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ABSTRACT 
Software effort estimation techniques abound, each with its own 
set of advantages and disadvantages, and no one proves to be 
the single best answer. Combining estimating is an appealing 
approach. Avoiding the difficult problem of choosing the single 
“best” technique, it solves the problem by asking which 
techniques would help to improve accuracy, assuming that each 
has something to contribute. In this paper, we firstly introduce 
the systematic “external” combining idea into the field of 
software effort estimation, and estimate software effort using 
Optimal Linear Combining (OLC) method with an experimental 
study based on a real-life data set. The result indicates that 
combining different techniques can significantly improve the 
accuracy and consistency of software effort estimation by 
making full use of information provided by all components, 
even the much “worse” one.  

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management–Cost estimation 

General Terms: Algorithms, Management, Measurement, 
Economics, Experimentation 

Keywords: OLC, Software Effort Estimation, Combining 

1. INTRODUCTION 
Accurate and consistent estimates of software effort are crucial 
for better project planning, monitoring, and control[1]. In 
pactice, effort estimation is one of the fields containing the 
most experiences. A lot of research has aimed to build, evaluate 
and recommend estimation techniques to help managers make 
more accurate and consistent effort estimates, e.g.[2, 3]. They 
employ one or more methods: parametric modeling, knowledge-
based modeling, rule induction, fuzzy logic, dynamic modeling, 
neural networks, or case-based reasoning [4-6]. Recent research 
has attempted to determine which technique or tool might be 
the “best” by comparing them on the sense of one or more 
performance measures on some specific data sets and 
conditions[7, 8]. However, the outcomes of these studies do not 
always correspond, due to different data sets and experiment 
conditions[9, 10]. Common effort estimation practice in 
particular organizations displays that the single technique they 

adopts performs well on some projects, but badly on others. For 
these reasons, project managers are often confused about how to 
choose the “best” software effort estimation technique or tool. 
In fact, the always “best” technique or tool for all situations 
does not exist in real life[11]. Meanwhile, experiences and 
MacDonell and Martin J. Shepperd’s initial research[9]have 
indicated that when one technique predicts poorly, one or more 
other techniques tend to perform significantly better, which 
implies that some techniques or tools are complementary and 
may have different contributions for accurate estimation. Best 
practices recommends that project managers should use at least 
two approaches[1, 12] since many factors affect the estimation 
and these might be captured by using alternative approaches. It 
has come to a consensus that combining estimating may help 
integrate estimating knowledge acquired by component 
methods, reduce errors deriving from faulty assumptions, bias, 
or mistakes in data and improve the estimation accuracy.  
In this paper, we examine the literature on combining forecasts 
especially the linear combining methods in statistics science in 
section 2.1. This work helps to introduce the systematic 
“external” combining idea into the field of software effort 
estimation, and assist researchers that are interested in 
combining estimates and likely to do more extensive and 
thorough research in this field. We then investigate the 
application of current combining methods in software effort 
estimation to ensure our research’s originality in section 2.2.  In 
section 3, we give an overview of  the most typical linear 
method: Optimal Linear Combination (OLC) method [13]for 
software effort estimation. To evaluate our method’s 
effectiveness we introduce some performance measures for 
OLC method in section 4. Then we discuss the OLC method in 
details and apply it step by step to software effort estimation 
with an experimental study based on a real-life data set in 
section 5.1-5.4. Finally, in section 6, 7, 8, we discuss some 
lessons learned from the experiment, threats of validity, our 
future work and eagerness to call for more attention to explore 
the software effort combining estimation field. 

2. RELATED WORK 
2.1 Literature on Combining Forecasts 
As early as 1818, Laplace initially proposed that “In combining 
the results of two methods, one can obtain a result whose 
probability law of error will be more rapidly decreasing”. 
J.Scott Armstrong defines Combining Forecasts as “Combining 
forecasts, sometimes referred to as composite forecasts, refer to 
the averaging of independent forecasts. These forecasts can be 
based on different data or different methods or both. The 
averaging is done using a rule that can be replicated, such as to 
take a simple average of the forecasts” [14]. Since the influential 
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work of  Bates and Granger's [15],combining forecasting techniques 
have been rapidly developed and widely used in many practical 
field such as whether forecasting, money market, macro-economics 
analysis etc. with considerable success. The methods now available 
to the forecaster range from the robust simple average to the far 
more theoretically complex ones. Clemen [16]traces the literature 
back to Laplace, cites more than 200 studies in his review of the 
literature related to combining forecasts, including contributions 
from forecasting, psychology, statistics, and management science 
literatures. Some researchers [14, 17]provide guidelines for 
combining forecasts. In [18] a brief review on the linear combining 
methods is presented: in addition to simple combining methods 
based on averaging[14, 19], there are other combining methods 
based on ordinary least square[20], weighted least squares[21], 
discount MSFE[22], Bayesian shrinkage techniques[23], 
clusters[24], model selection[25], principal components[26], 
approximate Bayesian model averaging[27] and exponential 
reweighing[28]. 
In general, linear methods are often recommended by forecasters 
[14, 29, 30]: “First!all the component forecasting methods are 
trained to approximate the same actual value. Thus, forming a 
weighted sum of the corresponding outputs of components is 
directly comprehended. Besides, linear methods are often simpler to 
analyze and easier to implement than non-linear methods”. The 
implementations of the four OLCs, discussed in Part 5, require 
modest computational effort that mainly involves a matrix 
inverse[30]. In the literature on combining forecasts, linear 
formulation is almost always adopted. 

2.2 Literature on Composite Estimation 
Methods for Software Effort  
In this section, we first differentiate the “composite estimation 
method” term frequently used in the software effort estimation field 
from our mentioned “combining estimation method” in this paper, 
and then we examine current combining methods or practices 
employed in software effort estimation, discuss their drawbacks, and 
propose the OLC method at last. 
Based on reviews of software effort estimation approaches[4-6], 
three current typical “composite estimation methods” are frequently 
referred in the software effort estimation field, they are Cost 
Estimation Benchmarking and Risk Analysis (COBRA)[3], 
Incorporating Bayesian analysis to improve the accuracy of 
COCOMO II[2, 31] and Analogy-Based tools[32, 33]. However, the 
three methods are different from J.Scott Armstrong’s definition of 
combining forecasts. Technically, they all combine experiential 
approaches with data-driven modeling, but expert knowledge used 
in the three methods is just a part of the modeling process: COBRA 
uses expert knowledge to construct the causal model; Analogy-
Based tools use it to define similarity functions, and COCOMO II 
combine it with historical data to calibrate the value of cost drivers 
by Bayesian Analysis. This kind of composite technique is 
“internal” combining and in some sense, they all belong to 
individual techniques. In this paper, we refer “combining estimation 
method” as to combine the outputs (final effort estimates) of 
individual methods by simple average or a sophisticated weighting 
algorithm, as Armstrong’s definition mentioned in section 2.1. For 
differentiating from “internal” combining, we call it “external” 
combining. 

Although the “external” combining has been widely used in many 
other fields with considerable success, we find few related work [9, 
34, 35] in the field of software effort estimation. MacDonell and 
Martin J. Shepperd’s analysis [9]of effort data from a medical 
records information system reveals that there is little, or even 
negative, covariance between the accuracy of their three chosen 
estimating techniques (expert judgment, least squares regression and 
case-based reasoning). That indicates that when one technique 
predicts poorly, one or both of the others tends to perform 
significantly better. This comes to the conclusion that it might be 
valuable to combine estimation techniques for a given environment 
when there is no dominant technique. They also try to learn a 
decision tree to decide which technique to use in which 
circumstances by means of rule induction. However, they aren’t 
able to identify a means of determining the prior and also don’t give 
any suggestion on how to combine not optimal techniques to 
generate better estimation. 
Magne Jorgensen considers combining estimation methods as one 
of practical guidelines for expert-judgment-based software effort 
estimation and suggest some useful combinations of estimation 
methods[34], such as expert judgments and formal methods, top-
down and bottom-up methods, analogy and linear regression 
methods, expert judgments made by software professionals with 
different project experiences, expert judgments made by software 
professionals with different roles. However, he doesn’t provide any 
practical guidelines on how to combine these estimation methods 
with some empirical studies.  
One of the few studies to directly explore software effort combining 
estimation is Kitchenham’s work based on estimation data from 
Computer Sciences Corporation[35]. “They had multiple estimates 
and used one of two strategies: either to take a simple average of the 
estimates or to select one that they decided they would use (almost 
always an expert opinion estimate)”[9]. Simple average might be 
easy to implement, but it gives each component the same weight 
without considering different contributions of individual techniques, 
so it can’t always ensure that the combining accuracy is at least as 
high as that of the best component. Besides, selecting the “best” one 
by expert opinion might be influenced by subjective bias and even 
not so, ignore the fact that other components might provide useful 
information for accuracy. The OLC method gives components 
different weights according to their performances, can make full use 
of information provided by each component to maximize the 
accuracy in prediction, and often produces superior model accuracy, 
at least, not worse than the best component.  

3. OVERVIEW OF OLC METHOD FOR 
SOFTWARE EFFORT ESTIMATION 
Figure 1 illustrates the steps of software effort estimation with OLC. 
This method includes four main steps as shown in the left-side flow 
chart, and each main step’s sub steps are numbered in the process 
rectangles of the right-side flow chart. 
1).Preparing data and component methods. For better estimation, 
data used for modeling OLC is required to be from the same 
organization, that is to say, the company-specific data and 
preferably of the same project type, in addition component methods 
should be “different” enough to benefit combining. This step 
includes Processing Rectangle 1, 2 in the right flow chart (details in 
section 5.1). 
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2).OLC modeling. OLC modeling in essence is the multiple 
regression analysis (estimates of components as independent 
variables and actual effort as the attributive variable) using 
Ordinary Least Square[36], and we should select a proper case 
from four optional cases of OLCs according to their estimating 
performance. This step corresponds with Processing Rectangle 3 
in the right flow chart (details in section 5.2).  
3).Further improving OLC’s predictive power. Since the outputs 
of components are trained to approximate the same actual value, 
we would expect them to be highly collinear and in statistics it is 
named as collinearity. Considering collinearity might ruin the 
predictive power of OLC, we improve the predictive power by 
dropping a component or the constant term to weaken collinearity. 
This step includes Processing Rectangle 4, 5 in the right flow 
chart (details in section 5.3). 
4).Returning the final estimating model. If there is no room to 
further improve the predictive power of OLC, we should compare 
estimating performances of the current OLC, the best component 
method and the simple average to return the one with the best 
performance as our final estimating model. This step corresponds 
with Processing Rectangle 6 in the right flow chart (details in 
section 5.4). 
 

 
Figure 1. Software Effort Estimation Using OLC Method 

4. PERFORMANCE MEASURES FOR OLC  
To evaluate the performance of estimating methods, a series of 
estimating performance measures are commonly used. Assume Ŷ  
denotes the estimating value, Y  denotes the actual value. Table 1 
presents the commonly used performance measures. As for a 
group of observations, the last asterisked four are used.   
 
 
 

Table 1. Performance Measures 
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MMRE, MSRE and MSE are strongly relevant measures for 
evaluating accuracy and they usually have the same tendency to 
show the accuracy. Generally, the lower MMRE, MSRE and MSE 
are, the more accurate the estimating method is. However, MSE, 
unlike MMRE, is highly sensitive to outliers. It penalizes a 
forecasting method much more for large errors than for small errors. 
Forecasting practices recommend using multiple error measures[37]. 
So in our research, we adopt them all for our accuracy measures. As 
for estimating consistency, we employ Standard Deviation of RE to 
reflect it. The lower SD is, the more consistent the estimating 
method is.  
Besides, one of the most important performance measures is the 
performance measured on a separate data set from training data. 
This performance measure is referred to as the predictive power 
(including both predictive accuracy and consistency), the out-of-
sample performance, the generalization ability, or the robustness. 
Cross-validation is one of several approaches to estimate how well 
the model just learned from some training data is going to perform 
on future as-yet-unseen data. There are two kinds of cross-validation: 
k-fold cross-validation and leave-one-out cross-validation 
(LOOCV). Generally, 10-fold cross-validation is the standard way 
of measuring the error rate of a learning scheme on a particular data 
set. For reliable results, 10 times 10-fold cross validation is suitable. 
LOOCV is useful because it does not waste data, this is especially 
true when the sample size small[38].  
As for combining estimation methods’ predictive power, intuitively, 
it should be judged by whether combination can improve the 
predictive power from the best component method, and if so, how 
significant is the improvement. We also adopt the simple average as 
one of the comparative baseline methods for it is very simple to 
implement and a lot of researches recommend it as one of the most 
effective combining methods, e.g.[14, 17]. The smaller the MSE, 
MSRE, MMRE and SD of the combining method than those of the 
best component method and the simple average, the more effective 
the combining method is. In this paper, because OLC aims at 
minimize the MSE (details in section 5.2), we consider MSE as the 
main performance measure. The MSE of the OLC after cross-
validation may be compared to that of the best component method 
and the simple average in order to determine the predictive power’s 
improvement. That is to say: If the MSE of OLC by cross-
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validation is smaller than that of the best component method and 
that of the simple average, the OLC is robust or has sound 
predictive power.  

5. OLC METHOD AND AN 
EXPERIMENTAL STUDY 
In this section, we extend the OLC method in details step by step. In 
each part of 5.1-5.4, corresponding to the four steps of the OLC 
method respectively, we first discuss each step and then apply them 
to our experiment.  

5.1 Preparing Data and Component Methods 
This step is prerequisite for OLC modeling. The data we need for 
OLC modeling is the estimates of local projects from different 
component methods. The data required should be from the same 
organization, that is to say, the company-specific data and 
preferably of the same project type, and in such situation, we can 
find proper OLC for specific local environment. This can be shown 
in Processing Rectangle 1 in Figure 1. 
Many factors affect the estimation and these might be captured by 
using alternative approaches. If all the components carry the same 
information, no benefits may be expected from combining them. To 
increase the benefits of combining, the components may be 
constructed using different topologies, structure, different learning 
algorithms, core techniques, different training data etc.[14, 39, 40]. 
Error correlation analysis helps to reflect the “difference” between 
individual methods quantificationally and identify whether or at 
what extent it will benefit from combining. Assume the correlation 
coefficient is denoted by )1-1( ,, rr . According to [41], 

0-r means negative correlation, 0.r means positive correlation, 
5.00 -- r means low positive correlation, 8.0/r  means high positive 

correlation. Generally, negative, even low positive correlation error 
indicates that when one technique estimates poorly, the other tends 
to perform significantly better. The lower error correlation among 
individual methods, the larger potential for combining, and the more 
benefits would be gained from combining. This can be shown in 
Processing Rectangle 2 in Figure 1. 
In this experimental study, we acquire the company-specific data 
from F.Kemerer’s empirical work[42] , his work evaluates four 
algorithmic models (SLIM, COCOMO, Function Points, and 
ESTIMACS) based on their respective estimates on 15 large 
completed business data-processing projects of the same company. 
It provides 15 projects’ estimates of COCOMO, SLIM and Function 
Points but only 9 projects’ estimates of ESTIMACS. In our 
experimental study, we combine COCOMO, SLIM and Function 
Points based on 15 projects and exclude ESTIMACS because it 
lacks other 6 projects’ estimates. For short we use their name’s 
initial C, S, and F to denote each. As we know, the three tools have 
different modeling algorithms, e.g. C and S use SLOC for the 
project’s general size while F uses function points. S uses Rayleigh 
curve model to produce its effort estimates, C uses easy-to-
understand exponential model, while F estimates by a regression of 
actual effort and its estimating function points. So they have 
different core techniques and model structures, further more, they 
all come from different organizations and trained on different data 
set, thus theoretically they are complementary, low correlated tools 
and they may have different information to contribute. 
In Appendix 1, RE_C, RE_S, RE_F, RE_Average denote 
respectively relative errors of the three tools’ estimates and simple 

average on the 15 projects.  Table 2 compares the consistency (SD) 
and accuracy (MSE, MSRE, MMRE) measures’ values of the three 
tools and simple average. Figure 2 presents box plots of the MRE 
values for each of the techniques applied. 
Table 2. Accuracy and Consistency Comparison of C, S, F and 

Simple Average 
 SD MSE MSRE MMRE 

C 9.329 3.20E+06 118.188 6.079 
S 6.613 1.05E+07 100.398 7.719 
F 1.533 2.91E+04 2.312 1.027 

Average  4.509 2.53E+06 41.204 4.716 
 

 
Figure 2. Box Plots of the MRE Values for C, S, F and Simple 

Average 
It is noticeable that F is apparently the best component for this 
company’s environment. Its SD, MSRE, MSE, and MMRE are all 
much smaller than those of C and S. However, it should also be 
noted in Appendix 1 that C performs the best on Project No.15 
and S is the best on Project No.14 even though F is the best 
estimator on other 13 projects. This implies that even the much 
worse components might provide information that the apparently 
best one doesn’t have. Combining them might improve the 
estimating accuracy. As for simple average, although it performs 
much better than C and S, it is also inferior to F, for it doesn’t 
consider different contributions from each component.  
We work out the three components’ zero-order correlations of 
relative error in Table 3. The correlation matrix shows that the 
three methods have low correlation. This indicates that when one 
method predicts poorly, one or both of the others tends to perform 
significant better, so they have the potential to benefit from 
combining. 

Table 3. RE Correlation Coefficients 

" RE_C RE_S RE_F 

RE_C 1.000" - -"

RE_S 0.258" 1.000 -"

RE_F 0.393" 0.329 1.000"

5.2 OLC Modeling  
Granger and Ramanathan[20] first introduce the OLC method, 
Hashem and Schmeiser[13] extend the idea of OLCs and discuss 
related issues about how to improve the generalization ability 
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(predictive power) of the combined model by reducing 
collinearity. The essence of OLC is the multiple regression 
analysis using Ordinary Least Square (OLS) [36] estimates of 
components as independent variables, and actual effort as 
attributive variable.  
The OLC model is  "

!

0!
p

j
jj yY

1
0 11                                    (1)  

Assume that there are p component methods. OLC’s estimating 
result Y is the weighted average of p component methods’ 
estimates. Regression coefficients

p11 !,1
denote optimal 

combination weights of the p component methods. 
01 is the 

constant term which allows for correction of any bias 
in .,1, pjsy j !!  The constant term 01  and combination weights 

p11 !,1
 are determined by OLS method to minimize the mean 

squared error (MSE)[36]. 
There are four extended cases of OLC models based on eqn(1), 
the variations among the four cases are in the inclusion (or 
exclusion) of the constant term 01 , and/or constraining the 
combination weights 

p11 !,1
to sum to one as shown in Table 

4[13].  For short, we use # ,$ ,% , &  to denote each case of 
OLCs respectively in the paper. The contents in brackets denote 
constraints for each case. 

Table 4. Four Cases of OLCs 
unconstrained OLC with a constant term #  (no constraints) 
constrained OLC with a constant term"

$  ( 121 !000 p111 ! ) 

unconstrained OLC without a constant term 
%  ( 00 !1 ) 

constrained OLC without a constant term"
& ( 121 !000 p111 ! , 00 !1 ) 

A question might be directly asked is that which one should be 
adopted and by what measures. On the one side, the 
unconstrained OLC with a constant term, theoretically yields the 
smallest MSE[13] (by mathematic formula deduction or in-
sample performance evaluation) compared to the best component 
method, the simple average, and to the other three OLCs. Granger 
and Ramanathan also recommend combining forecasts using 
unconstrained OLC[20]. However, the more important 
performance measure is the accuracy measured on a separate data 
set, and we evaluate performance measures (MSE, MSRE, 
MMRE, and SD) by cross-validation to reflect the predictive 
power. On the other side, the inclusion of the constant term helps 
to correct for possible biases in the component methods, however, 
the constant may sometimes be involved in collinearity (see 
details in section 5.3) and do harm to the predictive power of 
OLC, in this case, we should drop the constant. Besides, 
constraining the combination-weights to sum to one may 
sometimes be used in improving the predictive power of 
OLC[13]. These indicate that any one of the four cases of OLCs 
might be more robust than others due to different data sets. A 
practical view to choose the one with the highest predictive power 
is modeling all the four cases of OLCs respectively, performing 
cross-validation to compare performance measures, and choosing 

the one that has the minimal MSE.  This can be shown in 
Processing Rectangle 3 in Figure 1. 
In our experimental study, we evaluate measures on both the in-
sample and out-of-sample data set. For evaluation on in-sample 
data set, we want to experimentally prove the theoretical 
conclusion that the unconstrained OLC with a constant term, 
theoretically yields the smallest MSE[13]. For evaluation on out-
of-sample data set, we want to choose the one with highest 
predictive power for further estimating.  
The in-sample accuracy of the four cases’ OLCs is shown in 
Table 5. We can see that all the four cases of OLCs have lower in- 
sample MSE than the best component method F. The 
unconstrained OLC with a constant term (the# OLC) has superior 
accuracy, in the sense of MSE, on the in-sample performance. 
These results are in accordance with the theory that the# OLC 
yields the smallest MSE. 

 Table 5. In-Sample MSE Comparison 

 01  
11  

21  
31  MSE 

F 0.000 0.000 0.000 1.000 2.91E+04"

# " 6.906 -0.013 0.073 0.293 5.99E+03 

$ " -92.31 -0.062 0.060 1.001 1.30E+04 

% " 0.000 -0.014 0.073 0.316 6.01E+03 

&" 0.000 -0.082 0.054 1.0282 1.86E+04 

To identify the one with the highest predictive power, we perform 
cross-validation to compare MSE. As we have a small size data 
set of only 15 projects, in order to make full use of the data, we 
use LOOCV: that is training OLCs on 14 projects and testing the 
accuracy on the remaining one, repeating this process 15 turns to 
let each project to be a test sample. The MSE, MSRE and MMRE 
of the cross-validation are shown in Table 6, the best component 
F’s value is also included to compare.  

Table 6.  Accuracy Comparison after LOOCV 

" MSE MSRE MMRE 

'" 2.91E+04 2.312 1.027 

# " 3.14E+04 0.684 0.695 

$ " 6.87E+04 7.364 1.687 

% " 4.30E+04 2.086 0.926 

&" 8.33E+04 3.935 1.377 

As we may see in Table 6, # OLC still has the lowest MSE of the 
four OLCs after cross-validation and this indicates that it is the 
one with the highest predictive power of the four cases, so we 
should choose it. We also can see that except MSE, the 
performance measures MSRE and MMRE of # OLC are the 
smallest. These have shown that OLC has already improved 
predictive accuracy. However, # OLC’s MSE is still larger than the 
best component F. According to the definition of combining 
estimation methods’ predictive power in the end of Part 4, the 
current OLC doesn’t have sound predictive power.  A direct 
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question might be what factors might influence the predictive power 
of OLC and how to improve it. 

5.3 Further Improving Predictive Power  
The problem that sometimes affects the estimation of the optimal 
combination weights, as well as the predictive power of the OLC, is 
the collinearity among the predictors variables pjyi !,1, ! ,in the 

regression model eqn(1). Since the iy s are the outputs of 
components that are trained to approximate the same actual value 

,Y we would expect them to be highly collinear. Sometimes even 
the constant term is involved in collinearity[13]. Ill effects of 
collinearity are blamed for undermining the predictive power of 
OLCs[23, 29, 43]. A common and simple way to deal with 
collineariy is to drop a component involved in the strongest 
collinearity.  
We adopt two rules of thumb [44] to identify the variables involved 
in the strongest collinearity. The first rule of thumb is “High 2R ( the 
multiple coefficient of determination [45])but few significant t 
ratios”. As noted, this is the classic symptom of collinearity. If 2R  
is high (generally higher than 0.8) the F test is significant, but few 
individual t tests of coefficients are significant. The variables whose 
coefficients are not significant are involved in collinearity. This rule 
of thumb helps us to detect collinearity and identify all the variables 
involved in collinearity.  The other rule of thumb is “High pair-wise 
correlations among regressors”. If the pair-wise or zero-order 
correlation coefficient between two regressors is high (generally 
higher than 0.8) then collinearity is a serious problem. We should 
also be noted that high zero-order correlations are a sufficient 
condition for the existence of collinearity. For this reason, high 
correlation means strong collinearity, largest correlation coefficient 
of a pair of variables means they are involved in the strongest 
collineairy. This rule of thumb helps us to find the pair involved in 
the strongest collinearity. According to these two rules of thumb, we 
can find the variables involved in the strongest collinearity and drop 
the one with larger MSE to weaken the bad influence of collinearity. 
The Processing Rectangle 4 in Figure 1 denotes this process. 
The inclusion of the constant term helps to correct for biases in the 
component methods but sometimes it is involved in collinearity 
which might ruin the predictive power of OLC, the simplest way to 
see whether the constant term does good or not to the predictive 
power of OLC is to compare the MSE before and after excluding 
the constant. The Processing Rectangle 5 denotes this process. 
Because the inclusion of the constant term benefits the correction of 
biases, we don’t consider the ill influence of the constant term until 
there is no room to improve accuracy by dropping component 
method. 
It should be noted that Hashem and Schmeiser’s OLC algorithms 
employ BKW diagnostics to determine the existence of collinearity 
and the variables involved in it[13]. Two rules of thumb that we 
adopts serve as the same effect and much easier to understand and 
implement. Furthermore, their algorithm cannot ensure to improve 
the predictive power of the combining model to the largest extent, as 
it returns as long as the MSE by cross-validation of OLC is smaller 
than the best component and the simple average. However, our 
algorithm aims at maximizing the OLC’s predictive power. It 
doesn’t return until there is no room for further improvement as 
shown in Figure 1. 

In our experimental study, current# OLC is still not more accurate 
than F on the sense of MSE. That means that collinearity has ill 
effects on the predictive power of the # OLC, and we need to 
improve the predictive power by dropping one of the components or 
the constant term. By regression on 15 projects’ estimating data, #
OLC’s model is 

Y= 6.906- 0.013*C+ 0.073*S+ 0.293*F (2) 
t 0.173 -0.475 5.661 1.483  

P-value 0.866 0.644 0.000146 0.166  

R2=0.907 " " " " "

We can see that R2 is as high as 0.907, however, the coefficients of 
constant, C, F are all not statistically significant (P-value<0.05 
denotes statistically significance). According to the first rule of 
thumb, this is the classic symptom of collinearity, and the constant, 
C, F are maybe involved in collinearity. 
In order to find the pair involved in the strongest collinearity, we 
worked out the zero-order correlation matrix of the three 
components’ estimates as shown in Table 7 . 

Table 7.Estimates Correlation Coefficients  

It can be seen that the pair C and F’s zero-order correlation 0.809 is 
the highest. According to the second rule of thumb, they are 
involved in the strongest collinearity. Besides, C performs much 
worse (has larger MSE) than F, so we drop C from the combining 
model, remodel using the # OLC and gain MSE by LOOCV to see 
whether predictive power improved or not. The MSE, MSRE and 
MMRE of the new model # OLC with only S and F (# _S+F for 

short), compared with F and # OLC with all three components (#
_C+S+F for short) are shown in Table 8. We can see that # OLC 
with only S and F’s MSE is smaller than that of the apparent best 
component F, this means that by dropping C, the combining 
model’s predictive power has been improved. Since MSRE and 
MMRE are strongly related to MSE, the accuracy in terms of 
MSRE and MMRE are also improved by 18.34% (0.684/0.578-1) 
and 6.60% (0.695/0.652-1) respectively, compared with before 
dropping C. These results show the accuracy improvement by 
dropping C to weaken the ill influence of collinearity.  

Table 8. Accuracy Comparison after Dropping C 

" MSE MSRE MMRE 

'" 2.91E+04 2.312 1.027 

# ()*+*'" 3.14E+04 0.684 0.695 

# (+*'" 2.48E+04 0.578 0.652 

After dropping C, the OLC trained by 15 projects’ data is as 
follows: 

Y= 10.173+ 0.070*S+ 0.241*F (3) 

t 0.267 6.376 1.518  

 C S F 
C 1.000 - - 

S 0.789 1.000 - 

F 0.809 0.708 1.000 
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P-value 0.794 3.53E-05 0.155  

R2=0.905     

Considering that the t-test of constant term and F’s coefficient are 
still not significant which indicates that they are still involved in 
collinearity, so this might also ruin the predictive power of OLC. 
Besides, there are only two methods (S and F) left, according to the 
OLC algorithm in Figure 1, we try to drop the constant to see if 
predictive power could be further improved also using LOOCV. 
The result is shown in Table 9. 

Table 9. Accuracy Comparison after Dropping Constant 

" MSE MSRE MMRE 

'" 2.91E+04 2.312 1.027 

# ()*+*'" 3.14E+04 0.684 0.695 

# (+*'" 2.48E+04 0.578 0.652 

%(+*'" 1.75E+04 0.565 0.636 

It is noticeable that after dropping the constant (% _S+F for short), 
the predictive power is further improved: the MSE has been reduced 
from 2.48E+04 to 1.75E+04. The accuracy on the sense of MSRE 
and MMRE are also improved by 2.30% (0.578/0.565-1) and 2.52% 
(0.652/0.636-1) respectively for they are strongly related to MSE. 
Considering that there is no room to improve the predictive power 
of OLC, we return the following model (trained on the whole 15 
company-specific projects’ data) as our final OLC. It can be seen 
that the coefficients of S and F are both significant now which 
indicates that the collinearity has been greatly weakened after 
dropping the constant term.  

Y= 0.0697*S+ 0.2700*F (4) 

t 6.690 2.432  

P-value 1.493E-05 0.030191  

R2=0.945    

In the process of improving OLC’s predictive power, we start with 
the initial OLC ( # _C+S+F), and then weaken collinearity by 

dropping C (# _S+F) and the constant (% _S+F) in succession to 
maximize OLC’s predictive power. Table 9’s last three rows show 
the decreasing trend"of both MSE and strongly relevant MSRE and 
MMRE during the further improvement process."

5.4 Returning the Final Estimating Model  
At last, if there is no room to improve the predictive power of OLC, 
we should identify whether or not the predictive power of the final 
OLC is higher than that of the best component method and the 
simple average, which is measured on MSE by cross-validation. If 
so, we should return the OLC as the effective combining model for 
the company-specific environment, otherwise it means that we 
cannot find an OLC estimating more accurate than that of the best 
component or the simple average, and in this case, we should return 
the best component or the simple average, depending on which has 
lower MSE. This can be shown in Processing Rectangle 6 in Figure 
1.  
In our experimental study, compared with the apparently best 
component F (already superior to simple average), the final OLC’s 
accuracy in terms of MSE, and strongly related MSRE, MMRE are 
improved by 66.29% (2.91E+04/1.75E+04-1), 3.09,2.312/0.565-

1-times and 61.48% (1.027/0.636-1) respectively. That indicates 

the OLC’s (% _S+F) effectiveness and we should return it as our 
final estimating model. At the same time, we resolve the SD of OLC 
0.778, so its consistency on the sense of SD is improved by 96.91% 
(1.533/0.778-1). Figure 3 can more vividly show OLC’s the 
accuracy and consistency improvement from the best component F.  

 
Figure 3. Box Plots of the MRE Values for OLC and F 

6. LESSONS LEARNED FROM THE 
EXPERIMENT  
From this experimental study based on 15 company-specific 
projects’ data, it indicates that OLC greatly improves the accuracy 
and consistency of software effort estimation by integrating the 
information provided by components even the component (e.g. S,C 
) performs much worse than the apparent best component (e.g. F). 
As Sherif Hashem discussed in [13], the improvement in combining 
accuracy depends on the following factors: 
1). “Degree of redundancy in the information obtained from the 
components.” Combining components with different topologies, 
different learning algorithms, and at least different training data can 
increase the benefits of combining. In our experiment, we use error 
correlation to quantificationally measure “disagreement” between 
components. The experiment shows low correlation (0.258, 0.393, 
0.329. see Table 3 ) between the three components, we would 
expect more benefit from combining if the error correlation 
coefficients were lower or negative[9]. 
2). “Superiority of the best component method.” If one method 
performs much superior to the rest, while the other methods have no 
additional knowledge to contribute, the OLC will tend to favor 
using the best component by itself. In our experiment, F performs 
much better than C and S on most of the 15 projects, so F 
contributes most to the combining accuracy, and its weight is much 
heavier than S. This shows that the OLC tends to favor using F and 
its predictive power is the closest to F. 
3). “Adequacy of the combination data.” Small quantity of data 
might cause severe ill effects of collinearity[44]. In that case, the 
OLC algorithms can only save the best component method by 
dropping other components. However, dropping one of the collinear 
variables might at the same time drop some useful information for 
estimation or commit a “specification bias”[44] and this might 
reduce the accuracy of OLC.  This is true in our experiment, 15 
projects’ data is so small that it causes severe collinearity. Although 
C has potential contributions to combining (e.g. C performs best on 
Project 15), it is offset by the harm of collinearity, so C is not 
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included in the final OLC, and the final OLC might lose the 
information provided by C. We believe that as the size increase, ill 
effects of collinearity can be reduced and some components might 
be saved to provide more useful information for combining. 
Moreover, in addition to increasing the size, other ways to reduce 
collinearity might be using polynomial regressions or factor analysis, 
ridge regression etc[44], we could use these techniques to improve 
the OLC algorithm in the future.  
4). “Outliers at different noise levels”. At the level of the OLC 
algorithm, OLC adopts OLS to determine combining weights and 
the constant term (if have) by minimizing MSE. Directly, the larger 
the MSE of one method, the smaller the weight it is assigned. But 
MSE are often blamed for its high sensitiveness to outliers as 
referred in section 4. Data with a large number of outliers at high 
noise levels, as we may say, poor data quality, can directly lead to 
bad weights allocation, which in turn ruins the predictive power of 
OLC, and small quantity of sample could aggravate this problem. 
However, dropping the worse one (with higher MSE) of the pair 
involved in the strongest collinearity can at the same time dropping 
outliers and in turn reduce outliers’ bad effects, so by means of this, 
OLC’s predictive power to tolerate with outliers at high noise levels 
is improved and OLC is less sensitive to outliers. This could explain 
why MSE values by cross validation of four cases of OLC with 
three components C, S, F are all larger than that of the best F (see 
Table 6).  But after dropping C, at the same time, dropping the worst 
outlier (its RE on Project 9 is as high as 38.462, see Appendix 1), 
the predictive power of OLC is much stronger than that of F. 
Because of MSE’s high sensitiveness to outliers, another way to 
reduce OLC sensitiveness to outliers might be employing other 
algorithms instead of OLS by minimizing not sensitive criterion e.g. 
MMRE.   
In sum, in our experimental study, despite of the small size (only 15 
projects’ data) and not very good data quality (see Figure 2), OLC 
has shown significant improvement on predictive accuracy and 
consistency. This might show, at least in our experimental study, 
OLC’s ability to tolerate with small size data at high noise levels. In 
addition, the OLC has exhibited improved predictive power both for 
small and large sample sizes and at different noise levels using other 
fields’ data or by simulation in some other researches[13, 30]. As 
the quantity and quality of data available for combining increase, we 
believe that OLC can be clearly superior to component methods, 
which can also be expected based on the theoretical results of [13]. 

7. DISCUSSION OF POSSIBLE THREATS 
OF VALIDITY  
It is noticeable that F.Kemerer’s data were collected before 1987 
and the programs were written in Cobol, Bliss and Natural. 
Meanwhile, this data set shows that C and S are very bad, MMRE 
of them are 6.079 and 7.719 respectively, and cannot be compared 
to the results of up-to-date methods, e.g. Bayesian-calibrated 
COCOMO$ .2000 model has produces estimates that are within 30 
percent of the actuals 66 percent of the time[2]. However, 
significant accuracy improvement in component method will result 
in further accuracy improvement in combining methods. This 
insight was quantified in [40]by a relation stating that “the 
generalization error of a weighted combination of predictors in 
combining is equal to the average error of the individual predictors 
minus the ‘‘disagreement’’ among them”. That means the better 
performance individual predictors have, the more “disagreement” 

among them, the better the combining performance will be. At the 
same time, our focus in this paper is not to evaluate component 
methods, but to experimentally prove that combining methods can 
improve predictive power.  
Another threat of validity might be that only 15 projects’ data might 
be statistically so small a sample to show OLC method’s 
effectiveness. Besides, small quantity of data might limit our choice 
of proper validation methods. In our experiment, due to the small 
data set, we employ LOOCV to measure OLC’s predictive power. 
However, there is a disadvantage to LOOCV: “By its very nature, it 
cannot be stratified-worse than that, it guarantees a nonstratified 
sample. Stratification involves getting the correct proportion of 
examples in each class into the test set, and this is impossible when 
the test set contains only a single example.”[38]. This feature of 
LOOCV might cause the bias of performance evaluation. As the 
data set increases, we could use k-fold cross-validation even other 
evaluating methods to avoid this problem[37, 38]. 
Meanwhile, we tried to find more recent real life software effort 
estimating data to validate OLC effectiveness. However, there are 
no other proper public data (the estimation results from more than 
one techniques) for us to do so. To better refine our method and 
validate its effectiveness, we plan to apply this method to broader 
communities. 
As for the significance of the experimental result, we can see that 
OLC greatly improve its predictive power on the sense of MSE, 
MSRE, MMRE and SD. To determine statistically significant 
differences between OLC and F, commonly used statistic tests are 
parametric test (paired t test) or nonparametric test (Wilcoxon 
matched pair test), however, they only make sense when the pairs 
are independent[46]. But the OLC’s predictive performance highly 
relies on components, especially the best, and we could expect that 
the performances of OLC and F in our experiment are highly 
correlated. So the two statistic tests might not be proper for us to 
adopt. Meanwhile, more intuitively, OLC’s predictive power is 
based on components. At the most optimistic situation, if each 
component contributes the same to combining, as the number of 
components increases, the predictive power of the combining might 
be significantly better than each component. However, at the most 
pessimistic situation, if the best component contains all information 
while others contribute no additional knowledge, it returns the best 
as the final estimating method (see section 5.4). This makes no 
sense for combining, let alone its significant improvement from the 
best component. So for combining estimation methods, it cannot 
always ensure significant improvement from the best component 
and therefore it might be not proper to require their results should be 
intuitively or statistically significantly better than the best 
component due to their accuracy is highly dependent on 
components. 
Furthermore, for the usability of the OLC method, there are a 
number of other factors that should be considered in the selection of 
an estimation technique besides the accuracy factor, and it is likely 
that trade-offs will need to be made in the process[9]. For example, 
OLC employs more than one techniques or tools which will increase 
the estimating cost, including the cost of purchasing business effort 
estimation tools, the cost of training estimators to use these tools, 
the cost of collecting company-specific estimating data using each 
tool and the cost of mastering OLC estimation. If the organization 
has a leading estimating technique and its estimating performance 
has already satisfy its organizational goal, improving accuracy using 
OLC with such amount of cost seems not cost-effective. However, 
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for the moment, our main focus in this paper is on optimizing the 
accuracy of our estimation. In other words, we wish to produce 
estimates that are as close as possible to the actual values, 
irrespective of the other factors that may be important in the wider 
organizational setting. In the long run, we plan to develop an 
automatic OLC tool that might integrate the most popular, mature 
and effective software effort estimating techniques, and this might 
be more cost-effective for estimators to use.  

8. CONCLUSION & FUTURE WORK 
The OLC method is one of the most typical and effective linear 
combining method and proves to be able to significantly improve 
the predictive power in our experiment and some other field’s 
research. Combining estimates derived from different techniques or 
tools and draw from different sources of information should become 
part of the mainstream of estimating practice in software effort to 
improve estimating accuracy. Combining estimates is especially 
useful when you are uncertain about the situation, uncertain about 
which method is most accurate, and when you want to avoid large 
errors[14].  
Recently there has been increased attention given to providing 
measures of uncertainty associated with forecasts. Measures of 
uncertainty surrounding a “central tendency” (the point forecast) 
can enhance the usefulness of the forecast[27]. Our next research 
work will include providing an OLC estimate of the probability 
distribution of its possible values. 
Moreover, besides the OLC Approach, there are many other 
combining strategies including linear combination and nonlinear 
combination as mentioned in the part of related work, however there 
are still no unique criteria on the use of combination methods[16]. 
The choice mainly relies on the features of the particular application 
conditions and environment. Using the same combination approach 
for an estimating task may generate good results, but it may be bad 
for others. In addition, empirical experiments have not yet been able 
to find an optimal method for selection of the combinatorial 
strategies. More theoretical development and experiments are 
needed to explore this field. So it is might be a more meaningful and 
challenging work for us to explore software effort combining 
estimation in the future. In the USC-ISCAS joint lab, we plan to 
apply combining estimation methods through USC-CSSE affiliate 
programs to collect more proper data and implement more empirical 
studies. 
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Appendix 1.Estimates and Relative Errors of C, S, F, Simple Average and OLC 

NO. Actual MM C RE_C S RE_S F RE_F Average RE_Average OLC RE_OLC 
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