
The Effects of Learning Highly-Dense Components for
Software Defect Prediction!

Hongyu Zhang
School of Software, Tsinghua University

Beijing 100084, China
hongyu@tsinghua.edu.cn

Tim Menzies, Adam Nelson
CS & EE, West Virginia University

Morgantown, WV, USA
tim@menzies.us,

rabituckman@gmail.com

ABSTRACT
[Abstract here.]

1. INTRODUCTION

2. THE PROBLEM OF IMBALANCED CLAS-
SIFICATION

It is widely believed that some internal properties of soft-
ware (e.g., metrics) have relationship with the external prop-
erties (e.g., defects). Many prediction models have been
proposed based on software metrics. For example, Khosh-
goftaar and Seliya (2004) performed an extensive study on
NASA JM1 and KC2 datasets using 25 classification tech-
niques with 21 static code metrics. They observed low pre-
diction performance, and they did not see much improve-
ment by using different classification techniques.

Menzies et al. (2007a) also performed defect predictions
for five NASA projects using static code metrics. In their
work, Probability of Detection (pd) and Probability of False
Alarm (pf) are used to measure the accuracy of a defect
prediction model. Their models generate the average results
of pd = 71% and pf = 25%, when Naive Bayes classifier is
used (with data log-transformed). Zhang and Zhang (2007)
pointed out that Menzies’ results are not satisfactory when
precision is considered. They found that high pd and low pf
don’t necessarily lead to high precision. The reason is that
the percentage of defective modules could be very small.
The Zhangs’ equation for Precision is defined as follows:

Precision =
TP

TP + FP
=

1

1 + FP
TP

=
1

1 + NEG∗PF
POS∗PD

(1)

, where NEG is the number of negative instances and POS
the number of positive instances. From the Equation (1), we
can see that even if pd is high and pf is low, the Precision
would be low if the number of negative instances (NEG) is
much more than the number of positive instances (POS).

In the NASA datasets, the percentage of defective mod-
ules in each NASA project (except the KC4 dataset) is very

.

low, ranging from 0.41% to 12.21%. In average the NASA
datasets have only 4.4% of defective modules. Therefore the
Precision is low even the pd is high and pf is low.

In general, the presence of imbalanced class distribution
makes classification learning difficult, leading to low accu-
racy of software defect prediction (measured in terms of Pre-
cision). In addition, the size and other complexity measures
at fine granularity level (such as function/method level) are
usually small, which makes it difficult for a machine learning
technique to distinguish a small number of defective modules
from a large number of non-defective modules.

3. THE DISTRIBUTION OF DEFECTS
Our subsequent work (Zhang 2008; 2009) show that in a

large software system, the distribution of defects are skewed
- that a small number of modules accounts for a large pro-
portion of the defects. For example, in Eclipse 3.0, 20%
of the largest packages are responsible for 60.34% of the
pre-release defects (defects found six months before the re-
lease) and 63.49% of post-release defects (defects found six
months after the release). At the file level, 20% of the largest
Eclipse 3.0 files are responsible for 62.29% pre-release defects
and 60.62% post-release defects (Zhang, 2009). Our results
are consistent with those reported by other researchers such
as Fenton and Ohlsson (2000) and Andersson and Runeson
(2007). Furthermore, we find that the distribution of defects
follows the Weibull function, which is one of the most widely
used probability distributions in the reliability engineering
discipline.

The skewed distribution of defects applied to NASA datasets
too. We find that a few NASA modules (at the function/method
level) have a large number of defects and a large number of
modules have a few defects. As an example, Figure 1 shows
the distribution of defects over CM1 and KC1 modules. All
modules are ranked by the number of defects they are re-
sponsible for. Clearly the distributions are highly skewed
ones - a few modules have many defects and most modules
have 0 or 1 defect. We also calculate the cumulative per-
centage of defects over modules. We find that the top 5%
”most defective” CM1 modules contain 68.57% defects, the
top 10% ”most defective” CM1 modules contain 100% de-
fects. For KC1, the top 5% modules contain 55.81% defects
and the top 10% modules contain 77.90% defects. We ob-
tained similar results for other NASA projects.

We can also formally express the distribution of NASA de-
fects across modules as the Weibull distribution. The CDF
(cumulative density function) of the Weibull distribution can
be formally defined as:

Figure 1: The Distribution of Defects in CM1 and
KC1

P (x) = 1− exp

(
−
(

x

γ

)β
)

(2)

Using statistical packages such as SPSS, we are able to
perform non-linear regression analysis and derive the pa-
rameters for each distribution. To statistically compare the
goodness-of-fit of the Weibull distribution, we compute the
coefficient of determination (R2) and the Standard Error of
Estimate (Se). Table 1 summarizes the Weibull parameters
and the accuracy measures. The R2 values ranging from
0.979 to 0.994 and Se values ranging from 0.009 to 0.025,
confirming the Weibull distribution of defects.

Table 1: The Weibull distribution of NASA defects
across modules

Project γ β R2 Se

JM1 0.076 0.965 0.979 0.025

KC1 0.067 1.313 0.994 0.013

KC3 0.030 0.950 0.987 0.009

PC4 0.049 0.960 0.986 0.016

PC5 0.011 1.045 0.994 0.006

MC1 0.011 1.736 0.991 0.007

4. THE EXPERIMENT
In order to test the implications of learning using compo-

nents dense with software defects, an experiment was con-
structed using five NASA defect data sets (CM1, KC1, MC1,
PC1, PC3). These data sets were chosen because they have
been studied in the field extensively, and also that they are
widely available to the PROMISE community. Five were
chosen due to the limited number of data sets containing
noteworthy numbers of components.

For each data set, components are extracted (using a unique
identifier) containing both defective and non-defective mod-
ules (also labeled with a unique value). Thus, each compo-
nent contains any number of modules having a defect. The
count of defective modules per software component is used as
follows: if the number of defective modules per component
exceeds the median number of defects across all components
in that data set, it is labeled as a defect-dense component.
For example, in Figure 2 the bottom horizontal line repre-
sents the median number of defects in the KC1 data set.
Thus, those components lying under this line are not used
in further stages of the experiment, and so are denoted as
sparse components. The pseudocode in Figure 3 illustrates
the remaining setup of the experiment:

Lines 1 and 5 of Figure 3 illustrate the use of the 10 X 10-
way cross validation used in the experimental process. The
standard 10 X 10-way cross validation operates by selecting
90% of the data randomly for training, and the remaining
10% for testing. This process is then repeated 10 times for
consistency. The experiment shown in Figure 3, however,
handles this operation in a slightly different manner. Since
the objective is to analyze the performance of training on
modules in components containing a high number of defects
compared to standard methods of training on all compo-
nents, a minute alteration was made to the cross-validation
of the experiment. A“pool”of training data was constructed
by focusing on only those instances within a dense compo-
nent, as in line 3 of the psuedocode. The available pool of
testing instances, thus, are gathered from the remaining
components in the data set (line 4). This is employed to
prevent training and testing on modules within the same
component. Lines 6 and 7 illustrate collecting 90% of the
current dense component’s instances as the final training set
Train′, and 10% of the modules from the available instances
in components not labeled dense as Test′.

While this represents a slight modification to the standard
pratice of performing a cross-validation, it is within our en-
gineering judgement to apply techniques that best mimick
current methods in an area of experimentation still in its in-
fancy. Thus, the recentness of this specific branch of research
invites further techniques to be discovered and implemented.

Line 8 of Figure 3 executes the classifier (in this case,
Naive Bayes) on the previously created training and test-
ing sets Train′ and Test′. The Naive Bayes classifier was
utilized because of its speed, and also for the fact that it
has been shown to perform well on PROMISE defect data
against other learners [1].

Determining a possible benefit of training our classifiers
using fewer, but more densely-packed components also re-
quires the comparitive analysis of learning on all components
(and thus all modules). Comparisons are made between each
approach, and the results are shown in the following section.

5. RESULTS

 0

 10

 20

 30

 40

 50

 60

 70

 22292 22294 22296 22298 22300 22302 22304 22306 22308

N
u
m

b
e
r

o
f
D

e
fe

ct
s

Component

KC1 Defect Distribution

Defects per Component
Defect Median

Figure 2: Defect distributions of components found
in the KC1 data set. Note that only a small number
of components contain a relatively high number of
defects.

1 For run = 1 to 10
2 For each dense component C in data set D

3 Let Train = C
4 Let Test = All components in D except for C

5 For bin = 1 to 10
6 Train’ = Randomly select 90% modules from Train
7 Test’ = Randomly select 10% modules from Test

8 Naive Bayes (Train’, Test’)
9 end bin
10 end component
11 end run

Figure 3: Training on dense components versus all
components. The experiment performs training on
modules residing in dense components, and testing
on modules contained in all other components in the
data set.

The metrics used in the analysis of comparing results from
training on dense components over the traditional method
of using all components in the data set are pd (Probability of
Detection), pf (Probability of False Alarm) and precision.
If A,B,C, and D denote the true negatives, false negatives,
false positives and true positives (respectively) found by a
classifier, then:

pd = Recall =
D

(B + D)
(3)

and

pf =
C

(A + C)
(4)

and

precision =
D

(D + C)
(5)

Therefore, pd and precision values are best if maximized,
while pf results should be minimized.

Figure 5, Figure 6 and Figure 7 show statistical rankings
of each treatment, as well as quartile charts displaying the
median and variance of each metric for the combined data
sets, as a whole, used in the experiment. The black circle
in the center of each plot denotes the median value, and
the line going from left to right from this circle shows the
second and third quartile respectively. We prefer quartile
charts of performance to other summarization methods for
a multitude of studies, as they offer a very succinct sum-
mary of a large number of experiments.

It can be seen that training on components containing
a higher number of defective modules maintains higher or
tied ranks with the traditional method, and yields similar
medians; while precision and pd medians lose 3% and 2%
respectively, learning on dense areas provides much better
pf medians – almost half.

Perhaps more interestingly are the analyses of data sets
separately. Figure 4 demonstrates the outcome of each treat-
ment for each data set independently. A “+” denotes a win
for a particular treatment against the other, per data set.
Conversely, a “-” indicates a loss. For example, the fourth
row in the table of Figure 4 (data set PC1), shows that
learning on dense components wins over learning on all for
both pd and prec, but loses when considering pf scores. A
win or a loss is assigned to a treatment by examining its
statistical rank as well as its median value in comparison to
the opposing treatment. If the treatments are statistically
different, the method receiving the highest rank is given a
“+” for that metric. If there is a tie in the ranks, the highest
(or lowest, for pf) is used to determine the winner. The
last row of the table represents the score of each treatment,
given simply as the sum of “+”s for each treatment using the
three metrics.

The results from this table demonstrate that learning on
only components containing higher numbers of defective mod-
ules wins for every data set except for CM1. These results
are significant for further defect prediction. By applying an
instance filtering strategy by way of component selection,
substantial increases can be made to the reliability of our
quality predictors.

Figure 4: Each treatment is assigned a “+” or “-”
if it won over the other treatment, per metric, per
data set. A “+” is assigned to a treatment winning
a statistical ranking (based on a Mann-Whitney test
at 95% confidence), or the best median per metric.

6. CONCLUSION
In this paper, we have learned that supplying our classi-

fiers with training data selected from only components hav-
ing a larger number of defective modules, we are benefitted
because...

• defect prediction performance is improved significantly
• less data is required during the training phase, mean-

ing faster runtimes and results
• insight is provided for component types; software or-

ganizations can make informed decisions about how to
approach certain problematic components

...more

pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 31 69 91 w
2 Train on All Components 35 71 93 w

0 50 100

Figure 5: PD values for learning on dense com-
ponents compared to learning on all components
across all data sets, sorted by statistical ranking via
a Mann-Whitney test at 95% confidence.

7. REFERENCES
[1] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.

Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering, May 2008.
Available from http://iccle.googlecode.com/svn/

trunk/share/pdf/lessmann08.pdf.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 0 15 52 w
1 Train on All Components 0 26 65 w

0 50 100

Figure 6: PF values for learning on dense com-
ponents compared to learning on all components
across all data sets, sorted by statistical ranking via
a Mann-Whitney test at 95% confidence.

Categories and Subject Descriptors
i.5 [learning]: machine learning; d.2.8 [software engi-
neering]: product metrics

Keywords
algorithms,experimentation, measurement

precision 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on All Components 20 78 95 w
1 Train on Dense Components 12 75 96 w

0 50 100

Figure 7: Precision values for learning on dense com-
ponents compared to learning on all components
across all data sets, sorted by statistical ranking via
a Mann-Whitney test at 95% confidence.

