking has been effective in many domains including computer hardware design, networking,

security and telecommunications protocols, and automated control systems [14]–[16]. Model102

checking has been used in safety critical NASA projects [17]–[19]. Microsoft research has

developed a proprietary model checking framework for use on critical components of Windows104

[20].

The input to a model checking tool is the specification of a finite-state concurrent system. In106

order to verify that the properties hold, the model checker must construct a single composite

finite-state machine to represent all possible behaviors of the individual concurrent machines108

in the model as they interact with each other. In practice this composite finite-state machine

may be very large. This is the state-space explosion referred to in the literature: if there are110

many concurrent machines in the input model, making many transitions in parallel, the number

of global states in the composite machine may grow exponentially, compared to the number of112

concurrent machines in the original model [15].

Model checking techniques originated in the 1980’s. In the early 1990’s Clarke and colleagues114

began using binary-decision diagrams, or BDDs, to succinctly represent the global system [15].

This new symbolic model checking technique, implemented in a tool called SMV (the Symbolic116

Model Verifier), made it possible to verify much larger input models. In the experiments described

below we use two popular versions of SMV: Cadence SMV [9] and NuSMV [16].118
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Symbolic model checking works well with models representing synchronous systems, includ-

ing integrated circuit designs, which tend to have many small, symmetrical components. But120

software systems are often asynchronous. In an asynchronous system several things may be

going on in parallel with no synchronization point and different interleavings are possible. If all122

possible interleavings must be checked, the state space required tends to grow very large.

Unlike SMV, the SPIN model checker is designed specifically for asynchronous software124

models [14]. To handle models with many possible interleavings of parallel behaviors, SPIN

uses partial order reduction: only interleavings relevant to the property specification are checked.126

That is, if the specified properties are unaffected by the order of some set of events, only one

possible ordering of those events will be checked [14], [15]. SPIN has been used to verify a128

wide range of algorithms, protocols, and system implementations [8], [14], [21].

Partial order reduction decreases the number of states that must be explored to verify the130

input model. To decrease the amount of memory required for each state, SPIN offers options for

lossless or lossy compression. The lossless methods save memory, but tend to require a lot of132

time [8]. For example, in the experiments presented in Section III-B, without compression SPIN

would have required 6.8 Gb of memory for the verification run (this statistic is provided by134

SPIN when used with the compression option). With compression, the run required only about

270 Mb, but took 30 minutes on a computer with a 2.5GHz processor.136

SPIN’s lossy compression options run quickly and scale to large systems, but sacrifice com-

pleteness; that is, there is the possibility of missing property violations present in the system.138

In the current version of SPIN these are the hash compaction and bitstate hashing options [8].

In the past, “scatter search,” an incomplete random search technique that limited which states140

were explored rather than limiting the amount of information stored with each state, was added

to SPIN [22]. Although this idea was eventually given up, results from that work suggest that142

if there is a fault in the model, it is likely to affect a large portion of the state space. This idea

is an important assumption in our work on random search as a scalable alternative to model144

checking [3].

SMV also implements incomplete but scalable search options. Success in the development of146

algorithms for solving satisfiability (SAT) queries has enabled the development of a symbolic

search technique known as bounded model checking [23]. To perform bounded model checking,148

a SAT query is used to represent the state space up to a user-specified depth, and a SAT solving
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algorithm determines whether the query is satisfiable, which corresponds to determining whether150

the input model is consistent with the property specification. Bounded model checkers are very

effective; nevertheless, bounded model checking is incomplete and can miss faults because of152

the search depth restriction. If no property violation is found, we only know that there is no

violation within the user-specified search depth.154

The use of incomplete techniques is controversial, since the primary goal of model checking

is verification, not debugging. But in practice, even when complete verification is not possible156

model checkers have proven useful. For example, they can automatically detect complex errors

in systems too large for complete verification [1], [24], find counter examples to aid in fixing158

known errors [25], and be used to automatically generate test cases [26], [27].

Incomplete strategies that nevertheless provide some of the benefits of model checking can be160

thought of as part of a growing set of testing tools with capability inspired by model checking.

Much work is being done on testing strategies that are increasingly automated and capable of162

detecting more complex types of faults. For example, tools running directly on source code and

large production models can detect classes of faults previously in the realm of formal verification164

[24], [28]–[30].

It is difficult to compare techniques’ scalability and scope, because different approaches work166

well with different types of models, and some researchers advocate a framework in which several

complementary approaches are available [1], [24], [31]. For example, an explicit-state model168

checker (SPIN) might quickly find many long counter examples, while a symbolic model checker

(SMV) might require more time and memory but find much shorter counter examples [1], [32].170

So it may depend on whether a verification practitioner requires, e.g., fault detection alone

versus short counter examples to facilitate debugging. Related to this is the sensitivity of a172

testing strategy to minor changes in a model. For a given testing strategy, a small change in the

input can make a significant difference in the time and memory required to detect a fault.174

B. Random Search Applied to Formal Models

Almost twenty years ago West explored the idea of using a simple incomplete technique,176

random search, to detect faults in finite-state models of software systems [33]. Random search,

although incomplete, was shown to be surprisingly quick and effective. West’s explanation of178

the success of random search is helpful in understanding the success of various heuristics and
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incomplete verification strategies available today. He noted that faults detected in concurrent180

systems are often much less complex than the overall system [33]. That is, a fault involving

a small subset of processes is present in many global system states—processes not relevant to182

the fault may be in any local state as long as the relevant processes are in the local states that

together constitute the error.184

Faults may also be less complex than the overall system in another way: even if the fault is

present in a very small number of global system states, there may be many paths that lead to186

those states. This kind of structure is exploited by SPIN’s partial order reduction strategy, which

avoids exploring interleavings of behaviors irrelevant to the properties being verified. In models188

for which partial order reduction is effective we expect incomplete techniques to perform well

also: where any one of a large number of interleaved paths is sufficient to represent all relevant190

behavior, the search only needs to explore one, so an incomplete search may be sufficient.

III. MOTIVATING EXAMPLES192

This section presents three examples in which different verification strategies produced in-

consistent results when run on the same SCR input model. In each case the inconsistency was194

eventually resolved, and we gained a better understanding of the translation and verification tools

in the process. Also, in each case it would have been possible to use a single verification strategy196

to get an invalid result, with no indication that translation and verification tools had been used

incorrectly. The first two examples illustrate a key limitation in the use of model checking tools:198

although a fault detected by the tool can be manually confirmed or disconfirmed by inspecting

the counter example trace provided by the model checker, if the model checker reports that the200

model is correct no proof is generated to certify this result. (Others have developed ways to

determine whether a the “all clear” result from a single model checker is valid [34]; in this work202

we show how multiple tools can be used to validate each other without detailed knowledge of

any particular tool.) In the third example, the inconsistency brought to light is less critical: the204

use of multiple strategies, rather than preventing a violation from being missed, has the practical

benefit of showing that a violation detected by one strategy is not actually present in the original206

input model.
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Copyright 1996 Cadence Berkeley Labs. Cadence Design Systems...

Model checking results

======================

(AG (((˜(cGuardAlarm=On))|(cUserDisplay=SeeOfficer))&((˜(cUserDisplay=.....false

*** This is NuSMV 2.4.1 zchaff (compiled on Tue Jan 30 19:33:47 UTC 2007)...

-- specification AG ((!(cGuardAlarm = On) | cUserDisplay = SeeOfficer)

& (!(cUserDisplay = SeeOfficer) | cGuardAlarm = On)) is true

Fig. 1. Inconsistent outputs from Cadence SMV (top) and NuSMV (bottom) running on the same fault-seeded specification.

A. Inconsistent Results from Two Symbolic Model Checkers208

Figure 1 shows the outputs from two versions of the SMV symbolic model checker, Cadence

SMV [9] and NuSMV [16], running on the same input model.1 The model was generated210

automatically from the specification of a security system, written in the SCR modeling language

and described in more detail in section IV-E. As shown in Figure 1 Cadence SMV and NuSMV212

disagree about whether one of the assertions included in the input model is true or false—the

assertion (cGuardAlarm = On) <=> (cUserDisplay = SeeOfficer).214

The input model in this example was generated from a fault-seeded version of the specification

known to be correct in the original version. The fault-seeded version contained two mutations, so216

our first step in attempting to resolve the inconsistency between Cadence SMV and NuSMV was

to look at the results from running these tools on input models generated from specifications that218

each had just one of the mutations. Results on these single-mutation versions were consistent:

for an input model with just the first mutation, both Cadence SMV and NuSMV reported that220

all assertions included in the input model were true; for an input model with just the second

mutation, both Cadence SMV and NuSMV reported that the assertion (cGuardAlarm = On)222

<=> (cUserDisplay = SeeOfficer) was false. This suggests that the assertion violation

reported by Cadence SMV is present in the input model, but somehow masked by the first224

mutation for NuSMV.

1For clarity many lines of output have been deleted in this figure and similar figures below.
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Depth= 500129 States= 1e+06 Transitions= 1.02631e+06 Memory= 72.780...

pan: assertion violated (( !((cGuardAlarm_NEW==0))||(cUserDisplay_NEW==9))

&&( !((cUserDisplay_NEW==9))||(cGuardAlarm_NEW==0))) (at depth 859760)...

(Spin Version 4.2.4 -- 14 February 2005)...

State-vector 32 byte, depth reached 859769, errors: 1

Fig. 2. Output from SPIN running on a model generated from the same fault-seeded specification used to generate the models

for which Cadence SMV and NuSMV outputs are shown in figure 1.

To confirm the Cadence SMV result, we ran SPIN on an input model generated from the same226

fault-seeded specification. Figure 2 shows the result from SPIN, consistent with the result from

Cadence SMV. Based on this, we contacted the devlopers of NuSMV and via several emails228

determined that the SCR-to-SMV translator we were using produced a syntatically correct but

outdated input model. Specifically, the keyword SPEC used to mark assertions was not being230

interpreted the same way by NuSMV as by the older Cadence SMV. As a result, NuSMV was

checking assertions in the input model only for a limited set of possible execution paths. By232

replacing SPEC with INVARSPEC in the input model before running NuSMV, we were able to

get the desired behavior. After making this change the output from NuSMV was consistent with234

Cadence SMV, reporting a violation of the assertion.

The inconsistency between NuSMV and Cadence SMV in this example was not due to a bug236

in either tool, but to an outdated translator. A more experienced user of NuSMV may have seen

right away that the input model produced by the translator wasn’t right. For us, however, it is238

only because the output produced by NuSMV was compared to that of other verification tools

that we discovered and corrected the translation problem.240

B. Inconsistent Results from Model Checking and Random Search

Figure 3 shows outputs from the explicit-state model checker SPIN [8] and our tool Lurch242

running on input models generated from a second fault-seeded version of the security system

specification mentioned above.2 SPIN reports that the input model is correct but Lurch reports244

2For a more detailed explanation of the example described here see [11].
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Depth= 500129 States= 1e+06 Transitions= 1.02631e+06 Nodes= 19616 Memory= 144.710...

(Spin Version 4.2.4 -- 14 February 2005)...

State-vector 32 byte, depth reached 1714629, errors: 0

time memory states sts/sec % new col depth name...

9.08 7.55 1.2e+05 1.3e+04 49.0 0 155 _assert6_violated

Fig. 3. Inconsistent outputs from SPIN (top) and Lurch (bottom) running on input models generated from the same fault-seeded

specification.

an assertion violation. Because Lurch is an incomplete tool, which can detect property violations

but not verify correctness, we would expect to sometimes see violations missed by Lurch but246

detected by SPIN. We would not expect the result shown here: Lurch, an incomplete tool, reports

a violation, while SPIN reports no violation.248

Unlike the example in the previous section, in which NuSMV and Cadence SMV were run on

the same input model, in this case SPIN and Lurch ran on two different input models, generated250

from the fault-seeded specification using two different translation tools. We initially assumed

that the inconsistent outputs shown in Figure 3 were due to an error in the translator to generate252

the Lurch input model, since it was newly developed as part of the research presented here.

So, to determine whether the property violation detected by Lurch was present in the original254

fault-seeded specification and not due to an error in the translator, we used an SCR simulation

tool to step through the fault-seeded specification according to the execution trace output by256

Lurch.

Figure 4 shows part of the log produced by stepping through the fault-seeded specification.258

The log indicates that one of the functions in the specification is not disjoint; that is, the function

is nondeterministic as a result of overlap between two conditions that should be mutually260

exclusive. This general disjointness error does not necessarily mean that a specific assertion

in the specification will be violated. We observed, however, that the translation tool used to262

generate the input model for SPIN uses a feature of the SPIN input language in a way that

would not be compatible with the nondeterminism indicated by the disjointness error shown in264
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--- Initial State --------------------------------------

mDigit4 = Blank tNumCReads = 0...

--- State 36 -------------------------------------------

DISJOINTNESS ERROR: Function cGuardDisplay can be assigned both Blank and

SeeOfficer. The first comes from the discriminant at row 1 column 1. The

second comes from the discriminant at row 1 column 2. Using first assign.

Fig. 4. Simulator log produced by stepping through execution trace output by Lurch.

Figure 4.

The SPIN input language allows blocks to be marked as deterministic steps with the key word266

d step. SPIN assumes such blocks are deterministic and therefore checks only one path through

the block. For blocks that are not deterministic, this results in some of the behavior of the input268

model being ignored. For the fault-seeded specification in this example, that ignored behavior

happened to include a violation of one of the assertions, the violation detected by Lurch. After270

removing the relevant d step marker from the input model and running SPIN again, it quickly

detected the assertion violation previously detected only by Lurch.272

In this experiment, if only the SPIN had been used, there would have been no way of knowing

that this particular specification had a disjointness error and a related assertion violation. And274

this is not because of any bug in SPIN, but because of an assumption made in the translation—an

assumption which makes sense most of the time and greatly improves SPIN’s performance on276

automatically translated models, but an assumption that was not valid in this case. Using Lurch

as well, we were able to uncover this assumption and better understand how to use SPIN to get278

accurate verification results.

C. Inconsistent Results from an Invariant Checker and a Model Checker280

Figure 5 shows inconsistent results from the invariant checker Salsa [35] and the model checker

SPIN running on input models generated from a third fault-seeded version of the security system282

specification used in the previous two examples. Salsa, a specialized tool implementing ideas

from model checking and theorem proving to prove assertions in SCR models, is described in284

more detail in section IV. Salsa reports that the property PINEntry is true (top of Figure 5) but

SPIN reports a violation of the assertion corresponding to the property. As discussed in section286
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Analyzing SAL specification in file: utpb28.ssl.sal.

Checking disjointness of all modules...

Checking coverage of all modules...

Checking guarantees in all modules...

Checking PINEntry ... (1,0,1):0 - (1,1,0):0 pass...

Depth= 499462 States= 1e+06 Transitions= 1.02634e+06 Nodes= 17543 Memory= 60.608

pan: assertion violated ((mPINInput_OLD==mPINInput_NEW)||((mcStatus_OLD==10)||(mcStatus_OLD==5)))

(at depth 833676)...

(Spin Version 4.2.4 -- 14 February 2005)...

State-vector 32 byte, depth reached 833689, errors: 1

Fig. 5. Inconsistent outputs from Salsa (top) and SPIN (bottom) running on input models generated from the same fault-seeded

specification.

IV, Salsa is capable of proving properties true; however, if a property cannot be proved true by

Salsa it is not necessary false. In this way Salsa is different from a model checker like SPIN,288

which is designed to detect only genuine property violations. Strangely, in this example SPIN

reports a violation of a property proved true by Salsa.290

Eventually, we determined the reason for this inconsistency: again, it was due to the translation

tool, which ignores a feature of the SCR modeling language when translating to SPIN. SCR292

allows the use of NATURE constraints to limit the behavior of variables representing inputs from

the environment. Using NATURE constraints, environment variables and variable change events294

may be directly linked in ways that would be very difficult to represent in Promela, SPIN’s input

language. And ignoring NATURE constraints does not cause SPIN to miss property violations,296

since they can only be used to limit modeled behavior. So it makes sense that the translator

would ignore them.298

In this case one of the NATURE constraints is necessary in the model for the property

PINEntry to be true. Thus Salsa, running on an input model including the relevant NATURE300

constraint, found that the property PINEntry was true. But SPIN, running on a model without
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the constraint, found a violation of the property. This explanation of the discrepancy between302

Salsa and SPIN was confirmed by removing the constraint from the Salsa input model. Rerunning

Salsa on an input model without the constraint, we found that Salsa could no longer prove the304

property true.

This inconsistency is less critical than the two in the previous examples, because there was306

no possibility of missing a genuine property violation. But it does show a practical benefit

of combining complementary strategies. If only SPIN (and hence only the NATURE-ignoring308

translator) were used, much manual effort might be expended attempting to find and correct

the input model so that the property PINEntry would not be violated. Using Salsa makes it310

unnecessary to track down the cause of the violation found by SPIN. In addition, this example

underscores the need to validate faults detected by SPIN or any model checker. The fault may312

be related to a mistake in the portion of the input model representing the environment rather

than the critical system to be verified.314

IV. MODELING AND VERIFICATION FRAMEWORK

This section describes the modeling and verification tools that together make up the framework316

for the experiments described in the next section. We briefly describe the tools we used: the

SCR Toolset, the Cadence SMV and NuSMV symbolic model checkers, the SPIN explicit-state318

model checker, the Salsa invariant checker and Lurch, our random search debugging tool for

formal models.320

A. The SCR Toolset

The SCR requirements specification language, a tabular notation for concise, unambiguous322

description of functional requirements, was developed by Heitmeyer and others over the last

twenty years and has been used in a variety of research and industrial applications [12]. An324

SCR specification includes both monitored variables, which represent environmental quantities

monitored by the system, and controlled variables, which represent quantities controlled by the326

system. Monitored variables may change nondeterministically, but behavior within the system,

causing changes to controlled variables, must be deterministic. In general, changes in controlled328

variables are triggered by conditioned events of the form:

@T(c) WHEN d def
= ¬c ∧ c′ ∧ d330
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This event could be read: “c changes from false to true when d is true.” The @T(c) portion

of the event is a two-state predicate and is true if the condition c is false in the current state but332

true in the next state. For the entire event to be true (including WHEN d) the condition d must

be true in the current state.334

During the last 15 years automated tools have been developed to enable more effective and

less costly analysis of SCR specifications. The current version of the SCR Toolset includes the336

following modeling and verification tools:

1) Specification Editor: Enables user-friendly viewing, editing, and search of specifications;338

also provides access to the other tools through a single interface.

2) Simulator: Allows the user to observe and control execution of the specification, to follow340

a path to an error discovered by one of the model checking tools, for example.

3) Dependency Graph Browser: Constructs and displays a graph showing relationships be-342

tween variables in the specification.

4) Consistency Checker: Detects various kinds of errors including syntax errors, invalid val-344

ues, circular definitions, and violations of disjointness or coverage properties. (Disjointness

is explained in the discussion of the second motivating example above; coverage violations346

occur when, from a certain state of the system, for a given input, no next state is specified.)

5) Model Checker(s): Automatic translation from SCR to the SMV and SPIN model checkers.348

6) Theorem Prover: Automatic translation to TAME [36], a simplified theorem proving tool.

7) Invariant Checker: Automatic translation from SCR to the Salsa invariant checker.350

8) Invariant Generator: Automatically generates state invariants for the specification.

In addition to these tools, we wrote scripts to automatically translate from an SCR specification352

to the input language for our Lurch random search tool. Through these scripts and the tools

listed above, it is thus possible to automatically translate from an SCR specification into the354

input languages of all five of the testing and verification tools described below.

B. The Cadence SMV and NuSMV Symbolic Model Checkers356

The Cadence SMV [9] and NuSMV [37] symbolic model checkers are two freely available

versions of SMV, the “symbolic model verifier”. The input languages for Cadence SMV and358

NuSMV are basically the same. As described earlier, however, there are slight differences.

Further, the SCR Toolset’s translator to SMV simplifies the input model (and improves scalability360
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as a result) by restricting the type of assertions allowed to only those involving the current state

of the system. For example, any assertion using the SCR Next (’) operator is removed from the362

model before translating to SMV.

C. The SPIN Explicit-State Model Checker364

The SPIN explicit-state model checker is a widely used and freely available automated verifi-

cation tool [8]. Unlike the SCR modeling language, in which state transitions may be triggered366

by change events based on the current state and previous state of the system, in Promela, the

SPIN input language, state transitions are based only on the current state of the system. Rather368

than removing such behavior from the SCR model before translation to Promela (as is done

before translation to SMV), the SCR Toolset’s Promela translator makes two copies of every370

variable in the specification, one for the previous state and one for the current state of the

system. Change events (and assertions involving both the previous and current state) can thus372

be included in the Promela version of the specification. The different approach taken by the

SCR-to-SPIN translator (compared to the SCR-to-SMV translator) makes SPIN’s verification374

result more comprehensive, since the input model is closer to the original SCR model. But this

also makes the verification run require much more time and memory, compared to verification376

with Cadence SMV or NuSMV. 3

D. The Salsa Invariant Checker378

The Salsa invariant checker uses a combination of ideas from theorem proving and symbolic

model checking to prove disjointness and coverage properties, as well as user-specified assertions,380

for input models written in a modified form of the SCR specification language [30], [35]. Like

an automated theorem proving tool, Salsa attempts to carry out an inductive proof using decision382

procedures. Like a symbolic model checker, Salsa uses BDDs to represent the global system in

a very compact way.384

Salsa either determines that a property is true or outputs a two-state counterexample. (This

is different from the counterexample produced by a model checker, which would include all386

3Some performance differences may also be due to the fact that SCR is a synchronous modeling language, and SPIN has

been designed for asynchronous models, unlike Cadence SMV and NuSMV, which are designed for synchronous models.
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states along a path from initial conditions to the property violation.) In some cases Salsa is

unable to prove properties that are actually true, so the user must determine whether the two-388

state counterexamples produced by Salsa are valid; that is, whether the first state in the counter

example is reachable from the system’s initial state.390

E. The Lurch Random Search Tool

Lurch, our random search tool for detecting property violations in formal models, explores392

a sample of paths through the global finite-state machine, choosing randomly when more than

one branch is possible [7]. Lurch runs until it reaches a property violation, the end of a path,394

or a user-specified depth limit. This is repeated until a user-specified number of paths has been

explored, or until saturation is achieved; that is, if the percentage of unique global states explored,396

compared to the total number of global states explored, drops below a user-specified threshold,

the search is stopped early [4].398

Lurch’s input language is similar to Promela, the input language for SPIN, allowing state

transitions and assertions to be based only on the current state of the system. Because of this400

our scripts to translate from SCR to Lurch actually translate from the SCR Toolset’s Promela

model, generated for SPIN, to Lurch, rather than directly from SCR to Lurch [11]. This makes the402

Lurch version of an SCR specification larger (like the SPIN version), but does not have much

impact of Lurch’s performance, since Lurch does a limited number of random explorations404

through the model. For a more detailed description of Lurch, the additional features and the

process of translating from SCR to Promela to Lurch, see [2].406

V. CASE STUDY

Section IV-E outlines the experimental procedure and summarizes general results from the408

main case study example presented in this article. We describe the input model used, an SCR

specification for a personnel access control system (PACS) written as an example to show how410

to develop a high quality software requirements specification. We then describe our process for

automatically generating a set of fault-seeded versions of the original SCR specification. Section412

V-C first describes the experimental process carried out for each fault-seeded specification—

the order in which verification tools were run, the settings and precise way in which each414

tool was used, and the data collected. Finally, we summarize experimental results: fault-seeded
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specifications are divided into subsets based on which tools were able to detect faults in each416

specification, and average time and memory requirements reported for each tool running on each

of these subsets.418

A. PACS SCR Specification

In the three motivating examples and in the experiments below, we used an SCR specification420

for a Personnel Access Control System (PACS) described in a prose requirements document

from the National Security Agency [38]. These requirements have been used by others to422

compare the effectiveness of process-based and formal-methods-based strategies for developing

reliable software [39]. The SCR specification was derived from that document as an example424

to demonstrate how to write a high quality formal requirements specification and to evaluate

compositional verification methods [40].426

The PACS checks information on magnetic cards and PIN numbers to limit physical access to

a restricted area to authorized users. To gain access, the user swipes an ID card containing their428

name and social security number (SSN) through a card reader. After confirming that the user

has the required access privileges, the system instructs the user to enter a four-digit personal430

identification number (PIN). If the entered PIN matches a stored PIN in the system database, the

PACS allows the user to enter the restricted area through a gate. To guide the user through this432

process, the PACS includes a single-line display screen. A security officer monitors and controls

the PACS using a console with a second single-line display screen, an alarm, a reset button, and434

a gate override button.

To initiate the process, the PACS displays the message Insert Card on the user display and,436

upon detecting a card swipe, validates the user’s name and SSN. If the card is valid, the PACS

displays Enter PIN. If the card is unreadable or the information on the card fails to match438

information in the database, the PACS displays Retry for a maximum of three tries. If the user’s

card is still invalid or there is no match, the system displays See Officer on both the user display440

and the officer display and turns on an alarm on the officer’s console. Before system operation

can resume, the officer must push the reset button. The user, who has three tries to enter a PIN,442

has a maximum of five seconds to enter each of the four digits before the PACS displays the

Invalid PIN message. If three times either an invalid PIN is entered or the time limit is exceeded,444

the system displays See Officer on both the user and the officer display. After receiving a valid
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Fig. 6. PACS mode finite-state machine.

PIN, the PACS unlocks the gate and instructs the user to Please Proceed. After 10 seconds, the446

system automatically closes the gate and resets itself for the next user.

Figure 6 shows a finite-state machine representing the core mode logic of the SCR model448

of the PACS requirements. Initially, the mode is EnterCard; when a card is entered the mode

changes to CheckCard. If the card is not valid, a limited number of retries are allowed, during450

which time the mode alternates between CheckCard and ReEnterCard. If the card is valid, the

mode changes to EnterPIN; when a PIN is entered the mode changes to CheckPIN. Similar to452

CheckCard, from CheckPIN the user has a limited number of retries if an invalid PIN is entered,

during which time the mode alternates between CheckPIN and ReEnterPIN. If a valid PIN is454

entered the mode changes to Proceed. In mode Proceed, the user is able to enter through the

gate. Once the gate closes the system is reset to EnterCard.456

In modes CheckCard and CheckPIN, if the maximum number of retries is reached after

repeated invalid card or PIN entries, the mode changes to Error. From Error the officer may458

override the PACS, the mode of which then changes to Override. The user may then enter

through the gate. When the gate is closed, the mode changes to EnterCard. Also, if the system460

is reset by the officer in any mode (except EnterCard) the mode is reset to EnterCard.

The SCR specification of the PACS is approximately 200 lines and includes 15 assertions. To462
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Label Description Example

AOR Arithmetic Operator Replacement + → -

CRP Constant Replacement 1 → 2

EVR Enumerated Type Value Replacement a → b
(where a and b are possible values for the enu-

merated type)
IOR Implication Operator Replacement => → <=>

LCR Logical Connector Replacement AND → OR

ROR Relational Operator Replacement < → <=

SND SCR Next Operator Deletion ’ →

SOR SCR Event Operator Replacement @T → @F

UOD Unary Operator Deletion NOT →

VRP Variable (same type) Replacement x → y

(where x and y are variables of the same type)

Fig. 7. Mutation operators used to generate fault-seeded versions of the PACS SCR specification.

give an idea of the type of properties checked in the experiments below, one of the assertions

is: the user display shows ”Retry” if and only if the ID card has been read at least once but464

fewer than three times. For the full SCR model, see [2].

B. Generating Fault-Seeded Versions of the PACS SCR Specification466

Figure 7 shows mutation operators used to generate fault-seeded versions of the PACS SCR

specification. This set of operators is adapted from a set of five determined to be sufficient by468

Offutt et.al. for Fortran programs [41]. Operators AOR, LCR and ROR are taken directly from

that set. UOD is similar to the unary operator insertion (UOI) mutation operator included in the470

set from Offutt et.al. but is easier to implement without a full parse of the input specification.

The set of five sufficient mutation operators from Offutt et.al. also includes an absolute value472

insertion (ABS) operator, which replaces an entire arithmetic expression with zero, a positive

value, or a negative value. To avoid fully parsing the input specification, and because SCR does474

not assign a logical value to arithmetic expressions (i.e., SCR does not define 1 to be true and

0 to be false), ABS was not used. Instead we used CRP (from [41] but not one of the five476

selected) and EVR, which replace individual integers or, for variables of enumerated type, other

legal values. IOR and SND are similar to LCR and UOD, but deal with SCR-specific features.478

We developed a mutation tool which automatically generated 323 mutant SCR specification
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models. Due to space limitations we omit details of the mutant generation algorithm, which are480

available in [2].

In Andrews et.al. [42] a similar set of mutation operators, adapted from Offutt et.al. to use with482

C programs, is used to accurately evaluate test suites; that is, these mutation operators produce

fault-seeded programs realistic enough that a given set of tests will achieve approximately the484

same level of program coverage, in terms of widely used coverage criteria, that the given set

of tests would achieve for programs with real faults. Also, automatic fault seeding with these486

mutation operators is compared to manual fault seeding and found to yield results that are

actually more realistic.488

C. Experiments

For each fault-seeded specification, the SCR Toolset was used to run basic generic checks490

and generate Salsa, SMV and SPIN versions of the specification. We then ran Salsa, SMV and

SPIN on the appropriate generated input models; Lurch was run on an input model generated492

from the SPIN version of the specification.

In the SCR Toolset, we used the command-line program testtool via scripts to automatically494

run consistency checks on the specification to check for syntax and type errors, duplicate names,

unspecified or unused variables, missing or inconsistent initial values, circular definitions, and496

violations of disjointness or coverage properties. For our verification experiments we used only

fault-seeded specifications for which no errors were detected by testtool. Any specification that498

failed any of the checks was removed from the set to be used in the experiments. Our focus is

on back-end verification tools, so there is no reason to use models that fail these basic checks.4500

To create NuSMV versions of the SMV models offered by the SCR Toolset’s translator, we

developed a script to substitute INVARSPEC for SPEC and delete AG from the portion of the502

SMV model representing assertions in the original SCR specification. This was to remove the

possibility of inconsistent results between NuSMV and Cadence SMV, discussed in section III.504

To create Lurch versions of the SPIN models output by the SCR Toolset’s translator we created

the script mentioned earlier.506

4In addition to a pass or fail result, it is possible to get a warning from the SCR Toolset consistency checker. These warning

specifications were not removed from the experiments since in practice additional back-end verification tools would be used to

determine whether the warning result corresponded to a real error.

July 5, 2009 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 200X 22

Next, we ran Salsa on the fault-seeded specification and compared the results to those produced

from the original, correct specification. Specifications were divided into five categories based on508

the results produced by Salsa:

1) Those for which Salsa was able to prove fewer of the assertions than could be proved for510

the original SCR specification (94 specifications).

2) Those for which Salsa could prove additional assertions (16).512

3) Those for which Salsa’s results for the assertions matched results on the original specifi-

cation but Salsa proved fewer generic properties (36).514

4) Those for which results for the assertions matched the original but Salsa proved more

generic properties (7).516

5) Those for which Salsa’s results, for assertions and generic properties, were identical to

results on the Salsa version of the original SCR specification (170).518

Cadence SMV and NuSMV were next run on the SMV version of each fault-seeded specifi-

cation, with NuSMV running on a modified version with the changes described in section III.520

With these minor changes for compatibility with NuSMV, Cadence SMV and NuSMV results

were always consistent. Property violations were detected in 141 specifications; no violations522

were detected in 182 specifications. As mentioned above, the SCR Toolset’s translator to SMV

restricts the type of assertions to those involving only the current state of the system. For our524

experiments this meant that only 9 of the 15 assertions in the original SCR specification were

checked by Cadence SMV and NuSMV. This limitation in the effectiveness of SMV (both526

Cadence SMV and NuSMV) running on models generated from SCR specifications is also

beneficial, because it simplifies the input models and is one possible explanation for the very528

low time and memory requirements of Cadence SMV and NuSMV, compared to SPIN (described

below).530

Because some assertions possible in an SCR specification are not included in the SCR Toolset’s

SMV version of the specification, Cadence SMV or NuSMV can be used as a preprocessor in532

cases where no faults are detected. Properties proved true by SMV can be removed from the

specification so that later verification tools can be run on a simpler input model.534

Time and memory requirements were recorded for each run of Cadence SMV and NuSMV. The

average time required for Cadence SMV was 0.107 seconds, and for NuSMV 1.21 seconds; the536

average memory required for Cadence SMV was 3.48 megabytes, for NuSMV 13.2 megabytes,
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10 violations in Less than 10 viol-

under 50 runs ations in 50 runs

10 / 10 (175) 0 / 50 (117)

10 / 11 (16) 1 / 50 (2)

10 / 12 (5)

10 / 13 (4)

10 / 17 (1)

10 / 27 (1)

10 / 38 (1)

10 / 39 (1)

Fig. 8. Lurch results on fault-seeded PACS specifications: number of times violations detected vs. search runs, number of

specifications in parentheses. For example, “10 / 10 — (175)” means that, for 175 of the fault-seeded specifications, Lurch

found violations in 10 of 10 runs on that specification.

all with minimal variance.538

Next, we ran Lurch on versions of the fault-seeded specifications generated from SPIN versions

of the specifications produced by the SCR Toolset. Because Lurch’s random search does not540

necessarily return consistent results, Lurch was run between 10 and 50 times on each input

model. Only in cases where Lurch detected a property violation at least 10 times was Lurch542

counted as having detected the violation. If Lurch found a violation ten times before 50 runs,

we stopped running Lurch on that input model. As shown in Figure 8, for most input models544

(292 of 323) Lurch either detected a property violation ten times in the first ten runs or detected

no violation in 50 runs. In only a few cases (6 of 206) in which a violation was detected did546

Lurch find the violation in less than 75% of runs.

For input models in which Lurch detected a property violation at least 10 times, average time548

and memory requirements for all runs, including those in which no property violations were

detected, were recorded for comparison with the other tools. So, for example, if Lurch had to550

run 20 times to detect violations in 10 of those runs, all twenty runs were included in average

time and memory values. Average time required by Lurch for a single input model (in which552

violations were detected) ranged from 0.144 seconds to 62.7 seconds; overall average time was

2.72 seconds. Memory requirements showed little variation from one model to another, with an554
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overall average of 5.68 megabytes.

Because input models used with Lurch were based on SPIN versions of the specifications556

produced by the SCR tools, all assertions in the original SCR specification (including assertions

not included in SMV versions of the specifications) were checked by Lurch. This is why Lurch558

detected a larger number of property violations than SMV. In addition, because Lurch input

models were derived from the SCR Toolset’s SPIN version of the fault-seeded specifications,560

NATURE constraints are ignored by Lurch as well (see Section III).

Finally, SPIN was run on versions of the fault-seeded specifications produced by the SCR562

Toolset’s Promela translator, in the following three ways:

1) First, run SPIN with default settings (default depth limit 10,000).564

2) If no violation found, run with settings necessary to get complete verification runs even on

input models for which no violations were detected (compile with minimized automaton566

memory compression, run with depth limit 2,000,000).

3) If (still) no violation found, run on input model with final d step marker removed, as568

described in section III-B, and with settings necessary for complete verification runs on

models for which no violations were detected (compile with minimized automaton memory570

compression, run with depth limit 3,200,000).

With default settings (option 1), SPIN detected property violations in 205 of 323 input models,572

averaging 3.41 seconds and 45.9 megabytes per verification run. With settings adjusted to insure

a complete verification run, SPIN was able to detect violations in 26 additional models. For574

SPIN run in this way, the average time required was 561 seconds, and the average memory

488 megabytes. Section III-B showed that in order to get a fully reliable verification result576

running SPIN on an input model translated from an SCR specification by the SCR tools, it is

necessary to remove the final d step marker from the model. Running SPIN on input models578

with this change, with settings adjusted to enable a complete verification run, SPIN was able to

detect property violations in two more of the models. The average time required by SPIN run in580

this way was 1,340 seconds, and the average memory 475 megabytes. As stated above, SPIN’s

minimized automaton compression option was used for these runs, which is why they require582

less memory but far more time than the second set of SPIN runs.

SPIN requires much more time and memory, in most cases, then the other tools described584

above. But in our experimental framework (primarily because of the translation tools available)
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Fig. 9. Summary of verification results for all tools except Salsa—sets of fault-seeded specifications for which each tool

detected property violations.

only SPIN can be used to fully verify all 15 of the assertions in the original SCR specification.586

Based on results from SPIN, we determined that 90 of the fault-seeded specifications were

equivalent mutants; that is, they specify behavior identical to the original, as far as the assertions588

are concerned. Also, as stated earlier, SPIN in the context of the SCR Toolset ignores SCR

NATURE constraints, so property violations reported by SPIN must be validated using Salsa or590

one of the SMV model checkers, or manually using the SCR Simulator.

Figure 9 summarizes experimental results for all tools except Salsa, showing sets of specifi-592

cations in which property violations were detected by all (122 of 233 non-equivalent mutants);

Lurch and SPIN only (82); Cadence SMV, NuSMV and SPIN only (19); SPIN only (10); and594

equivalent mutants (90). Results for Cadence SMV and NuSMV are shown together, denoted

(Nu)SMV, since these tools detected property violations in exactly the same set of specifications.596

Results for Salsa are not shown, because, as explained above, when Salsa fails to prove a property

it does not necessarily mean that the property is violated. Thus there is no straightforward way598

to include the results from Salsa in this kind of diagram. In section V-C we consider how Salsa

results might be integrated with other verification tools in a useful way.600

For the 122 specifications in which all four tools detected a property violation, using Cadence

SMV (the fastest) vs. SPIN (the only tool capable of fully verifying all specifications) saves 345602
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Fig. 10. Specifications plotted to show maximum and minimum time requirements for any tool.

seconds, or about 6 minutes. For the set of 82 specifications in which property violations were

detected only by Lurch and SPIN, running Lurch vs. SPIN saves 2,463 seconds, or about 41604

minutes. The greatest time benefit is for the set of 19 specifications in which Cadence SMV,

NuSMV and SPIN, but not Lurch, detected property violations. For this set running Cadence606

SMV vs. SPIN alone saves 12,043 seconds, or about 3.5 hours. So even though this is a small

number of specifications, they are among the easiest for Cadence SMV and the most difficult608

for SPIN (assuming a framework using the SCR-to-SMV and SCR-to-SPIN translation tools

available to us). Similarly, running Cadence SMV on these specifications requires far less memory610

than SPIN. Section V-C considers these results in more detail, from various perspectives.

VI. DISCUSSION612

A. Performance Variations Between Verification Strategies

Figure 10 shows each fault-seeded specification, excluding equivalent mutants, plotted as a614

point whose x-coordinate is the maximum time required for any tool to detect a property violation

and y-coordinate is the minimum time required for any tool to detect a property violation. For616

example, the point in the lower right corner of the largest dotted box represents a specification

for which the fastest tool to detect a property violation required about 0.020 seconds, while the618

slowest tool to detect a property violation required about 20 seconds. Points plotted with an

x-coordinate of infinity represent specifications for which one or more tools were never able to620
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Fig. 11. Specifications plotted to show maximum and minimum memory requirements for any tool.

detect a property violation, regardless of time allotted. Nearly half of fault-seeded specifications

for which a fault was detected are in this category. Two reasons why there were such a large622

number of specifications for which one or more tools could not detect a violation are 1) Cadence

SMV and NuSMV could not check 6 of the 15 properties, since two-state assertions are not624

compatible with the SCR Toolset’s SMV translator; and 2) although Lurch was able to check

for violations of all 15 properties, it is incomplete.626

Figure 11 is similar to Figure 10, except that points represent the maximum and minimum

memory required by the tools. Again, points plotted with an x-coordinate of infinity represent628

specifications for which one or more tools were unable to detect any property violation.

These figures are meant to illustrate the complementary relationships between tools used630

in our experiments. If tools were not complementary, we would expect to see points plotted

along a 45-degree line from the origin to the upper right corner of the graph, indicating that632

specifications easy for a given tool are easy for all tools and that specifications difficult for one

tool are difficult for all tools. We do see a large set of specifications (122) easy for all tools.634

For these specifications, no tool requires much more than 10 seconds or 100 megabytes. But

nearly all specifications that represent significant challenges for some tools require less than 100636

seconds (107 specifications) or less than 50 megabytes (103 specifications) for at least one other

tool. That is, regarding performance, the tools are complementary: nearly all specifications are638
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relatively easy to check for at least one of the verification tools, including specifications difficult

or impossible for one or more other tools.640

B. Tool-Specific Lessons Learned

For each verification tool used in our experiments—Salsa, SMV, NuSMV, Lurch and SPIN—642

we list here characteristics of the tool brought out by comparison of that tool’s results with

results from other tools. Note that comparisons below are based on input models using SCR-644

specific translation tools available to us. We do not intend to suggest general conclusions about

the relative performance of the verification tools.646

Salsa is generally slower than Cadence SMV but faster than NuSMV, Lurch and SPIN, and

requires very little memory. Assertions and generic properties can be proved automatically using648

Salsa, but any assertions that Salsa fails to prove must be checked manually or with some other

tool.650

Although some interesting variations were observed in the performance of other tools running

on sets of specifications categorized according to classes of Salsa results, none of these variations652

can be readily exploited in a multiple-tool verification strategy. However, as shown in the

next section, if assertions proved by Salsa are removed from a specification it may greatly654

improve SPIN’s performance. Also, NATURE constraints in an SCR specification are compatible

with Salsa but not with SPIN or Lurch (assuming models are generated from the automatic656

SPIN translator included with the SCR tools). So Salsa can be used to automatically validate

assertion violations reported by SPIN or Lurch, which may be just the result of ignoring NATURE658

constraints. Since Salsa is not complete, however, some violations may still need to be validated

manually using the SCR Simulator.660

As stated in section II-B, the SMV version of a specification generated by the SCR Toolset

requires minor modifications to be compatible with NuSMV. With these changes, results from662

Cadence SMV and NuSMV were consistent, in terms of accuracy, in all our experiments.

We found also that Cadence SMV was consistently faster and required less memory, although664

NuSMV resource requirements were still small compared to SPIN. Since Cadence SMV was

faster we use it in the combined strategy described in the next section. Depending on the666

application it may be preferable to use NuSMV, however, because it is an open-source tool

with a less restrictive license.668
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As far as the differences between Cadence SMV and Salsa, Lurch or SPIN, Cadence SMV is

1) very fast, and requires very little memory, 2) respects NATURE constraints (like Salsa), and670

3) can only verify single-state assertions. Thus it makes sense to run Cadence SMV first. If an

assertion violation is detected, it should not need to be validated by another tool, since NATURE672

constraints are respected (of course it can be validated by another tool if desired). If no error is

detected, all single-state assertions can be removed from the model before running other tools674

to check two-state assertions.

Lurch is usually slower than Salsa, Cadence SMV and NuSMV, but often faster than SPIN, at676

detecting assertion violations. Lurch is able to check both single state and two-state assertions,

but assertion violations reported by Lurch must be validated, because the input model for Lurch678

is generated from the SCR Toolset’s SPIN version of the specification, which ignores NATURE

constraints. Lurch is incomplete, so if no assertion violations are detected by Lurch a complete680

tool (i.e., SPIN) must be used to fully verify the specification.

Within our experimental framework, comprised of the SCR Toolset, our script for generating682

Lurch input models, and minor modifications necessary for NuSMV and SPIN described in

section II-B, the only tool capable of fully verifying all types of assertions present in an SCR684

specification is SPIN. So, although SPIN in some cases requires far more time and memory

than other tools, it is a necessary component of any complete verification strategy. We should686

point out also that SPIN’s completeness is related to its resource requirements. If, for example, a

translator was written to produce SMV input models so that two-state assertions could be checked688

by SMV, this might increase Cadence SMV’s time and memory requirements significantly.

The input model generated by the SCR tools for SPIN encloses code representing transition690

tables in a d step block, which saves time and memory but is valid only if all tables are

disjoint. In general, the final d step marker must be removed to fully verify the specification.692

In practice, it may also be necessary to use memory compression options and increase the depth

limit for the verification run to terminate, as we have in the PACS specification experiments. We694

found that only SPIN’s minimized automaton compression option, the slowest but most memory-

efficient lossless compression available in SPIN, was sufficient to enable full verification of the696

PACS specification. We also had to increase the depth limit from the default value of 10,000 to

3.2 million.698
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Fig. 12. Combined strategy exploiting complementary variations in performance and accuracy.

C. A General Multiple-Tool Verification Strategy

Figure 12 shows a flowchart representing a multiple-tool verification strategy inferred from700

both performance variations and characteristics of tools, in the context of the SCR Toolset,

relevant to the accuracy of verification results. First, we run Cadence SMV to either detect a702

fault or prove all single-state assertions. If no fault is detected, single-state assertions are removed

from the model and we run Salsa, to attempt to prove some or all of the two-state assertions.704

Any two-state assertions proved by Salsa are then removed from the model. If all assertions

have been proved at this point, the model is correct.706

If there are still assertions to be checked in the model, Lurch is run next to detect violations

of these remaining two-state assertions. Rather than an arbitrary time cutoff, Lurch is run to 25%708

saturation. If Lurch detects a fault, we stop. It is possible at this point that the fault detected by

Lurch is not actually present in the model, due to Lurch’s ignoring NATURE constraints, so it710
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needs to be validated. (In our experiments just 2 of 323 mutant specifications contained spurious

property violations when NATURE constraints were ignored.) Although we mentioned above712

that assertion violations detected by Lurch or SPIN can sometimes be confirmed or disconfirmed

automatically using Salsa or Cadence SMV, if a violation is detected at this point in the flowchart714

by Lurch it must be validated manually using the SCR Simulator, because Salsa and Cadence

SMV have already been run, and any violation that would have been disconfirmed by Salsa or716

Cadence SMV has already been removed from the model.

If Lurch does not detect a fault, SPIN is run next with default options. This is the fastest and the718

most memory-expensive mode in which to run SPIN. It is incomplete, because of the depth limit

of 10,000 states, but often detects assertion violations very quickly. If SPIN with default options720

detects no assertion violation, SPIN is next run with options set to allow the run to terminate

normally. In our experiments this required using the minimized automaton compression option722

described in the previous section (set to 28) and increasing the depth limit to 2 million. Finally,

if no violation is detected with these options SPIN is run again, with options set to allow a724

full verification run, on a modified version of the input model with the final d step marker

removed. In our experiments, in order to get a full verification run on input models modified in726

this way we again used the minimized automaton compression and increased the depth limit to

3.2 million.728

The dotted rectangles in figure 12 show two alternative complete verification strategies using

only SPIN. The outer rectangle shows how SPIN might be used interactively, modifying settings730

as needed to minimize resource requirements on models for which violations can be detected

quickly, but to enable full verification eventually. The inner rectangle shows how SPIN would be732

used if it were to be run once on each input model with options preset to enable full verification.

VII. CONCLUSION734

Automatic verification tools offer great benefits to developers of complex and critical software

systems. These tools can be used to detect subtle, non-repeatable errors that would be extremely736

difficult to find through conventional testing or manual inspection of source code. Still, developers

remain skeptical because of the costs, in user effort and expertise, and in computing resources, of738

using these tools. These costs may be divided into two general categories, along the lines of the

traditional distinction between validation and verification in software assurance. There is the cost740

July 5, 2009 DRAFT



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 200X 32

of building an abstract model and property specification that together accurately represent the

essential behavior of the system to be verified (validation), and there is the cost, in computational742

resources and user expertise in the chosen verification method, of verifying that the model and

properties are consistent with each other.744

These two categories of costs, validation cost and verification cost, are not at all independent

from each other: action to decrease one may increase the other in unexpected ways. For example,746

validation cost is decreased if it is possible to automatically translate the software model into

the language required by a verification tool. But automatically generated models tend to be less748

efficient, compared to carefully handwritten models, and require much more time and memory for

verification. On the other hand, verification cost may be greatly decreased by restricting the input750

language of the verification tool, but this makes it much more difficult to create accurate input

models, because the models likely represent systems that could be much more more elegantly752

expressed in a less restrictive language.

In this article we considered a specific modeling and verification framework, the SCR Toolset,754

including the consistency checker and its command-line version, testtool, and several integrated

back-end verification tools. For the case study experiments, we used the Salsa invariant checker756

for SCR specifications, the Cadence SMV and NuSMV symbolic model checkers, the SPIN

explicit-state model checker, and our Lurch random search tool for debugging formal models.758

In attempting to use this wide range of tools, we initially expected the primary validation

challenge would be to make sure that automatic translation, from the original SCR specification760

to input models for Salsa, Cadence SMV, NuSMV, SPIN and Lurch, was done correctly. Over

time, however, with more experience using the automatic translators and verification tools, our762

view of the validation challenge shifted: the challenge is not to make sure that all translators

produce correct output, where correct is understood to mean perfectly equivalent models for each764

verification tool. Instead, the primary validation challenge is to clearly understand the differences

between the models produced by each translator. It is actually beneficial to have different, non-766

equivalent versions of the model, at different levels of abstraction and with different features

present. Verification results are validated when results from different verification tools, running768

on different (i.e., non-equivalent in behavior) models of the system, can be synthesized into a

coherent whole.770

Likewise with verification strategies, the goal should not be to simply make sure they all
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Fig. 13. A conceptual model of the challenges involved in using automatic verification tools.

produce equivalent results and then pick the one with the best performance. Instead, it is desirable772

that they be complementary, in terms of what kinds of defects they can detect and the kinds of

properties they can prove. Further, it is likely that their performance will be complementary too.774

Rather than a single best strategy for efficient, scalable verification, we confirm the reports that

different strategies have different strengths and weaknesses. Not only will a particular strategy776

be preferable for certain classes of input models, but, for a single input model, changes to the

model that seem insignificant can make a large difference in the effectiveness of a particular778

verification strategy.

By combining diverse strategies for verification, we can increase the scope of the overall780

strategy, so that a wider range of properties can be checked, and we can increase confidence in

the validity of the results of the verification, as different tools confirm or disconfirm each other’s782

results. In addition, combining strategies with complementary performance makes it possible

to integrate incomplete but efficient strategies, such as random search, without sacrificing the784

completeness of the overall strategy, so that much more time (or memory) consuming methods

are used only when absolutely necessary.786

Figure 13 is meant to illustrate some of the challenges described previously in this section

and, along with that, how these challenges may be addressed by a combination of diverse788
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modeling and verification strategies. At the center of Figure 13 is the specification, or more

generally, the software artifact, which may be anything from prose requirements to source code,790

along with properties to be verified in whatever form available. The specification and properties

must be translated into a formal description suitable for verification and then verified. Thus the792

information from the specification moves through a validation space, in which the goal is to

generate accurate models capturing necessary and sufficient information, to a verification space,794

in which the goal is to efficiently determine whether the part of the specification representing

behavior is consistent with the part of the specification representing desired properties.796

We offer two general contributions. First, we proposed that complementary translation (and

modeling) strategies should be combined to address accuracy issues in the validation space.798

Second, we demonstrated that complementary verification strategies can be combined to address

performance issues in the verification space. Through the experiments presented above, we have800

attempted to show how multiple translation and verification techniques, available within the

framework of the SCR Toolset and integrated back-end tools, can be combined to achieve higher802

confidence and decreased user effort and computational cost.

The SCR tools’ translators used in our experiments are complementary, for example, in the804

sense that the output for SMV is a smaller model than the output for SPIN, and so can be

verified more efficiently; yet the output for SPIN is a more complete representation of the806

specification, including both single-state and two-state assertions, so verification using SPIN is

more comprehensive. Also, the Salsa and SMV models generated by the SCR tools respect808

NATURE constraints, which is relatively easy to do in the input languages for these tools. But

the output for SPIN does not—to do so would require much additional complexity in the portion810

of the model representing the environment.

Verification tools used in our experiments were complementary as well. SPIN was slowest,812

and required the most memory, but is the only tool capable of fully verifying SCR specifications,

because of the translators used in our experimental framework. Salsa, Cadence SMV and NuSMV814

sometimes proved particular properties much more quickly than SPIN, and running SPIN on

specifications with these already proven properties removed was much less time consuming816

than running SPIN with these properties still present in the model. Cadence SMV, NuSMV

and Lurch detected property violations in certain specifications more quickly than SPIN, and818

for these specifications a more time-consuming SPIN run was not necessary. In addition, SPIN
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showed significant performance variations from one fault-seeded specification to another. Some820

specifications contained property violations almost as difficult for SPIN to detect as it was for

SPIN to verify the correct model. But for many of these same specifications, property violations822

could be detected very quickly using Cadence SMV, NuSMV or Lurch.

What would the ideal set of tools for verification look like? We suggest that it should look like824

the one in Figure 13. Multiple strategies for improving the scalability of automatic verification

would be integrated, through multiple tools, or possibly through multiple scalability strategies826

available in the same tool. These strategies would be complementary, some emphasizing quick

proof of a subset of the properties (as Salsa and SMV were used in our experiments) and828

some emphasizing quick detection of errors (as SMV, Lurch, and SPIN in the first two modes,

were used in our experiments). For each strategy, translation methods would be available at830

different levels of abstraction, some emphasizing similarity to the behavior of the source model

and property specification (to address validation challenges) and some emphasizing structural832

simplicity (to address verification challenges). If these kinds of translation and verification tools

are available, combination strategies like the one we proposed for SCR will provide better834

performance and higher confidence in the verification result.
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