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ABSTRACT

Software effort estimation techniques abound, each with its own
set of advantages and disadvantages, and no one proves to be
the single best answer. Combining estimating is an appealing
approach. Avoiding the difficult problem of choosing the single
“best” technique, it solves the problem by asking which
techniques would help to improve accuracy, assuming that each
has something to contribute. In this paper, we firstly introduce
the systematic “external” combining idea into the field of
software effort estimation, and estimate software effort using
Optimal Linear Combining (OLC) method with an experimental
study based on a real-life data set. The result indicates that
combining different techniques can significantly improve the
accuracy and consistency of software effort estimation by
making full use of information provided by all components,
even the much “worse” one.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Cost estimation

General Terms: Algorithms, Management, Measurement,
Economics, Experimentation

Keywords: OLC, Software Effort Estimation, Combining
1. INTRODUCTION

Accurate and consistent estimates of software effort are crucial
for better project planning, monitoring, and control[1]. In
pactice, effort estimation is one of the fields containing the
most experiences. A lot of research has aimed to build, evaluate
and recommend estimation techniques to help managers make
more accurate and consistent effort estimates, e.g.[2, 3]. They
employ one or more methods: parametric modeling, knowledge-
based modeling, rule induction, fuzzy logic, dynamic modeling,
neural networks, or case-based reasoning [4-6]. Recent research
has attempted to determine which technique or tool might be
the “best” by comparing them on the sense of one or more
performance measures on some specific data sets and
conditions[7, 8]. However, the outcomes of these studies do not
always correspond, due to different data sets and experiment
conditions[9, 10]. Common effort estimation practice in
particular organizations displays that the single technique they
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adopts performs well on some projects, but badly on others. For
these reasons, project managers are often confused about how to
choose the “best” software effort estimation technique or tool.
In fact, the always “best” technique or tool for all situations
does not exist in real life[11]. Meanwhile, experiences and
MacDonell and Martin J. Shepperd’s initial research[9]have
indicated that when one technique predicts poorly, one or more
other techniques tend to perform significantly better, which
implies that some techniques or tools are complementary and
may have different contributions for accurate estimation. Best
practices recommends that project managers should use at least
two approaches[1, 12] since many factors affect the estimation
and these might be captured by using alternative approaches. It
has come to a consensus that combining estimating may help
integrate estimating knowledge acquired by component
methods, reduce errors deriving from faulty assumptions, bias,
or mistakes in data and improve the estimation accuracy.

In this paper, we examine the literature on combining forecasts
especially the linear combining methods in statistics science in
section 2.1. This work helps to introduce the systematic
“external” combining idea into the field of software effort
estimation, and assist researchers that are interested in
combining estimates and likely to do more extensive and
thorough research in this field. We then investigate the
application of current combining methods in software effort
estimation to ensure our research’s originality in section 2.2. In
section 3, we give an overview of the most typical linear
method: Optimal Linear Combination (OLC) method [13]for
software effort estimation. To evaluate our method’s
effectiveness we introduce some performance measures for
OLC method in section 4. Then we discuss the OLC method in
details and apply it step by step to software effort estimation
with an experimental study based on a real-life data set in
section 5.1-5.4. Finally, in section 6, 7, 8, we discuss some
lessons learned from the experiment, threats of validity, our
future work and eagerness to call for more attention to explore
the software effort combining estimation field.

2. RELATED WORK

2.1 Literature on Combining Forecasts

As early as 1818, Laplace initially proposed that “In combining
the results of two methods, one can obtain a result whose
probability law of error will be more rapidly decreasing”.
J.Scott Armstrong defines Combining Forecasts as “Combining
forecasts, sometimes referred to as composite forecasts, refer to
the averaging of independent forecasts. These forecasts can be
based on different data or different methods or both. The
averaging is done using a rule that can be replicated, such as to
take a simple average of the forecasts” [14]. Since the influential



work of Bates and Granger's [15],combining forecasting techniques
have been rapidly developed and widely used in many practical
field such as whether forecasting, money market, macro-economics
analysis etc. with considerable success. The methods now available
to the forecaster range from the robust simple average to the far
more theoretically complex ones. Clemen [16]traces the literature
back to Laplace, cites more than 200 studies in his review of the
literature related to combining forecasts, including contributions
from forecasting, psychology, statistics, and management science
literatures. Some researchers [14, 17]provide guidelines for
combining forecasts. In [18] a brief review on the linear combining
methods is presented: in addition to simple combining methods
based on averaging[14, 19], there are other combining methods
based on ordinary least square[20], weighted least squares[21],

discount MSFE[22], Bayesian shrinkage techniques[23],
clusters[24], model selection[25], principal components[26],
approximate Bayesian model averaging[27] and exponential
reweighing[28].

In general, linear methods are often recommended by forecasters
[14, 29, 30]: “First , all the component forecasting methods are

trained to approximate the same actual value. Thus, forming a
weighted sum of the corresponding outputs of components is
directly comprehended. Besides, linear methods are often simpler to
analyze and easier to implement than non-linear methods”. The
implementations of the four OLCs, discussed in Part 5, require
modest computational effort that mainly involves a matrix
inverse[30]. In the literature on combining forecasts, linear
formulation is almost always adopted.

2.2 Literature on Composite Estimation
Methods for Software Effort

In this section, we first differentiate the “composite estimation
method” term frequently used in the software effort estimation field
from our mentioned “combining estimation method” in this paper,
and then we examine current combining methods or practices
employed in software effort estimation, discuss their drawbacks, and
propose the OLC method at last.

Based on reviews of software effort estimation approaches[4-6],
three current typical “composite estimation methods” are frequently
referred in the software effort estimation field, they are Cost
Estimation Benchmarking and Risk Analysis (COBRA)[3],
Incorporating Bayesian analysis to improve the accuracy of
COCOMO 1I[2, 31] and Analogy-Based tools[32, 33]. However, the
three methods are different from J.Scott Armstrong’s definition of
combining forecasts. Technically, they all combine experiential
approaches with data-driven modeling, but expert knowledge used
in the three methods is just a part of the modeling process: COBRA
uses expert knowledge to construct the causal model; Analogy-
Based tools use it to define similarity functions, and COCOMO II
combine it with historical data to calibrate the value of cost drivers
by Bayesian Analysis. This kind of composite technique is
“internal” combining and in some sense, they all belong to
individual techniques. In this paper, we refer “combining estimation
method” as to combine the outputs (final effort estimates) of
individual methods by simple average or a sophisticated weighting
algorithm, as Armstrong’s definition mentioned in section 2.1. For
differentiating from “internal” combining, we call it “external”
combining.
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Although the “external” combining has been widely used in many
other fields with considerable success, we find few related work [9,
34, 35] in the field of software effort estimation. MacDonell and
Martin J. Shepperd’s analysis [9]of effort data from a medical
records information system reveals that there is little, or even
negative, covariance between the accuracy of their three chosen
estimating techniques (expert judgment, least squares regression and
case-based reasoning). That indicates that when one technique
predicts poorly, one or both of the others tends to perform
significantly better. This comes to the conclusion that it might be
valuable to combine estimation techniques for a given environment
when there is no dominant technique. They also try to learn a
decision tree to decide which technique to use in which
circumstances by means of rule induction. However, they aren’t
able to identify a means of determining the prior and also don’t give
any suggestion on how to combine not optimal techniques to
generate better estimation.

Magne Jorgensen considers combining estimation methods as one
of practical guidelines for expert-judgment-based software effort
estimation and suggest some useful combinations of estimation
methods[34], such as expert judgments and formal methods, top-
down and bottom-up methods, analogy and linear regression
methods, expert judgments made by software professionals with
different project experiences, expert judgments made by software
professionals with different roles. However, he doesn’t provide any
practical guidelines on how to combine these estimation methods
with some empirical studies.

One of the few studies to directly explore software effort combining
estimation is Kitchenham’s work based on estimation data from
Computer Sciences Corporation[35]. “They had multiple estimates
and used one of two strategies: either to take a simple average of the
estimates or to select one that they decided they would use (almost
always an expert opinion estimate)”[9]. Simple average might be
easy to implement, but it gives each component the same weight
without considering different contributions of individual techniques,
so it can’t always ensure that the combining accuracy is at least as
high as that of the best component. Besides, selecting the “best” one
by expert opinion might be influenced by subjective bias and even
not so, ignore the fact that other components might provide useful
information for accuracy. The OLC method gives components
different weights according to their performances, can make full use
of information provided by each component to maximize the
accuracy in prediction, and often produces superior model accuracy,
at least, not worse than the best component.

3. OVERVIEW OF OLC METHOD FOR

SOFTWARE EFFORT ESTIMATION

Figure 1 illustrates the steps of software effort estimation with OLC.
This method includes four main steps as shown in the left-side flow
chart, and each main step’s sub steps are numbered in the process
rectangles of the right-side flow chart.

1).Preparing data and component methods. For better estimation,
data used for modeling OLC is required to be from the same
organization, that is to say, the company-specific data and
preferably of the same project type, in addition component methods
should be “different” enough to benefit combining. This step
includes Processing Rectangle 1, 2 in the right flow chart (details in
section 5.1).



2).0LC modeling. OLC modeling in essence is the multiple
regression analysis (estimates of components as independent
variables and actual effort as the attributive variable) using
Ordinary Least Square[36], and we should select a proper case
from four optional cases of OLCs according to their estimating
performance. This step corresponds with Processing Rectangle 3
in the right flow chart (details in section 5.2).

3).Further improving OLC’s predictive power. Since the outputs
of components are trained to approximate the same actual value,
we would expect them to be highly collinear and in statistics it is
named as collinearity. Considering collinearity might ruin the
predictive power of OLC, we improve the predictive power by
dropping a component or the constant term to weaken collinearity.
This step includes Processing Rectangle 4, 5 in the right flow
chart (details in section 5.3).

4).Returning the final estimating model. If there is no room to
further improve the predictive power of OLC, we should compare
estimating performances of the current OLC, the best component
method and the simple average to return the one with the best
performance as our final estimating model. This step corresponds
with Processing Rectangle 6 in the right flow chart (details in
section 5.4).

‘ 1. Company-specific data collection

3

| 2.Error correlation analysis |
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Figure 1. Software Effort Estimation Using OLC Method

4. PERFORMANCE MEASURES FOR OLC

To evaluate the performance of estimating methods, a series of
estimating performance measures are commonly used. Assume ¥

denotes the estimating value, ¥ denotes the actual value. Table 1
presents the commonly used performance measures. As for a
group of observations, the last asterisked four are used.

Table 1. Performance Measures

Performance Calculating Formula
Measures
RE (Relative Error) RE - y -Y,
oy
MRE (Magnitude of VY
Relative Error) MRE, = ,
*MMRE (Mean MMRE =L Z‘: MRE
MRE) NS '
*MSE (Mean 1.&1, P
MSE=—%*> Y -Y,
Squared Error) N ;[ ! ']
N
*MSRE (Mea.m MSRE:L*Z[MRE, ]z
Squared Relative N 5
Error)
*SD (Standard
Deviation of RE)

MMRE, MSRE and MSE are strongly relevant measures for
evaluating accuracy and they usually have the same tendency to
show the accuracy. Generally, the lower MMRE, MSRE and MSE
are, the more accurate the estimating method is. However, MSE,
unlike MMRE, is highly sensitive to outliers. It penalizes a
forecasting method much more for large errors than for small errors.
Forecasting practices recommend using multiple error measures[37].
So in our research, we adopt them all for our accuracy measures. As
for estimating consistency, we employ Standard Deviation of RE to
reflect it. The lower SD is, the more consistent the estimating
method is.

Besides, one of the most important performance measures is the
performance measured on a separate data set from training data.
This performance measure is referred to as the predictive power
(including both predictive accuracy and consistency), the out-of-
sample performance, the generalization ability, or the robustness.
Cross-validation is one of several approaches to estimate how well
the model just learned from some training data is going to perform
on future as-yet-unseen data. There are two kinds of cross-validation:
k-fold cross-validation and leave-one-out cross-validation
(LOOCV). Generally, 10-fold cross-validation is the standard way
of measuring the error rate of a learning scheme on a particular data
set. For reliable results, 10 times 10-fold cross validation is suitable.
LOOCYV is useful because it does not waste data, this is especially
true when the sample size small[38].

As for combining estimation methods’ predictive power, intuitively,
it should be judged by whether combination can improve the
predictive power from the best component method, and if so, how
significant is the improvement. We also adopt the simple average as
one of the comparative baseline methods for it is very simple to
implement and a lot of researches recommend it as one of the most
effective combining methods, e.g.[14, 17]. The smaller the MSE,
MSRE, MMRE and SD of the combining method than those of the
best component method and the simple average, the more effective
the combining method is. In this paper, because OLC aims at
minimize the MSE (details in section 5.2), we consider MSE as the
main performance measure. The MSE of the OLC after cross-
validation may be compared to that of the best component method
and the simple average in order to determine the predictive power’s
improvement. That is to say: If the MSE of OLC by cross-




validation is smaller than that of the best component method and
that of the simple average, the OLC is robust or has sound
predictive power.

5. OLC METHOD AND AN

EXPERIMENTAL STUDY

In this section, we extend the OLC method in details step by step. In
each part of 5.1-5.4, corresponding to the four steps of the OLC
method respectively, we first discuss each step and then apply them
to our experiment.

5.1 Preparing Data and Component Methods

This step is prerequisite for OLC modeling. The data we need for
OLC modeling is the estimates of local projects from different
component methods. The data required should be from the same
organization, that is to say, the company-specific data and
preferably of the same project type, and in such situation, we can
find proper OLC for specific local environment. This can be shown
in Processing Rectangle I in Figure 1.

Many factors affect the estimation and these might be captured by
using alternative approaches. If all the components carry the same
information, no benefits may be expected from combining them. To
increase the benefits of combining, the components may be
constructed using different topologies, structure, different learning
algorithms, core techniques, different training data etc.[14, 39, 40].
Error correlation analysis helps to reflect the “difference” between
individual methods quantificationally and identify whether or at
what extent it will benefit from combining. Assume the correlation
coefficient is denoted by r(-1<r<1) . According to [41],
r <0 means negative correlation, » > 0means positive correlation,
0<r<0.5means low positive correlation, »>08 means high positive
correlation. Generally, negative, even low positive correlation error
indicates that when one technique estimates poorly, the other tends
to perform significantly better. The lower error correlation among
individual methods, the larger potential for combining, and the more
benefits would be gained from combining. This can be shown in
Processing Rectangle 2 in Figure 1.

In this experimental study, we acquire the company-specific data
from F.Kemerer’s empirical work[42] , his work evaluates four
algorithmic models (SLIM, COCOMO, Function Points, and
ESTIMACS) based on their respective estimates on 15 large
completed business data-processing projects of the same company.
It provides 15 projects’ estimates of COCOMO, SLIM and Function
Points but only 9 projects’ estimates of ESTIMACS. In our
experimental study, we combine COCOMO, SLIM and Function
Points based on 15 projects and exclude ESTIMACS because it
lacks other 6 projects’ estimates. For short we use their name’s
initial C, S, and F to denote each. As we know, the three tools have
different modeling algorithms, e.g. C and S use SLOC for the
project’s general size while F uses function points. S uses Rayleigh
curve model to produce its effort estimates, C uses easy-to-
understand exponential model, while F estimates by a regression of
actual effort and its estimating function points. So they have
different core techniques and model structures, further more, they
all come from different organizations and trained on different data
set, thus theoretically they are complementary, low correlated tools
and they may have different information to contribute.

In Appendix 1, RE C, RE S, RE F, RE Average denote
respectively relative errors of the three tools’ estimates and simple
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average on the 15 projects. Table 2 compares the consistency (SD)
and accuracy (MSE, MSRE, MMRE) measures’ values of the three
tools and simple average. Figure 2 presents box plots of the MRE
values for each of the techniques applied.

Table 2. Accuracy and Consistency Comparison of C, S, F and
Simple Average

SD MSE MSRE MMRE
C 9.329 3.20E+06 118.188 6.079
S 6.613 1.05E+07 100.398 7.719
F 1.533 2.91E+04 2312 1.027
Average 4.509 2.53E+06 41.204 4.716
45.0 T T
40.0 + & 8
35.0 R
30.0 B
25.0 R
B o Mean
AN o ¥ | CJ Mean+SE
15.0 g Mean-SE
T Mean+SD
LOON i Mean-SD
50 | e { o Outliers
00 L % | Extremes
: SE:Standard Error
5.0 1 . SD:Standard Deviation
F C S Average

Figure 2. Box Plots of the MRE Values for C, S, F and Simple
Average

It is noticeable that F is apparently the best component for this
company’s environment. Its SD, MSRE, MSE, and MMRE are all
much smaller than those of C and S. However, it should also be
noted in Appendix 1 that C performs the best on Project No.15
and S is the best on Project No.14 even though F is the best
estimator on other 13 projects. This implies that even the much
worse components might provide information that the apparently
best one doesn’t have. Combining them might improve the
estimating accuracy. As for simple average, although it performs
much better than C and S, it is also inferior to F, for it doesn’t
consider different contributions from each component.

We work out the three components’ zero-order correlations of
relative error in Table 3. The correlation matrix shows that the
three methods have low correlation. This indicates that when one
method predicts poorly, one or both of the others tends to perform
significant better, so they have the potential to benefit from
combining.

Table 3. RE Correlation Coefficients

RE_C RE_S RE_F
RE_C 1.000 - _
RE_S 0.258 1.000 -
RE_F 0.393 0329 1.000

5.2 OLC Modeling

Granger and Ramanathan[20] first introduce the OLC method,
Hashem and Schmeiser[13] extend the idea of OLCs and discuss
related issues about how to improve the generalization ability



(predictive power) of the combined model by reducing
collinearity. The essence of OLC is the multiple regression
analysis using Ordinary Least Square (OLS) [36] estimates of
components as independent variables, and actual effort as
attributive variable.

The OLC model is (1)

»
Y=¢a, +Za,.y/
J=1

Assume that there are p component methods. OLC’s estimating

result ¥ is the weighted average of p component methods’

estimates. Regression  coefficients o o ~denote optimal
oo,

combination weights of the p component methods. a, is the
constant term which allows for correction of any bias
in y;8,j=L...p. The constant term ¢, and combination weights

a,,...a, are determined by OLS method to minimize the mean
b,

squared error (MSE)[36].

There are four extended cases of OLC models based on eqn(1),
the variations among the four cases are in the inclusion (or
exclusion) of the constant term ¢, , and/or constraining the

combination weights a,,..a, to sum to one as shown in Table
4[13].

OLCs respectively in the paper. The contents in brackets denote
constraints for each case.

Table 4. Four Cases of OLCs

For short, we use | LIl ,lll, IV to denote each case of

unconstrained OLC with a constant term
(no constraints)

constrained OLC with a constant term
(al ta,+...ta, =1)

unconstrained OLC without a constant term
(0:0 =0)

v constrained OLC without a constant term

(a]+a2+...+apzla a(,:())

A question might be directly asked is that which one should be
adopted and by what measures. On the one side, the
unconstrained OLC with a constant term, theoretically yields the
smallest MSE[13] (by mathematic formula deduction or in-
sample performance evaluation) compared to the best component
method, the simple average, and to the other three OLCs. Granger
and Ramanathan also recommend combining forecasts using
unconstrained OLC[20]. However, the more important
performance measure is the accuracy measured on a separate data
set, and we evaluate performance measures (MSE, MSRE,
MMRE, and SD) by cross-validation to reflect the predictive
power. On the other side, the inclusion of the constant term helps
to correct for possible biases in the component methods, however,
the constant may sometimes be involved in collinearity (see
details in section 5.3) and do harm to the predictive power of
OLC, in this case, we should drop the constant. Besides,
constraining the combination-weights to sum to one may
sometimes be used in improving the predictive power of
OLCJ[13]. These indicate that any one of the four cases of OLCs
might be more robust than others due to different data sets. A
practical view to choose the one with the highest predictive power
is modeling all the four cases of OLCs respectively, performing
cross-validation to compare performance measures, and choosing
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the one that has the minimal MSE. This can be shown in
Processing Rectangle 3 in Figure 1.

In our experimental study, we evaluate measures on both the in-
sample and out-of-sample data set. For evaluation on in-sample
data set, we want to experimentally prove the theoretical
conclusion that the unconstrained OLC with a constant term,
theoretically yields the smallest MSE[13]. For evaluation on out-
of-sample data set, we want to choose the one with highest
predictive power for further estimating.

The in-sample accuracy of the four cases’ OLCs is shown in
Table 5. We can see that all the four cases of OLCs have lower in-
sample MSE than the best component method F. The

unconstrained OLC with a constant term (thel OLC) has superior
accuracy, in the sense of MSE, on the in-sample performance.
These results are in accordance with the theory that thel OLC
yields the smallest MSE.

Table 5. In-Sample MSE Comparison

a, a, a, a, MSE
F 0.000 0.000 0.000 1.000 2.91E+04
| 6.906 -0.013 0.073 0.293 5.99E+03
Il -92.31 -0.062 0.060 1.001 1.30E+04
1 0.000 -0.014 0.073 0.316 6.01E+03
v 0.000 -0.082 0.054 1.0282 1.86E+04

To identify the one with the highest predictive power, we perform
cross-validation to compare MSE. As we have a small size data
set of only 15 projects, in order to make full use of the data, we
use LOOCYV: that is training OLCs on 14 projects and testing the
accuracy on the remaining one, repeating this process 15 turns to
let each project to be a test sample. The MSE, MSRE and MMRE
of the cross-validation are shown in Table 6, the best component
F’s value is also included to compare.

Table 6. Accuracy Comparison after LOOCV

MSE MSRE MMRE
F 2.91E+04 2312 1.027
I 3.14E+04 0.684 0.695
Il 6.87E+04 7.364 1.687
i 4.30E+04 2.086 0.926
v 8.33E+04 3.935 1377

As we may see in Table 6,1 OLC still has the lowest MSE of the
four OLCs after cross-validation and this indicates that it is the
one with the highest predictive power of the four cases, so we
should choose it. We also can see that except MSE, the
performance measures MSRE and MMRE of | OLC are the
smallest. These have shown that OLC has already improved
predictive accuracy. However, | OLC’s MSE is still larger than the
best component F. According to the definition of combining

estimation methods’ predictive power in the end of Part 4, the
current OLC doesn’t have sound predictive power. A direct




question might be what factors might influence the predictive power
of OLC and how to improve it.

5.3 Further Improving Predictive Power

The problem that sometimes affects the estimation of the optimal
combination weights, as well as the predictive power of the OLC, is
the collinearity among the predictors variables y;, j=1,...p,in the

regression model eqn(l). Since the ), s are the outputs of

components that are trained to approximate the same actual value
Y, we would expect them to be highly collinear. Sometimes even

the constant term is involved in collinearity[13]. Ill effects of
collinearity are blamed for undermining the predictive power of
OLCs[23, 29, 43]. A common and simple way to deal with
collineariy is to drop a component involved in the strongest
collinearity.

We adopt two rules of thumb [44] to identify the variables involved
in the strongest collinearity. The first rule of thumb is “High R*( the
multiple coefficient of determination [45])but few significant ¢
ratios”. As noted, this is the classic symptom of collinearity. If R*
is high (generally higher than 0.8) the F test is significant, but few
individual ¢ tests of coefficients are significant. The variables whose
coefficients are not significant are involved in collinearity. This rule
of thumb helps us to detect collinearity and identify all the variables
involved in collinearity. The other rule of thumb is “High pair-wise
correlations among regressors”. If the pair-wise or zero-order
correlation coefficient between two regressors is high (generally
higher than 0.8) then collinearity is a serious problem. We should
also be noted that high zero-order correlations are a sufficient
condition for the existence of collinearity. For this reason, high
correlation means strong collinearity, largest correlation coefficient
of a pair of variables means they are involved in the strongest
collineairy. This rule of thumb helps us to find the pair involved in
the strongest collinearity. According to these two rules of thumb, we
can find the variables involved in the strongest collinearity and drop
the one with larger MSE to weaken the bad influence of collinearity.
The Processing Rectangle 4 in Figure 1 denotes this process.

The inclusion of the constant term helps to correct for biases in the
component methods but sometimes it is involved in collinearity
which might ruin the predictive power of OLC, the simplest way to
see whether the constant term does good or not to the predictive
power of OLC is to compare the MSE before and after excluding
the constant. The Processing Rectangle 5 denotes this process.
Because the inclusion of the constant term benefits the correction of
biases, we don’t consider the ill influence of the constant term until
there is no room to improve accuracy by dropping component
method.

It should be noted that Hashem and Schmeiser’s OLC algorithms
employ BKW diagnostics to determine the existence of collinearity
and the variables involved in it[13]. Two rules of thumb that we
adopts serve as the same effect and much easier to understand and
implement. Furthermore, their algorithm cannot ensure to improve
the predictive power of the combining model to the largest extent, as
it returns as long as the MSE by cross-validation of OLC is smaller
than the best component and the simple average. However, our
algorithm aims at maximizing the OLC’s predictive power. It
doesn’t return until there is no room for further improvement as
shown in Figure 1.

In our experimental study, currentl OLC is still not more accurate
than F on the sense of MSE. That means that collinearity has ill

effects on the predictive power of the I OLC, and we need to

improve the predictive power by dropping one of the components or

the constant term. By regression on 15 projects’ estimating data, |

OLC’s model is

6.906-
0.173
0.866

Y=
t

P-value

R’=0.907

0.013*C+ 0.073*S+
-0.475 5.661
0.644 0.000146

0293*F  (2)
1.483
0.166

We can see that R? is as high as 0.907, however, the coefficients of
constant, C, F are all not statistically significant (P-value<0.05
denotes statistically significance). According to the first rule of
thumb, this is the classic symptom of collinearity, and the constant,
C, F are maybe involved in collinearity.

In order to find the pair involved in the strongest collinearity, we
worked out the zero-order correlation matrix of the three
components’ estimates as shown in Table 7 .

Table 7.Estimates Correlation Coefficients

C S F
C 1.000 - -
S 0.789 1.000 -
F 0.809 0.708 1.000

It can be seen that the pair C and F’s zero-order correlation 0.809 is
the highest. According to the second rule of thumb, they are
involved in the strongest collinearity. Besides, C performs much
worse (has larger MSE) than F, so we drop C from the combining
model, remodel using the | OLC and gain MSE by LOOCV to see
whether predictive power improved or not. The MSE, MSRE and

MMRE of the new model | OLC with only S and F (I _S+F for

short), compared with F and | OLC with all three components (]

_C+S+F for short) are shown in Table 8. We can see that | OLC

with only S and F’s MSE is smaller than that of the apparent best
component F, this means that by dropping C, the combining
model’s predictive power has been improved. Since MSRE and
MMRE are strongly related to MSE, the accuracy in terms of
MSRE and MMRE are also improved by 18.34% (0.684/0.578-1)
and 6.60% (0.695/0.652-1) respectively, compared with before
dropping C. These results show the accuracy improvement by

dropping C to weaken the ill influence of collinearity.

Table 8. Accuracy Comparison after Dropping C

MSE MSRE MMRE
F 2.91E+04 2312 1027
| _C+S+F 3.14E+04 0.684 0.695
| _S+F 2.48E+04 0.578 0.652

After dropping C, the OLC trained by 15 projects’ data is as

follows:
Y:
t
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10.173+
0.267

0.070*S+
6.376

0.241*F 3)
1.518




P-value 0.794 3.53E-05 0.155

R’=0.905

Considering that the #-test of constant term and F’s coefficient are
still not significant which indicates that they are still involved in
collinearity, so this might also ruin the predictive power of OLC.
Besides, there are only two methods (S and F) left, according to the
OLC algorithm in Figure 1, we try to drop the constant to see if
predictive power could be further improved also using LOOCV.
The result is shown in Table 9.

Table 9. Accuracy Comparison after Dropping Constant

MSE MSRE MMRE
F 2.91E+04 2312 1.027
| C+S+F 3.14E+04 0.684 0.695
| S+F 2.48E+04 0.578 0.652
ll_S+F 1.75E+04 0.565 0.636

It is noticeable that after dropping the constant (Ill_S+F for short),

the predictive power is further improved: the MSE has been reduced
from 2.48E+04 to 1.75E+04. The accuracy on the sense of MSRE
and MMRE are also improved by 2.30% (0.578/0.565-1) and 2.52%
(0.652/0.636-1) respectively for they are strongly related to MSE.
Considering that there is no room to improve the predictive power
of OLC, we return the following model (trained on the whole 15
company-specific projects’ data) as our final OLC. It can be seen
that the coefficients of S and F are both significant now which
indicates that the collinearity has been greatly weakened after
dropping the constant term.

Y= 0.0697*S+ 0.2700*F )
t 6.690 2.432

P-value 1.493E-05 0.030191

R’=0.945

In the process of improving OLC’s predictive power, we start with
the initial OLC (I _C+S+F), and then weaken collinearity by

dropping C (I _S+F) and the constant (Ill_S+F) in succession to

maximize OLC’s predictive power. Table 9’s last three rows show
the decreasing trend of both MSE and strongly relevant MSRE and
MMRE during the further improvement process.

5.4 Returning the Final Estimating Model

At last, if there is no room to improve the predictive power of OLC,
we should identify whether or not the predictive power of the final
OLC is higher than that of the best component method and the
simple average, which is measured on MSE by cross-validation. If
so, we should return the OLC as the effective combining model for
the company-specific environment, otherwise it means that we
cannot find an OLC estimating more accurate than that of the best
component or the simple average, and in this case, we should return
the best component or the simple average, depending on which has
lower MSE. This can be shown in Processing Rectangle 6 in Figure
1.

In our experimental study, compared with the apparently best
component F (already superior to simple average), the final OLC’s
accuracy in terms of MSE, and strongly related MSRE, MMRE are

improved by 66.29% (2.91E+04/1.75E+04-1), 3.09 ( 2.312/0.565-
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1 ) times and 61.48% (1.027/0.636-1) respectively. That indicates

the OLC’s (Ill_S+F) effectiveness and we should return it as our

final estimating model. At the same time, we resolve the SD of OLC
0.778, so its consistency on the sense of SD is improved by 96.91%
(1.533/0.778-1). Figure 3 can more vividly show OLC’s the
accuracy and consistency improvement from the best component F.
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Figure 3. Box Plots of the MRE Values for OLC and F

6. LESSONS LEARNED FROM THE
EXPERIMENT

From this experimental study based on 15 company-specific
projects’ data, it indicates that OLC greatly improves the accuracy
and consistency of software effort estimation by integrating the
information provided by components even the component (e.g. S,C
) performs much worse than the apparent best component (e.g. F).
As Sherif Hashem discussed in [13], the improvement in combining
accuracy depends on the following factors:

1). “Degree of redundancy in the information obtained from the
components.” Combining components with different topologies,
different learning algorithms, and at least different training data can
increase the benefits of combining. In our experiment, we use error
correlation to quantificationally measure “disagreement” between
components. The experiment shows low correlation (0.258, 0.393,
0.329. see Table 3 ) between the three components, we would
expect more benefit from combining if the error correlation
coefficients were lower or negative[9].

2). “Superiority of the best component method.” If one method
performs much superior to the rest, while the other methods have no
additional knowledge to contribute, the OLC will tend to favor
using the best component by itself. In our experiment, F performs
much better than C and S on most of the 15 projects, so F
contributes most to the combining accuracy, and its weight is much
heavier than S. This shows that the OLC tends to favor using F and
its predictive power is the closest to F.

3). “Adequacy of the combination data.” Small quantity of data
might cause severe ill effects of collinearity[44]. In that case, the
OLC algorithms can only save the best component method by
dropping other components. However, dropping one of the collinear
variables might at the same time drop some useful information for
estimation or commit a “specification bias”[44] and this might
reduce the accuracy of OLC. This is true in our experiment, 15
projects’ data is so small that it causes severe collinearity. Although
C has potential contributions to combining (e.g. C performs best on
Project 15), it is offset by the harm of collinearity, so C is not



included in the final OLC, and the final OLC might lose the
information provided by C. We believe that as the size increase, ill
effects of collinearity can be reduced and some components might
be saved to provide more useful information for combining.
Moreover, in addition to increasing the size, other ways to reduce
collinearity might be using polynomial regressions or factor analysis,
ridge regression etc[44], we could use these techniques to improve
the OLC algorithm in the future.

4). “Outliers at different noise levels”. At the level of the OLC
algorithm, OLC adopts OLS to determine combining weights and
the constant term (if have) by minimizing MSE. Directly, the larger
the MSE of one method, the smaller the weight it is assigned. But
MSE are often blamed for its high sensitiveness to outliers as
referred in section 4. Data with a large number of outliers at high
noise levels, as we may say, poor data quality, can directly lead to
bad weights allocation, which in turn ruins the predictive power of
OLC, and small quantity of sample could aggravate this problem.
However, dropping the worse one (with higher MSE) of the pair
involved in the strongest collinearity can at the same time dropping
outliers and in turn reduce outliers’ bad effects, so by means of this,
OLC’s predictive power to tolerate with outliers at high noise levels
is improved and OLC is less sensitive to outliers. This could explain
why MSE values by cross validation of four cases of OLC with
three components C, S, F are all larger than that of the best F (see
Table 6). But after dropping C, at the same time, dropping the worst
outlier (its RE on Project 9 is as high as 38.462, see Appendix 1),
the predictive power of OLC is much stronger than that of F.
Because of MSE’s high sensitiveness to outliers, another way to
reduce OLC sensitiveness to outliers might be employing other
algorithms instead of OLS by minimizing not sensitive criterion e.g.
MMRE.

In sum, in our experimental study, despite of the small size (only 15
projects’ data) and not very good data quality (see Figure 2), OLC
has shown significant improvement on predictive accuracy and
consistency. This might show, at least in our experimental study,
OLC'’s ability to tolerate with small size data at high noise levels. In
addition, the OLC has exhibited improved predictive power both for
small and large sample sizes and at different noise levels using other
fields’ data or by simulation in some other researches[13, 30]. As
the quantity and quality of data available for combining increase, we
believe that OLC can be clearly superior to component methods,
which can also be expected based on the theoretical results of [13].

7. DISCUSSION OF POSSIBLE THREATS
OF VALIDITY

It is noticeable that F.Kemerer’s data were collected before 1987
and the programs were written in Cobol, Bliss and Natural.
Meanwhile, this data set shows that C and S are very bad, MMRE
of them are 6.079 and 7.719 respectively, and cannot be compared
to the results of up-to-date methods, e.g. Bayesian-calibrated

COCOMOII .2000 model has produces estimates that are within 30

percent of the actuals 66 percent of the time[2]. However,
significant accuracy improvement in component method will result
in further accuracy improvement in combining methods. This
insight was quantified in [40]by a relation stating that “the
generalization error of a weighted combination of predictors in
combining is equal to the average error of the individual predictors
minus the ‘‘disagreement’ among them”. That means the better
performance individual predictors have, the more “disagreement”
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among them, the better the combining performance will be. At the
same time, our focus in this paper is not to evaluate component
methods, but to experimentally prove that combining methods can
improve predictive power.

Another threat of validity might be that only 15 projects’ data might
be statistically so small a sample to show OLC method’s
effectiveness. Besides, small quantity of data might limit our choice
of proper validation methods. In our experiment, due to the small
data set, we employ LOOCV to measure OLC’s predictive power.
However, there is a disadvantage to LOOCV: “By its very nature, it
cannot be stratified-worse than that, it guarantees a nonstratified
sample. Stratification involves getting the correct proportion of
examples in each class into the test set, and this is impossible when
the test set contains only a single example.”[38]. This feature of
LOOCV might cause the bias of performance evaluation. As the
data set increases, we could use k-fold cross-validation even other
evaluating methods to avoid this problem[37, 38].

Meanwhile, we tried to find more recent real life software effort
estimating data to validate OLC effectiveness. However, there are
no other proper public data (the estimation results from more than
one techniques) for us to do so. To better refine our method and
validate its effectiveness, we plan to apply this method to broader
communities.

As for the significance of the experimental result, we can see that
OLC greatly improve its predictive power on the sense of MSE,
MSRE, MMRE and SD. To determine statistically significant
differences between OLC and F, commonly used statistic tests are
parametric test (paired t test) or nonparametric test (Wilcoxon
matched pair test), however, they only make sense when the pairs
are independent[46]. But the OLC’s predictive performance highly
relies on components, especially the best, and we could expect that
the performances of OLC and F in our experiment are highly
correlated. So the two statistic tests might not be proper for us to
adopt. Meanwhile, more intuitively, OLC’s predictive power is
based on components. At the most optimistic situation, if each
component contributes the same to combining, as the number of
components increases, the predictive power of the combining might
be significantly better than each component. However, at the most
pessimistic situation, if the best component contains all information
while others contribute no additional knowledge, it returns the best
as the final estimating method (see section 5.4). This makes no
sense for combining, let alone its significant improvement from the
best component. So for combining estimation methods, it cannot
always ensure significant improvement from the best component
and therefore it might be not proper to require their results should be
intuitively or statistically significantly better than the best
component due to their accuracy is highly dependent on
components.

Furthermore, for the usability of the OLC method, there are a
number of other factors that should be considered in the selection of
an estimation technique besides the accuracy factor, and it is likely
that trade-offs will need to be made in the process[9]. For example,
OLC employs more than one techniques or tools which will increase
the estimating cost, including the cost of purchasing business effort
estimation tools, the cost of training estimators to use these tools,
the cost of collecting company-specific estimating data using each
tool and the cost of mastering OLC estimation. If the organization
has a leading estimating technique and its estimating performance
has already satisfy its organizational goal, improving accuracy using
OLC with such amount of cost seems not cost-effective. However,



for the moment, our main focus in this paper is on optimizing the
accuracy of our estimation. In other words, we wish to produce
estimates that are as close as possible to the actual values,
irrespective of the other factors that may be important in the wider
organizational setting. In the long run, we plan to develop an
automatic OLC tool that might integrate the most popular, mature
and effective software effort estimating techniques, and this might
be more cost-effective for estimators to use.

8. CONCLUSION & FUTURE WORK

The OLC method is one of the most typical and effective linear
combining method and proves to be able to significantly improve
the predictive power in our experiment and some other field’s
research. Combining estimates derived from different techniques or
tools and draw from different sources of information should become
part of the mainstream of estimating practice in software effort to
improve estimating accuracy. Combining estimates is especially
useful when you are uncertain about the situation, uncertain about
which method is most accurate, and when you want to avoid large
errors| 14].

Recently there has been increased attention given to providing
measures of uncertainty associated with forecasts. Measures of
uncertainty surrounding a “central tendency” (the point forecast)
can enhance the usefulness of the forecast[27]. Our next research
work will include providing an OLC estimate of the probability
distribution of its possible values.

Moreover, besides the OLC Approach, there are many other
combining strategies including linear combination and nonlinear
combination as mentioned in the part of related work, however there
are still no unique criteria on the use of combination methods[16].
The choice mainly relies on the features of the particular application
conditions and environment. Using the same combination approach
for an estimating task may generate good results, but it may be bad
for others. In addition, empirical experiments have not yet been able
to find an optimal method for selection of the combinatorial
strategies. More theoretical development and experiments are
needed to explore this field. So it is might be a more meaningful and
challenging work for us to explore software effort combining
estimation in the future. In the USC-ISCAS joint lab, we plan to
apply combining estimation methods through USC-CSSE affiliate
programs to collect more proper data and implement more empirical
studies.
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Appendix 1.Estimates and Relative Errors of C, S, F, Simple Average and OLC

NO. | Actual MM C RE_C S RE_S F RE_F Average | RE_Average OLC RE_OLC
1 287.00 932.96 2.251 3857.80 12.442 | 344.30 0.200 1711.69 4.964 368.62 0.284
2 82.50 151.19 0.833 100.10 0.213 92.13 0.117 114.47 0.388 31.21 -0.622
3 1107.31 5818.75 4.255 11982.00 9.821 73143 | -0.339 | 6177.39 4.579 717.71 -0.352
4 86.90 566.50 5.519 2017.20 22213 | 192.03 1.210 925.24 9.647 195.06 1.245
5 336.30 1316.04 2.913 3382.00 9.056 387.11 0.151 1695.05 4.040 340.68 0.013
6 84.00 312.24 2.717 262.50 2125 61.58 -0.267 212.11 1.525 34.76 -0.586
7 23.20 234.51 9.108 106.30 3.582 -52.60 -3.267 96.07 3.141 -6.99 -1.301
8 130.30 1206.17 8.257 1224.60 8.398 264.68 1.031 898.48 5.895 158.49 0.216
9 116.00 4577.62 38.462 1454.10 11.535 | 477.81 3.119 2169.84 17.706 267.49 1.306
10 72.00 181.36 1.519 235.70 2.274 -2.83 -1.039 138.08 0.918 15.61 -0.783
11 258.70 1575.68 5.091 1623.00 5.274 484.24 0.872 1227.64 3.745 239.22 -0.075
12 230.70 584.37 1.533 513.30 1.225 192.21 -0.167 429.96 0.864 81.40 -0.647
13 157.00 1124.36 6.162 3119.80 18.871 157.36 0.002 1467.17 8.345 266.80 0.699
14 246.90 663.84 1.689 380.30 0.540 390.63 0.582 478.26 0.937 98.08 -0.603
15 69.90 130.72 0.870 643.80 8.210 282.91 3.047 352.48 4.043 126.79 0.814
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