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Abstract—
Background : There are still no clear principles for designing a single best effort estimation model. Given M models and X estimation
problems, no model was reported to work best on all problems. Hence, it seems misguided to ever recommed one estimation model
as the best.
Aim: We seek to test the following speculation: Perhaps combining the recomendations of mulitple estimation models into ensembles
produces the best estimates.
Method: Nine learning algorithms were combined with ten pre-processors to generate 9 × 10 = 90 solo-methods which were then
applied on 20 data sets and evaluated w.r.t. 7 error measures. The best n (in our case n = 13) solo-methods that proved stable accross
datasets and error measures were set aside to be used in ensembles (from now on multi-methods). The top 2,4,8 and 13 solo-methods
were combined via mean, median and inverse weighted error to get 12 multi-methods. These multi-methods were then compared to
the solo-methods (all comparisons use a Wilcoxon test, 95% confidence).
Results: The best 9 (out of 12) multi-methods significantly out-performed all 90 solo-models.
Conclusion: While there is no best single effort estimation method, there exists best combinations of multiple effort estimation methods.

Index Terms—Software Cost Estimation, Analogy, k -NN

F

1 INTRODUCTION

Over or under-estimation of software development effort can
lead to undesirable results. For example under-estimation may
result in schedule and budget overruns, which may eventually
lead to cancellation of the projects. Over-estimations on the
other hand may hinder the acceptance of promising projects,
which challenges the competitiveness of an organization.
Hence, precise estimation of effort is vitally important yet
extremely challenging for organizations.

After decades of research, although it is hard to propose a
silver-bullet solution for software effort estimation, we can
identify a number of chronic problems. A subset of these
chronic problems that are addressed in this research are:
• Lack of consistently best learners
• Instability in reported conclusions
We use nine learning algorithms combined with 10 pre-

processors, which amounts to 10×9 = 90 solo-methods. Solo-
methods are combined in 12 different ways to form ensembles,
which will be called as multi-methods from now on. In
total 90 solo-methods + 12 multi-methods = 102 methods
methods are used and they are applied on 20 different effort
estimation datasets. To the best of our knowledge, in terms of
methods and datasets this is one of the most comprehensive
effort estimation studies to be reported (see Table 4 of [1]).
In addition, in software engineering (SE) there is a limited
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number of studies regarding the ensemble of solo-methods [2],
[3] whose findings condemn the use of multi-methods.

In this research a novel multi-method scheme is proposed
and unlike previous research we report that multi-methods
consistently outperform solo-methods. The above statement
is in disagreement with at least 2 prior conclusions. The
first disagreement is conclusion instability: The collection of
previous studies has resulted in a wide-variety of conlusions
that are reported to be instable or contradictory [4]. After
exploring a large space of datasets, methods as well as error
measures, the results in this study show that it is possible
to report stable conclusions. The second disagreement is in
the performance of multi-methods: Unlike previous research,
we favor the use of multi-methods on SE data, provided that
suitable ensemble methods are applied.

The contributions of this research can be summarized as
follows:

• Successful results (unlike previous research) on multi-
methods applied on effort data

• A novel scheme for ensembling only the best solo-
methods into multi-methods

• A method of evaluating stability of methods
• Stable multi-methods that outperform all solo-methods
• A wide study of 20 datasets and 102 methods

Below is the list of research questions that were defined to
guide in this work. Those questions will be revisited in §6.1
and detailed answers will be provided.

• RQ1: What are the effects of using multi-methods?
• RQ2: Why do not ensemble methods work in SE?
• RQ3: What can the experiments that use 102 methods

over 20 datasets tell us about stability issues?
• RQ4: What is the best effort estimator?
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• RQ5: What are the implications of our results regarding
software effort datasets?

The rest of this paper is structured as follows. We continue
with the motivation behind this research in §2. In §8 we
provide background information. Then in §4 we summarize the
methods (algorithms, pre-processors and ensemble schemes)
that we used. We explain our research methodology in §5,
and we provide our results in §6. The threats to the validity
of our results are given in §7 Finally we conclude the paper
with a discussion in §9.

2 MOTIVATION

This research is based on the lessons learned from previous
work [2], [3], [5]–[7]. The work in SE domain reports that
multi-methods perform poorly [2], [3]. On the other hand
machine learning (ML) community perspective is that multi-
methods are successful learners in practical [7], [8] as well as
in theoretical settings [5]–[7].

The contradicting results urged us to investigate the reasons
behind them. One of the differences we identified were the
schemes used to build multi-methods. When constructing a
multi-methods, it is particularly useful if there is diversity
in the learning process [5], [8]. This can be achieved by 3
factors: 1) different learners, 2)different feature subsets and 3)
different training sets. In this section, we suffice to say that in
SE literature, these factors were not deeply investigated. We
provide a deeper discussion on that issue in §9.

Another motivating factor for us came during the prelim-
inary analysis. In Figure 1 cells represent the performance
of methods (y-axis) on individual instances (x-axis) in terms
of MRE (for MRE see §5). Different MRE intervals are
represented with different shades of gray and we see that all
intervals can occur along a line x = i where i ∈ {1, ..., 102}.
This tells us that best estimate for a project is given by different
methods. We can make use of this fact by combining the
estimations of stably-successful solo-methods. More details
on the definition and combination of stably-successful solo-
methods will be provided in §5.

3 RESEARCH QUESTIONS

Below is the list of research questions that we investigated. We
will revisit each question in §6.1 and provide detailed answers.
• RQ1: What are the effects of using multi-methods?
• RQ2: What are the reasons behind the particular effects

of multi-methods?
• RQ3: What can the experiments that use 102 methods

over 20 datasets tell us about stability issues?
• RQ4: What is the best effort estimator?
• RQ5: What are the implications of our results regarding

software effort datasets?

4 METHODS

In our experiments, we used 10 different pre-processors and
9 learners. For the selection of the learners/pre-processors
in our research, we focused on 2 considerations. Firstly we
wanted our learners to be practical and to map the field of

software effort estimation literature [4], [9]–[16]. Our second
consideration was to form a collection in which learners
with different assumptions and different biases would come
together. Because, learning is an ill-posed problem and en-
semble of learners with similar decisions do not make much
contribution [5]. In other words, with finite amount of data
every learner is supposed to fail under certain conditions and
hence it is recommended to use different learners that fail
under different circumstances [5]–[8].

Pre-processors we chose are:
• Three simple preprocessors: none, norm, and log;
• One feature synthesis method: PCA;
• Two feature selection methods: SFS and SWreg;
• Four discretization methods: divided on equal fre-

quency/width.
Learners are:
• Two instance-based learners: ABE0-1NN, ABE0-5NN;
• Two iterative dichotomizers: CART(yes),CART(no);
• A neural net: NNet;
• Four regression methods: LReg, PCR, PLSR, SWReg.
A summary table for abbreviations of the methods and pre-

processors is provided in Figure 2. For detailed descriptions
please refer to Appendix B.

4.1 Solo/Multi-Methods
Models in effort estimation can be grouped as elaboration
of single algorithms (i.e. finding the optimum parameters) or
combination of these algorithms with various pre-processors.
We define a solo-method as the combination of a pre-processor
with an algorithm. In the previous section we have defined 9
algorithms and 10 pre-precossers. We combine these two sets
to form 9 algorithms X 10 pre-processors = 90 solo-methods.

We define multi-methods as the combination of at least two
solo-methods ( by definition multi-methods include multiple
algorithms and pre-processors). There is a wide range of
combination schemes proposed [5], [8], [10], [17]. It can be a
simple scheme such as taking mean, median or inverse-ranked
weighted mean (IRWM [10]) of estimates coming from n-
many solo methods. Alternatively it can be a more complex
procedure such as bagging [18], boosting [19] or random
forests [20], [21]. Our aim is not to investigate complex
schemes, but to observe how multi-methods perform compared
to solo-methods on effort datasets. Therefore, we adopt simple
schemes (mean, median and IRWM) and leave investigation
of complex combinations to future work.

5 METHODOLOGY
5.1 Datasets
Among many, two very important characteristics that software
effort estimation studies should have are:
• repeatability, i.e. reported experiments should be repeat-

able by other researchers [22], [23]
• and external validity, i.e. proposed solutions should not

be applicable to a broad setting.
In the hearth of these characteristics lie the datasets. If the
datasets are kept confidential, then it is almost impossible to
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Fig. 1. The MRE values of all the methods for Nasa93. The lines along y-axis represent how the MRE values of
a single instance change with respect to different methods. The fact that lines are mostly multi-colored means that
different instances are best estimated by different methods. The order of methods in y-axis is given in Figure 9 and
the instances on the x-axis are sorted from the lowest sum of MRE over 102 methods to the highest.

Pre-Processors Algorithms
Abbreviation Explanation Abbreviation Explanation
norm Normalization ? ABE0-1NN Basic ABE with 1 nearest neighbor
log Taking natural logarithm ? ABE0-5NN Basic ABE with 5 nearest neighbors
PCA Principal Component Analysis SWReg Stepwise Regression
SFS Sequential Forward Selection CART-On Classification and Regression Tree with pruning
SWReg Stepwise Regression ? CART-Off Classification and Regression Tree without pruning
width3bin Discretize into 3 bins based on equal width ? NNet Neural Net with one hidden layer
width5bin Discretize into 5 bins based on equal width SLReg Simple linear regression
freq3bin Discretize into 3 bins based on equal frequency PCR Principal components regression
freq5bin Discretize into 5 bins based on equal width PLSR Partial least squares regression
none Apply no pre-processor

Fig. 2. The summary table for the solo-methods. This table provides a list of abbreviations as well as their explanation
for pre-processors and learners used in this research. The naming convention in this table is provided throughout the
paper. ? indicates that previous work [2], [3] used a similar method in their study.

replicate this study and improve the research. If they are public
yet very limited in number, then the results are vulnerable to
the issues of generalizability.

Our aim is to conduct a sound study in terms of gener-
alizability and to promote replication of the reported results.
In our experiments, we used 20 publicly available datasets
and to the best of our knowledge this is one of the highest
number of datasets to be reported in an effort estimation study.
The names and properties of these datasets are provided in
Figure 3, explanatory notes are given in Appendix A.

5.2 Error Measures

Error measures comment on the success of a prediction. For
example, the absolute residual (AR) is the difference between
the predicted and the actual values:

ARi = xi − x̂i (1)

(where xi, x̂i are the actual and predicted values respectively
for test instance i). MAR is the mean of individual AR values.

The Magnitude of Relative Error measure a.k.a. MRE is
a very widely used evaluation criterion for selecting the
best effort estimator from a number of competing software
prediction models [13], [24]. MRE measures the error ratio
between the actual effort and the predicted effort and can be

expressed as the following equation:

MREi =
| xi − x̂i |

xi
=
| ARi |

xi
(2)

A related measure is MER (Magnitude of Error Relative to
the estimate [24]):

MERi =
| xi − x̂i |

x̂i
=
| ARi |

x̂i
(3)

The summary of MRE can be derived as the Mean or
Median Magnitude of Relative Error (MMRE, or MdMRE
respectively) and can be calculated as:

MMRE =
∑n

i=1 MREi

n
(4)

MdMRE = median(allMREi) (5)

A common alternative error measure is PRED(25), which
can be defined as the percentage of predictions falling within
25% of the actual values:

PRED(25) =
100

N

N∑
i=1

{
1 if MREi ≤ 25

100
0 otherwise (6)

For example, PRED(25)=50% implies that half of the esti-
mates are falling within 25% of the actual values [13].



JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

Historical Effort Data
Dataset Features Size Description Units Min Median Mean Max Skewness
cocomo81 17 63 NASA projects months 6 98 683 11400 4.4

cocomo81e 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
cocomo81o 17 24 Cocomo81 organic projects months 6 46 60 240 1.7
cocomo81s 17 11 Cocomo81 semi-detached projects months 5.9 156 849.65 6400 2.64

nasa93 17 93 NASA projects months 8 252 624 8211 4.2
nasa93 center 1 17 12 Nasa93 projects from center 1 months 24 66 139.92 360 0.86
nasa93 center 2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
nasa93 center 5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4

desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
desharnaisL1 11 46 Projects in Desharnais that are developed with Language1 hours 805 4035.5 5738.9 23940 2.09
desharnaisL2 11 25 Projects in Desharnais that are developed with Language2 hours 1155 3472 5116.7 14973 1.16
desharnaisL3 11 10 Projects in Desharnais that are developed with Language3 hours 546 1123.5 1684.5 5880 1.86

sdr 22 24 Turkish software projects months 2 12 32 342 3.9
albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
finnish 8 38 Software projects developed in Finland hours 460 5430 7678.3 26670 0.95
kemerer 7 15 Large business applications months 23.2 130.3 219.24 1107.3 2.76
maxwell 27 62 Projects from commercial banks in Finland hours 583 5189.5 8223.2 63694 3.26
miyazaki94 8 48 Japanese software projects developed in COBOL months 5.6 38.1 87.47 1586 6.06
telecom 3 18 Maintenance projects for telecom companies months 23.54 222.53 284.33 1115.5 1.78
china 18 499 Projects from Chines software companies hours 26 1829 3921 54620 3.92

Total: 1198

Fig. 3. The 1198 projects used in this study come from 20 data sets. Indentation in column one denotes a dataset
that is a subset of another dataset. For notes on this datasets, see Appendix A.

There are many other error measures including Mean Bal-
anced Relative Error (MBRE) and the Mean Inverted Balanced
Relative Error (MIBRE) studied by Foss et al. [24]:

MBREi =
x̂i − xi

min(x̂i, xi)
(7)

MIBREi =
x̂i − xi

max(x̂i, xi)
(8)

Interpreting these error measures without any statistical test
may be misleading. A recent discussion about this issue can
be found in [23]. To evaluate our results subject to a statistical
test, we make use of so called win-tie-loss statistics. Win-tie-
loss statistics employ a Wilcoxon non-parametric statistical
hypothesis test with 95% confidence. Wilcoxon is more robust
than the Student’s t-test as it compares the sums of ranks,
unlike Student’s t-test, which may introduce spurious findings
as a result of outliers in the given datasets. Ranked statistical
tests like the Wilcoxon are also useful, if it is not clear that
the underlying distributions are Gaussian [25].

We stored the performance of every method w.r.t. 7 error
measures over 20 datasets. This enabled us to collect win-tie-
loss statistics using the algorithm of Figure 4. In Figure 4,
we first check if two distributions i, j are statistically different
according to the Wilcoxon test (95%); if they are not, then we
increment tiei and tiej . If the distributions are statistically dif-
ferent, we update wini, winj and lossi, lossj after comparing
their error measures.

5.3 Experimental Design

The experimental design of our research is twofold: Finding
the order of solo-methods that are to be combined into multi-
methods and comparing performance of solo-methods to that
of multi-methods.

The first part aims at finding the stably-successful solo-
methods. For that purpose we consider 2 criteria: 1) Success
and 2) stability. To find the successful solo-methods, the
procedure of Figure 4 is repeated seven times (once for AR,

if WILCOXON(Ei, Ej , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if compare(Ei) , median(Ej ) favors i then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 4. Comparing algorithms (i,j) according to perfor-
mance measures Ei and Ej .

MRE, MER, MdMRE, MMRE, PRED(25), and MIBRE).
Given 89 comparisons, seven performance measures and 20
datasets, the maximum number of losses for any method is
89 × 7 × 20 = 12, 460. 90 solo-methods are then sorted by
their total number of losses. The solo-method, with fewest
losses is ranked #1 and the next one is ranked #2 and so on,
which we would like to call initial-ordering.

As for the stability we take a look at the difference between
initial-ordering and the order given by each individual error
measure. In Figure 5, we report the mean of maximum rank
changes for each solo-method w.r.t. their initial ordering:
• Each error measure defines its own ordering of solo-

methods w.r.t. its win, loss or win− loss values.
• Maximum rank change is the maximum absolute differ-

ence between either of these orderings and the initial-
ordering.

• Then, mean of maximum rank changes coming from 7
error measures gives us Figure 5.

A line drawn parallel to x-axis at y = 10 gives methods,
whose mean rank change is less/more than 10. See in Figure 5
that y = 10 line divides all methods into 3 regions: a (from
method 1 to 13), b (from method 14 to 64) and c (from
method 65 to 90). Region a contains “successful” and stable
solo-methods that we will use for generating multi-methods.
The list of stably-successful 13 methods is given in Figure 6.
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To form multi-methods, the estimates of top 2, 4, 8 and 16
solo-methods are combined by taking the mean, median and
IRWM of them. With this scheme, we have 4 (2, 4, 8, 13 solo-
methods) x 3 (mean, median, IRWM) = 12 multi-methods.

In the second part of our experimental design we include
both solo-methods as well as multi-methods in the procedure
of Figure 4. This gives us the comparison of 90 solo-methods +
12 multi-methods = 102 methods. Every method is compared
to 101 others with respect to seven error measures and over
20 datasets. Therefore, the maximum number of losses for any
method now becomes 101× 7× 20 = 14, 140.

5.4 Discussion on Testing Strategy

An important point to consider in experimentation is the
testing strategy, i.e. how to divide the dataset into test and
train sets. The common methods for testing strategy are leave-
one-out (LOO) and n-way cross-validation. As long as effort
estimation literature is concerned, there are vast amount of
studies employing either one of these testing strategies. Choos-
ing either one of these methods theoretically bear different
types of bias/variance trade offs. To see these trade-offs we
have compared the bias/variance values of LOO and n-way on
20 datasets. This issue deserves a study on its own right that we
will share in the near future. Here we want to suffice by saying
that we have not seen enough statistical difference between
bias/variance values of LOO and n-way. As an example to
that scenario, Figure 7 shows the bias and variance values
generated by solo-methods under LOO and 3-Way (provided
that they are statistically different). For Nasa93, the number of
methods that generated significantly different bias and variance
values are 29 and 30 respectively. Even in that case, notice
how bias and variance values of LOO and 3-Way overlap, i.e.
even if they are statistically different, they are still too close
to favor any of the testing strategies. Therefore, to compare
the performance of solo and multi-methods we wanted to use
as many instances as possible and we opted for LOO: Given
N projects in a dataset, then ∀Ni ∈ N , use Ni as the test set
and the remaining N − 1 projects as the training set.
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Fig. 5. Algorithms and the mean of their maximum
rank changes w.r.t. initial-ordering. Mean rank change
of smaller than 10 divides 90 methods into 3 regions.
Region a consists of high-ranked stably-successful meth-
ods, whereas region çontains low-ranked but still stable
methods. Region b on the other hand shows middle-
ranked and non-stable methods.

rank pre-processor learner
1 norm CART (yes)
2 norm CART (no)
3 none CART (yes)
4 none CART (no)
5 log CART (yes)
6 log CART (no)
7 SWR CART (yes)
8 SWR CART (no)
9 SFS CART (yes)
10 SFS CART (no)
11 SWR ABE0-1NN
12 log ABE0-1NN
13 SWR ABE0-5NN

Fig. 6. Rank of top-13 stably-successful solo-methods.
These solo-methods are combined in various ways to
form 12 multi-methods.

6 RESULTS

We first evaluate our methods according to their total loss
values over all error measures and datasets. For that purpose,
the procedure of Figure Figure 4 was repeated for every error
measures and dataset. Then 102 methods were sorted by their
total number of losses over all datasets, i.e. we expect the
best method to lose the least when compared to the others
The resulting order is provided in Figure 9. The method, with
fewest losses (Top13/Mean) is ranked #1 and the one with the
most losses (PCA/LReg) is ranked #102 . According to this
order, 9 out of 12 multi-methods appear as the best 9 methods.

When providing our results and answering the research
questions, we would like to keep the ordering of methods as
well as datasets fixed. This helps us better track the changes in
different experimental settings. We will use the order provided
in Figure 9 for that. In a similar fashion we also sorted the
datasets according to total number losses. Figure 8 presents
the sorted datasets from the lowest to the highest number of

Fig. 7. The logged bias/variance values of LOO and 3-
Way cross-validation for Nasa93. Significantly different
bias and variance values were 29 and 30 (respectively)
out of 90 methods. Here all 90 bias/variance values are
shown, and it is no surprise that they are significantly very
similar: Notice how most of them overlap.
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losses over all error measures.

rank dataset
1 telecom
2 kemerer
3 cocomo81o
4 cocomo81s
5 desharnaisL1
6 desharnaisL3
7 albrecht
8 desharnaisL2
9 cocomo81e
10 nasa93 center 5
11 desharnais
12 maxwell
13 sdr
14 nasa93 center 1
15 miyazaki94
16 nasa93 center 2
17 finnish
18 cocomo81
19 nasa93
20 china

Fig. 8. Rank of datasets according to least number of total
losses over all methods for all performance measures.
This ranking is kept fixed in all graphs that use the
datasets in one of its axises.

Now that we know the order of methods according to sum
of loss values over all datasets and error measures, we are
interested in a more detailed analysis. In Figure 10, each x,y
intercept corresponds to a method applied on a dataset. An
intercept shows the result of win − loss values of a method
as a percentage of 707 comparisons. Each method compared
to 101 other methods using seven performance measures:
101× 7 = 707 comparisons. So the highest win− loss value
is 707, where a method wins all comparisons. The y-axis
shows 102 methods (sorted in the rank order of Figure 9)
and the x-axis shows 20 datasets (sorted in the rank order of
Figure 8).

When we look at Figure 10 we can see that there is a
considerable uniformity on top (y = 80 and upper) and bottom
(y = 24 and lower) parts. This tells us that good (bottom part)
and bad (upper part) performing methods consistently appear
within certain percentages of win−loss values. Also note that
including line y = 9 and below (i.e. top performing methods)
are the multi-methods. We can observe that multi-methods
are among the successful methods, however it is difficult to
distinguish them from other successful methods (in region
11 ≤ y ≤ 24). Therefore, we will resort to the method of
Figure 5.

To provide a more detailed alternative perspective of Fig-
ure 10 we group methods on the y-axis into 3 region and
observe the MdMRE values of each chunk. The first region
includes the top 9 methods (9 multi-methods) of Figure 9. The
second region includes methods from 11 ≤ y ≤ 80, where
most of the average-performing solo-methods are located and
finally the third region (81 ≤ y ≤ 102) contains the low-
performing methods. In Figure 11 we show the sorted MdMRE
values from lowest to highest for each region. For better
visualization, we scaled the MdMRE values by taking their

rank pre-processor learner rank pre-processor learner
1 Top13 Mean 52 freq3bin ABE05NN
2 Top13 Irwm 53 SWReg SWReg
3 Top2 Mean 54 norm SWReg
4 Top4 Mean 55 none SWReg
5 Top2 Median 56 PCA ABE05NN
6 Top4 Median 57 width3bin ABE05NN
7 Top8 Median 58 SFS SWReg
8 Top2 Irwm 59 width5bin ABE01NN
9 Top4 Irwm 60 width5bin SWReg
10 norm CART (yes) 61 freq5bin ABE01NN
11 norm CART (no) 62 freq3bin ABE01NN
12 none CART (yes) 63 PCA ABE01NN
13 none CART (no) 64 width5bin ABE05NN
14 Top8 Irwm 65 PCA NNet
15 Top13 Median 66 none NNet
16 log CART (yes) 67 SWReg NNet
17 log CART (no) 68 freq3bin CART (yes)
18 Top8 Mean 69 freq3bin CART (no)
19 SWReg ABE01NN 70 SFS NNet
20 SWReg CART (yes) 71 norm PLSR
21 SWReg CART (no) 72 none LReg
22 log ABE01NN 73 SWReg LReg
23 SFS CART (yes) 74 norm LReg
24 SFS CART (no) 75 width3bin SWReg
25 SWReg ABE05NN 76 log SWReg
26 SFS ABE01NN 77 width5bin PLSR
27 SFS ABE05NN 78 log PCR
28 norm ABE01NN 79 log PLSR
29 PCA PLSR 80 width5bin PCR
30 none ABE01NN 81 width3bin PLSR
31 none PLSR 82 norm PCR
32 SWReg PCR 83 width3bin ABE01NN
33 width5bin CART (yes) 84 width3bin PCR
34 width5bin CART (no) 85 freq5bin PCR
35 PCA PCR 86 width3bin LReg
36 freq5bin CART (yes) 87 freq5bin SWReg
37 freq5bin CART (no) 88 freq5bin PLSR
38 freq5bin ABE05NN 89 width5bin LReg
39 none PCR 90 freq3bin PCR
40 PCA CART (yes) 91 freq3bin PLSR
41 PCA CART (no) 92 log LReg
42 norm ABE05NN 93 freq3bin SWReg
43 none ABE05NN 94 freq5bin LReg
44 SFS LReg 95 width5bin NNet
45 SWReg PLSR 96 width3bin NNet
46 log ABE05NN 97 norm NNet
47 SFS PLSR 98 log NNet
48 SFS PCR 99 freq5bin NNet
49 PCA SWReg 100 freq3bin NNet
50 width3bin CART (yes) 101 freq3bin LReg
51 width3bin CART (no) 102 PCA LReg

Fig. 9. Detailed algorithm combinations, sorted by the
sum of their losses seen in all performance measures and
all data sets. The algorithm with fewest losses is ranked
#1 and is Top13/Mean. At the other end of the scale,
the algorithm with the most losses is ranked #102 and
is PCA/LReg.

log’s. In Figure 11 it is clear that the 1st region has a lower
MdMRE rate and note that all methods of the 1st band were
multi-methods.

In Figure 11 we can see how the performance of solo and
multi-methods behave, when grouped into regions. However,
evaluation based on performance only may be misleading,
in the sense that the order of methods observed w.r.t. one
error measure may be different to the ordering of another
error measure. Therefore, we expect successful methods to
be consistent as well, i.e. we expect the ranks not to change
from one measure to another measure.

Figure 12 shows the mean of maximum rank changes
for all the methods in accordance with the procedure of
Figure 5. In Figure 12 we observe that band1 (region of multi-
methods) as well as band3 (region of low-performing methods)
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methods - itself)*7 performance measures = 101*7 = 707
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is 707*0.125, 25% is 707*0.25 and so on. The x-axis is
the 20 datasets and the y-axis is all 102 the methods.
The order of algorithms is the same as those given in
Figure 9. Below the line extending from the left to right at
y = 9 all correspond to multi-methods. Note that for some
algorithms, the loss values are greater than win values, in
which case win− loss has a negative value.

have relatively lower mean-change values. The mean-change
amount for band2 on the other hand can go as high as 30. This
scenario is similar to that of Figure 5: High performers (in that
case multi-methods) and low-performers are more stable than
average-performing methods.

One of the most important reading of Figure 5 is that
the most successful method Top13/Mean, has a mean-change
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3 regions. Notice how the first region (all multi-methods)
attain the lowest MdMRE scores.

of 1, which means that among all datasets, and across all
error measures, Top13/Mean consistently performed as the
best method. When Figure 12 is interpreted together with the
previous performance plots, we can say that multi-methods be-
have stably and perform consistently better than solo-methods
accross multiple datasets and multiple performance criteria.

6.1 Answers to Research Questions
RQ1: What are the effects of using multi-methods? Given
the stably-successful solo-methods were discovered first and
combined into multi-methods, we saw that multi-methods have
more successful and more stable results. Among 102 methods
top 9 methods were multi-methods, , i.e. most robust and
accurate estimates were generated by multi-methods. The best
method was Top13/Mean and had a mean rank-change of 1,
which means that it was stable accross all error measures as
well as datasets. Therefore, the observed effect of using multi-
methods on effort data can be summarized as generating lower
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and c have mean rank changes around 10, whereas band
c can go as high as 30.



JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 8

error rates and having more stable results.
Why do not ensemble methods work in SE? Reading from

prior effort estimation literature, there are 2 reasons we can
propose: 1) The combination scheme and 2) pre-processors.
Prior work on SE data have used all solo-methods in an as
is manner, disregarding the success and stability criteria. Our
combination scheme for multi-methods however first discovers
the stably-successful solo-methods and combines only those
that perform better than the rest. Secondly, in previous work
no data pre-processors were employed (see Figure 2 where
common methods/learners with previous work are marked).
However, fundamental diversity factors in a multi-method
scheme are different feature subsets and different training
sets [5], [8]. Different pre-processors are able to provide these
factors. We also have to say that to provide exact answers, a
comperative study between prior and currently reported work
is required.

RQ3: What can the experiments that use 102 methods over
20 datasets tell us about stability issues? We acknowledge
and fully agree with prior work [24], [26], [27] that there
is a big region of unstable learners (see high mean rank-
changes in Figure 5 and Figure 12). However, with this
study we have seen that Top13/Mean performed better than
the rest of the algorithms accross 7 error measures and 20
datasets. Therefore, there are possible approaches such as
multi-methods that could cure the problem of instable results
in software effort estimation.

RQ4: What is the best effort estimator? Simply put we
have no evidence suggesting a solo-method as the best learner.
Instead, we applied the idea of ensemble of learners. We have
seen that 9 out of 12 multi-methods outperformed all others
and Top13/Mean stably outperformed all the rest. This study
suggests multi-methods as the path to the best learner and for
the datasets at hand Top13/Mean occurs as the best learner.
However, we highlight the fact that we require more datasets
and replications of this study to solidify this claim.

RQ5: What are the implications of our results regarding
software effort datasets? It is true that we can propose an
ordering of datasets depending on the total loss values of
methods on each dataset (Figure 8). Also it is true according to
Figure 10 that some datasets are highly challenging (telecom,
kemerer, cocomo81o do not let any method to attain more than
12.5% win−loss ratio) whereas others are easier for a number
of methods (see black bars in Figure 10 for nasa93 center 2,
finnish, nasa93, china datasets). However, this is a rather broad
topic that requires a study on its own right and our findings
are hints for future work rather than strong claims.

7 THREATS TO VALIDITY
Construct validity (i.e. face validity) asks if we are measuring
what we actually intended to measure [28]. Previous studies
have concerned themselves with the construct validity of dif-
ferent performance measures for effort estimation (e.g. [24]).
To make sure that we do not favor a particular conclusion due
to limited number of performance measure, we used 7 error
measures and questioned the stability of our conclusions. We
showed empirically the surprising result that multi-methods
are stable across a range of performance criteria.

External validity questions whether the results can be gen-
eralized outside the specifications of a study [29]. To ensure
external validity, this paper has studied a large number of
projects. For example, Table 4 of [1] list the total number
of projects used by a sample of other studies. The median
value of that sample is 186; i.e. one-sixth of the 1198 projects
used here.

It is clear that this study has not explored the full range of
effort estimation algorithms. Clearly, future work is required
to repeat this study using the top performing solo-methods
found here and possibly more. Having cast doubts on the
external validity of our algorithms, we hasten to add that we
selected algorithms that have been extensively studied in the
literature [13] as well as have been applied on the commonly
available datasets. That is, we assert that these results should
apply to much of the current literature on effort estimation.

8 RELATED WORK

The previous work in literature related to our research can be
grouped into 3 categories: Software effort estimation, ensem-
ble methods in SE and ensemble of methods in other domains.
The following sub-sections provide background information
for each research category.

8.1 Effort Estimation

In this subsection we first make a sketch of empirical research
studies on cost estimation in the last 15 years and comment
on the techniqes employed by these studies. Then we biefly
discuss the stability issues arising from previous results.

8.1.1 Algorithmic and Non-algorithmic Methods

There are many reported algorithmic methods in the litera-
ture. Various kinds of regression (simple, partial least square,
stepwise, regression trees), neural networks and instance-based
algorithms are just a few examples to algorithmic methods.
Our research alone uses 9 different algorithmic methods; for
more notes on our methods see §B.2. There is even a wider
space associated with the options of those algorithms. For
example, only the space of options associated with instance
based algorithms exceed thousands [30].

The alternative to algorithmic approaches is the non-
algorithmic methods. Non-algorithmic methods, a.k.a. expert-
based estimation can be defined as a human-intensive process
of negotiating the estimate of a new project and arriving
at a consensus [31]. There are formal methods proposed
for expert-based estimation like Delphi [32]. However, it is
mostly the case that companies follow an informal process for
expert-based estimation [33]. In [34] Jorgensen defines some
guidelines so as to generate realistic software effort estimates.
An important finding in Jorgensen’s study, which is in parallel
with our findings is that combining estimations coming from
different sources (e.g. from experts and instance-based learn-
ers) offers the most robust and accurate combination method,
as they capture a broader range of information related to the
estimation problem.
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8.1.2 Conclusion Instability
A chronic problem in software effort estimation that we ad-
dress in this research is the matter of instability. An important
work on that issue was conducted by Shepperd et. al., where
they compare various methods and question the links between
accuracy, prediction system and different datasets [27]. The
experimentation in [27] uses very large datasets simulated
from an actual dataset in accordance with underlying dis-
tributions. Their conclusions are: 1) no existing method is
consistently the best, 2) performance of a method is dependent
on the dataset and 3) it is not feasible to determine the best
method. Along the same line with that study is [26], where
Menzies et. al. used 158 learners and found out that the precise
rankings changed according to the random number seeds used
to generate train/test sets. However, an interesting finding was
that four methods consistently outperformed the other 154
across all datasets, across 5 different random number seeds,
and across three different evaluation criteria.

Reading from these previous studies, our opinion is that
it is appropriate to revisit the conclusion instability problem.
Another reason for us to revisit that problem is the availability
of many more public software effort estimation datasets for
further stability research. 20 datasets which have become
avaliable in the last year at the PROMISE repository of
reusable SE data1 are listed in Figure 3.

8.2 Ensemble of Methods

Although most of the available estimation methods may per-
form acceptably good, it is usually the case that one method
does not always perform the best. In that case the general
approach suggested is to try different methods and choose
the one that best explains the data [5]. However, ensemble
of learners, i.e multi-methods take a different approach and
they construct a combination scheme for solo-methods [6]. The
start point of multi-methods is that each paradigm comes with
its own assumptions [5] and it is likely that the patterns that
violate these assumptions do not overlap [5], [6], [8]. There-
fore, in an appropriate combination scheme these methods can
complement one another to a certain extent and attain better
estimation performance. For example under the assumption
of mean-squared-error it has been proven that multi-methods
attain smaller or equal error rates than single-methods [35].

It is a recommended practice to combine solo-methods
that have different characteristics [5], [8], [17]. There are
a couple of different ways to attain different-characteristic
multi-methods. The first way is through representation of
the data. The multi-method structure may be based on uni-
representation (all learners use same representation of data)
or multi-representation (different learners use different rep-
resentations) [5]. Examples to such strategies are the use of
different feature sets [36], [37] or different training sets [38].
The second way is through architectural methodologies. For
example the solo-methods may work in parallel or they may
work one after another )(bagging and boosting) [5]. In the
former architecture, solo-methods provide their predictions

1. http://promisedata.org/data

and a combining mechanism consolidates these predictions.
In the latter case solo-methods form a multi-stage scheme of
learners.

8.3 Ensemble of Methods in SE
The multi-method studies that used combination of different
learners in SE reports pessimistic results. For example in [2]
Khosgoftaar et. al. question the performance of different multi-
method schemes under different scenarios in the domain
of software quality. They use different combinations of 17
learners induced on 7 datasets and report that multi-methods
induced on single datasets do not yield a significant increase
in prediction accuracy. In [3] Kocaguneli et. al. replicate [2] in
the domain of software effort estimation. They exploit combi-
nation of 14 methods applied on 3 software effort estimation
datasets. The conclusion in [3] is similar to that of [2]: The
application of multi-methods under different scenarios does
not provide a significant increase in the estimation accuracy.
In [39], different learners were employed in two types of
committees where one was reported to be successful. Baker et.
al. experiments with various ensemble settings (expert-based
with model based, boosting, bagging) in [40] and reports very
poor performance of ensembles on COCOMO-based datasets.
One example to ensembles is the committee of single-type
learners, where multiple versions of a single algorithm are
combined. Pahariya et. al. use linear combinations of genetic
algorithms in [41], where they report improvements over
single-learners. In [12] Kultur et. al. report improvements
through ensemble of neural networks. However, these single-
learner based methods fall into the category of solo-methods
(since there is only one type of learner) in this work. There
are also some applications of ensemble methods in effort
estimation so as to process datasets: In [42], Twala et. al. use
multiple imputation techniques to handle missing data and in
[43] Khoshgoftaar et. al. make use of learner ensembles as a
filter to improve the data quality.

9 DISCUSSION
When constructing a multi-methods scheme, it is particularly
useful if there is diversity in the learning process [5], [8]. This
can be achieved by 3 factors: 1) different learners, 2)different
feature subsets and 3) different training sets. We can say that
in SE literature, these factors were not deeply investigated. In
this research we included these concepts into our scheme of
multi-methods and the results proved to be successful.

Also the performance of multi-methods reported in prior
studies [2], [3] are not encouraging to further question this
area, at least for SE. Therefore, our research serves the purpose
of providing extensive results in a SE area that are not very
much questioned. We also hope that the promising results
reported in this paper would prompt other researchers to
further question the multi-method applications.
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APPENDIX A
DATA USED IN THIS STUDY

With the exception of ISBSG-Banking and SDR, all the data
used in this study is available at http://promisedata.org/data or
from the authors. As shown in Figure 3, our data includes:
• Data from the International Software Benchmarking Stan-

dards Group (ISBSG);



JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 11

• The Desharnais and Albrecht data sets;
• SDR, which is data from projects of various software

companies from Turkey. SDR is collected from Softlab,
the Bogazici University Software Engineering Research
Laboratory repository [44];

• And the standard COCOMO data sets (Cocomo*, Nasa*).
Projects in ISBSG dataset can be grouped according to their

business domains. In previous studies, breakdown of ISBSG
according to business domain has also been used [45]. Among
different business domains we selected banking due to:

1. Banking domain includes many projects whose data
quality is reported to be high (ISBSG contains projects
with missing attribute values).

2. ISBSG Banking domain is the dataset we have analyzed
and worked for a long time due to our hands on expe-
rience in building effort estimation models in banking
industry.

We will denote the banking domain subset of ISBSG as
“ISBSG-Banking”.

Note that two of these data sets (Nasa93c2, Nasa93c5) come
from different development centers around the United States.
Another two of these data sets (Cocomo81e, Cocomo81o)
represent different kinds of projects:
• The Cocomo81e “embedded projects” are those devel-

oped within tight constraints (hardware, software, opera-
tional, ...);

• The Cocomo81o “organic projects” come from small
teams with good experience working with less than rigid
requirements.

Note also in Figure Figure 3, the skewness of our effort val-
ues (2.0 to 4.4): our datasets are extremely heterogeneous with
as much as 40-fold variation. There is also some divergence
in the features used to describe our data:
• While our data includes some effort value (measured in

terms of months or hours), no other feature is shared by
all data sets.

• The Cocomo* and NASA* data sets all use the features
defined by Boehm [46]; e.g. analyst capability, required
software reliability, memory constraints, and use of soft-
ware tools.

• The other data sets use a wide variety of features includ-
ing, number of entities in the data model, number of basic
logical transactions, query count and number of distinct
business units serviced.

APPENDIX B
LEARNERS AND PRE-PROCESSORS

B.1 Pre-Processors
• None is the simplest preprocessor- all values are un-

changed.
• Simple numeric techniques: This category lists the pre-

processors that entail mere numeric alterations of actual
values rather than aplication of certain algorithms.

– norm: “norm” represents the application of normal-
ization on the data. The data is normalized to 0-1
interval according to Equation 9:

– log: The natural logarithm of the independent vari-
ables are taken. Similar to all pre-processing proce-
dures, the dependent variable is excluded from the
pre-processing method.

normalizedV alue =
(actualV alue−min(allV alues))

(max(allV alues)−min(allV alues))
(9)

• Feature synthesis:
“PCA” stands for principal component analysis [47].
PCA is widely used as a dimension alteration mech-
anism. The alteration in PCA occurs in the form
of changing an n-dimensional space into another n-
dimensional space. PCA lets the user know which
particular features are most influential in the new
n-dimensional space, hence user can choose to use
only the most influential features. Therefore, it is also
common to see the usage of PCA like a dimensional-
ity reduction mechanism. However, in our study we
prefer to use PCA only to change the n-dimensional
space (not the number of features).

• Feature selection: Some of the pre-processors aims at
finding a subset of all features according to certain crite-
ria. This subset is supposed to produce a feature subset
that will ultimately increase the estimation accuracy.
Under this category, we have SFS and SWREg.

– SFS: Sequential forward selection (“SFS”) is a
feature selection mechanism, in which features are
added into an initially empty set until no improve-
ment is possible with the addition of another fea-
ture. The so called improvement is defined through
an objective function. In our implementation based
on MATLAB, the objective function is the mean-
squared-error of a simple linear regression on the
training set. One caution to be made here is that
exhaustive search algorithms over all features can
be very time consuming (2n combinations in an n-
feature dataset), therefore SFS works only in forward
direction (no backtracking).

– SWReg: SWReg stands for stepwise regression,
which can be defined as a systematic method for
adding and removing features from a multilinear
model based. Removal and addition of features de-
pend on their statistical significance in regression.
Our SWReg implementation that is developed by
using MATLAB starts execution with a preliminary
model, then it compares the performances of smaller
and larger models. At each step a potential feature
is to be decided for addition or removal. Addition
and removal is based on the p-value in an F-statsitic.
In a particular step, the F-statistics for two models
(models with and without the feature that is being
questioned in that step) are calculated. Provided that
the feature was not in the model, the null hypothesis
is: “Feature would have a zero coefficient in the
model, when it is added”. If the null hypothesis
can be rejected, then the feature is added to the
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model. As for the other scenario (i.e. feature is
already in the model), the null hypothesis is: “Feature
has a zero coefficient”. If we fail to reject the null
hypothesis, then the term is removed. Basically the
steps followed by the method are as follows:
∗ Fit an initial model.
∗ If some features have low p-values (lower than

a pre-defined threshold, which is chosen to be
0.05 in our study), i.e. if it is likely that they
would have non-zero coefficients when added to
the model, then add the one with the lowest p-
value, then repeat this procedure. If all terms
have higher p-values than the threshold value, then
proceed with the next step.

∗ If some of the features have p-values, which
are greater than an exit threshold (the exit
threshold we used in our study is 0.10 AND
max(pV aluesOfPreviousStep)), then remove
the feature with the highest p-values. Remember
that having a high p-value means that it is likely
that we will fail to reject the null hypothesis of
having a zero coefficient.

∗ Exit when none of the above steps improves the
model.

One caution we need to make here is that, stepwise
methods are locally optimal and may not necessarily
be globally optimal. In other words, depending on the
initial model and the order of features for inclusion-
exclusion, the algorithm may result in different final
models, hence different performances.

• Discretization:
– width3bin: This procedure bins each one of the data

features into 3 bins, depending on equal width of all
bins. The bin-width for a general n-bin procedure is
given in Equation 10. In our 3-bin case, once we
know the bin-width, we assign each feature value to
either 1, 2 or 3, depending on which particular bin
the value is in.

binWidth = ceiling(
(max(allV alues)−min(allV alues))

n
)

(10)

– width5bin: Exactly same as “width3bin” except that
this time we have 5 bins instead of 3.

– freq3bin: “freq3bin” means binning each feature
into 3 bins, depending on the equal frequency
count (equal number of instances in each
bin). Similar to previously mentioned binning
methods, in this method each feature value is
assigned to 1, 2 or 3. For that, all values of a
particular feature is sorted in ascending order.
Then first ceiling(numberOf(allInstances)/3)
instances are assigned 1, the second
ceiling(numberOf(allInstances)/3) instances
are assigned 2 and so on.

– freq5bin: Exactly same as “freq3bin”, only this time
we have 5 bins.

• Others: The option(s) that cannot be categorized into

afore mentioned categories are mentioned here.
– none: Application of no pre-processing to the data

is also a choice. “none” represents the choice of no
pre-processor selection.

The term called solo-method that we use in our research
is a pair of pre-precessor and learner. Each pairing of a pre-
processor with a learner defines a unique solo-method. Hence,
the application of a solo-method on a dataset is a two-fold
procedure. In the first phase, the pre-processor is applied on
the dataset and the processed dataset is then passed to the
learner. In the second phase, learner trains and on the training
set and generates the estimates for the test set. This section
describes the building-blocks of solo-methods in greater detail.

B.2 Learners

• Instance-based learners: When we refer to instance-
based learners (either ABE methods or nearest-neighbor
based methods), there are various design options to be
decided and if not clearly stated those decisions remain
vague to the reader. The analogy based estimation method
that we call ABE0-xNN refers to a very basic type of
ABE that we defined through our readings of various
ABE studies [10], [48], [49]. In ABE0-xNN, features
are firstly normalized to 0-1 interval, then the distance
between test and train instances is measured according
to Euclidean distance function, x nearest neighbors are
chosen from training set and finally for finding estimated
value (a.k.a adaptation procedure) the median of x nearest
neighbors is calculated. Therefore, when we say ABE0-
xNN, all the design options including the choice of x-
many closest analogies become explicit to a reader. In
our experimentation we use two different x values (i.e.
two different analogy values):

– ABE0-1NN: Only the closest analogy is used. Since
the median of a single value is itself, the estimated
value in ABE0-1NN becomes the actual effort value
of the closest analogy in the training set.

– ABE0-5NN: Five closest analogies are found and
used for adaptation.

• Iterative dicotomization: Under this category, we use
classification and regression trees (CART) as described
by Breiman et. al. [50] and developed it using MATLAB
routines. CART is a non-parametric technique and it
can work both for classification and regression type
of problems, in our case it is the latter. There are in
fact a variety of approaches for designing CART. When
planning to construct a CART, there are a couple of points
to consider:

– Selection of splits
– Decision on when a node is pure enough (when to

stop splitting any further, i.e. finding the terminal
node)

– Assigning a class to each terminal node
Firstly, the selection of splits: There are again a variety
of solutions that are used to decide the selection of splits
such as misclassification rate, information (or entropy)
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or GINI index. CART uses the GINI index to calculate
the impurity of a tree [50]. Secondly, decision on when
to stop further splits: The implementation allows you to
specify a threshold value or use the default value. We
have used default threshold values in the implementation
(for further details please refer to MATLAB documen-
tation). Lastly, assigning class to each terminal node:
Since our problem in effort estimation is a regression
problem, we have no classes but actual numeric values in
the terminal nodes. Each test instance results in a terminal
node and therefore different test instances resulting in the
same terminal node are given the same predicted value.
For regression, the predicted value in a terminal node is
a fit on the independent variables of the instances in that
node.
We have used 2 types of CART, which are given below:

– CART-On: In this version, the pruning is on, mean-
ing that the training data is used in a cross validation
process and for each cross validation run, some
internal nodes are chosen as the leaf nodes and
their sub-nodes are removed. Finally, the sub-tree
that resulted in the lowest error rate is returned. The
returned sub-tree is a sub-optimal solution and it is
locally optimum.

– CART-Off: The sub-trees of CART will not be
considered and the full tree will be used.

• One-layered neural net: “Neural Nets” (from now on
NNet) are memoryless structures that can be defined as
universal approximators [51], meaning that: 1) They store
information coming from training data as weights during
training and after that phase they do not need training
data and 2) they can approximate any function depending
on how complex the NNet structure is. NNets basically
have a 3 layer structure: Input layer, hidden layer and
the output layer. Depending on the complexity of the
problem, one can model more complex functions with
a NNet by increasing the number of hidden layers in the
structure. In our implementation based on MATLAB, we
used a simiple NNet structure with 1 hidded layer, 1 input
layer and 1 output layer.

• Regression methods: Under this category, we list our
regression-based learners.

– SLReg: SLReg stands for simple multiple linear re-
gression. Given the dependent variables, this learner
calculates the coefficient estimates of the indepen-
dent variables.

– PCR and PLSR: Partial Least Squares Regression
(PLSR) as well as Principal Components Regression
(PCR) are algorithms that are used to model a depen-
dent variable and we have used MATLAB routines
to implement those functions in our experiments.
While modeling an independent variable, they both
construct new independent variables as linear combi-
nations of original independent variables. However,
the ways they construct the new indepent variables
are different:
∗ PCR: This method generates new independent

variables to explain the observed variability in
the actual ones. However, while generating new
variables the dependent variable is not considered
at all. In that respect, PCR is similar to selection
of n-many components via PCA (the default value
of components to select is 2, so we used it that
way) and applying linear regression.

∗ PLSR: Unlike PCR, PLSR considers the inde-
pendent variable and picks up the n-many of
the new components (again with a default value
of 2) that yield lowest error rate. Due to this
particular property of PLSR, it usually results in
a better fitting. However, the question of which
method is more parsimonious still remains context
dependent.

– SWReg: We have previously defined SWReg and
mentioned that it was a special regression algorithm.
We have also stated how it can be used as a feature
selection algorithm. In the algorithms section, we
use SWReg as a regression method on the selected-
out independent variables to explain the dependent
variable.


