
JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 1

Learning Changes to Software Projects
Tim Menzies, Member, IEEE , Adam Brady,Jacky W. Keung, Member, IEEE ,

Steven Williams, Oussama El-Rawas, Phillip Green

Abstract—

BACKGROUND: Given many possible changes to a software project, which ones are recommended?

AIM: To comparatively assess different decision procedures for recommending project changes.

METHOD: We search for project recommendations within data from eight projects using various AI tools: six model-based methods

and one instance-based method called W2. Results were assessed by comparing effort, defects, development time values in the raw

data versus the subset of the data selected by those recommendations.

RESULTS: In the majority case, significantly large reductions on effort, defects and development time were achieved. Further, W2

performed as well, or better, than anything else in this study. W2 does not rely on an underlying model of software process so it does

not demand that domain data be expressed in the terminology of that model. Hence, it can be quickly adapted to a new domain (just

change the library of training instances) and easy to maintain (just add more instances).

CONCLUSION: We recommend instance-based methods like W2 for learning changes to a software project.

Index Terms—Search-based software engineering, analogy, COCOMO

F

To attain knowledge, add things every day.

To attain wisdom, remove things every day.

– Lao-tse

1 INTRODUCTION

There are many technologies that a manager might apply to

change, and hopefully improve, their software development

project. Some technologies are paper-based methods like the

checklists proposed by orthogonal defect classification [1].

Other technologies are tool-based such as using the new

generation of functional programming languages or execution

and testing tools [2] or automated formal analysis [3]. Yet

other technologies are more process-based including process

improvement initiatives, changing an organization’s hiring

practices, or a continual renegotiation of the requirements as

part of an agile software development cycle [4].

The set of possible changes to a project is very long. Endres

& Rombach [5] list a hundred laws of software engineering

(each law predicts a certain observation) that could be used to

justify a particular change to a project. Table 2 of the IEEE-

1012 standard for software V&V offers a “minimal list” of

52 tasks [6]. If a manager proposed applying all the laws and

all the V&V tasks, then their senior management would most

probably ask them to scale back their plans to just a minimal

set of most cost-effective measures.

• Tim Menzies (corresponding author) Adam Brady, Phillip Green and

Oussama El-Rawas are with the Lane Department of Computer Science and

Electrical Engineering, West Virginia University. E-mail: tim@menzies.us,

adam.m.brady@gmail.com, deathcheese@yahoo.com, orawas@gmail.com

• Jacky W. Keung is with the School of Computer Science and Engineering,

University of New South Wales. E-mail: jacky.keung@nicta.com.au.

• Steven Williams is with the School of Informatics and Computing Indiana

University, Bloomington. E-mail: stevencwilliams@gmail.com.

This research is funded in part by NSF,CISE, project #0810879.

How to find the minimal set of useful changes to a project?

It is ill-advised to just apply standard truisms since general

principles may not work best for particular projects:

• In [7], we found one project where allocating extra

resources to defect removal early in the life cycle (as

recommended by Boehm [8]) was less effective than

quickly deploying an initial working system, then fixing

the bugs identified by users of that system.

• Elsewhere [9], we list numerous examples were applying

general principles to a project were less valuable than

applying specific changes selected for particular projects.

If locally derived changes are better than general truisms, then

the research question becomes what techniques can find useful

changes for a particular project. In this paper, we distinguish

two approaches model-based and instance-based methods.

Model-based methods build a model via expert advice [10]

or some automatic method like data mining [11]. Once the

model is built, it can be used for “what-if” queries in order to

assess possible changes to a project.

data → model
model + whatIf → predictions

(1)

Instance-based methods insert the “what-if” query into a n-

dimensional space populated with historical cases [12]–[16].

The immediate neighborhood of the “what-if” is surveyed and

the prediction is some summary of those neighboring cases.

data+ whatIf → neighborhood
neighborhood → predictions

(2)

Note that, unlike model-based methods, this instance-based

approach makes no use of an underlying model.

Previously we have studied model-based methods [9], [17]–

[24]. AI tools were used to control thousands of “what-if”

queries over COCOMO models to find recommendations that

reduced defects and/or months and/or effort.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 2

Initially, the goal was a generic tool which could easily

accommodate different AI tools and different models. This

proved surprisingly difficult. Our model-based methods have

become so intricate that subsequent modifications required

elaborate background knowledge and prolonged programming.

When tools become complex, it is wise to ask if the com-

plexity is essential or superfluous. Researchers into empirical

methods such as Cohen [25] advise benchmarking supposedly

more sophisticated method against a simpler alternative. Such

“straw-man baseline” studies can yeild surprising results. For

example, Holte reports that for standard data sets used in

the machine learning literature, one-level decision trees work

nearly as well as multiple-level decision trees [26]. Similar

results are reported by Domingos & Pazzani for so-called

Naive Bayes classifiers. Such classifiers ignore correlations

between variables. Yet, surprisingly, they often perform as well

as more complex learners (see Table 1 of [27]).

Accordingly, we conducted a straw-man baseline study of

our AI model-based methods against a very simple instance-

based approach called W . Given a “what-if” query that selects

for some set of similar projects, W seeks a treatment Rx

which finds the “better” parts of those similar projects:

data+ whatIf → neighborhood1
neighborhood1 → predictions1

Rx(neighborhood1) → neighborhood2
neighborhood2 → predictions2

value(predictions2) > value(predictions1)

(3)

Here value represents business concerns; e.g. reduce defects.

W finds the treatment Rx via a linear-time greedy search

over ranges sorted by simple Bayesian ranking. The expec-

tation was that W would be too simple and would perform

poorly. However, when compared to model-based methods:

• W found similar or better treatments.

• W was faster to run: all the experiments of this paper

take 10 minutes with W2, but days for using models.

• W was simpler to implement: W2’s 200 lines AWK

replaces thousands of lines of the model-based LISP.

• W was simpler to maintain: with instance-based meth-

ods, “maintenance” means just “add more instances”.

• W was simpler to adapt to new domains: W makes no

use of an underlying model and is therefore imposes no

restrictions on the data being processed. Hence it can be

quickly applied to more data sets.

This last point is most important. Model-based tools only

accept data that conforms to the ontology of the model (i.e. use

the input values of the model). If local data does not conform

to that ontology, then the tool cannot be applied. Also, the

conclusions of a model-based analysis are only as good as

the underlying model. Models are learned from historical data

and if that data is not relevant to some new project, then that

model will be inappropriate for the new project. For example,

Jorgensen & Shepperd caution that the data used to derive

COCOMO may not apply to all corporations [28]. Since W
does not use models, it avoids both these problems.

The contribution of this work is three-fold. Firstly, we

demonstrate the practicality of learning changes to software

projects that select for higher quality measures:

Quality

Dataset Cols Rows Notes Measures

Kemerer 7 15 Large business applications effort

Telecom 3 18 U.K. telecom enhancements effort

Finnish 8 38 Finnish IS projects effort

Miyazaki 8 48 Japanese COBOL projects effort

NASA93 26 93 NASA projects effort, time, defects

COC81 26 63 NASA projects effort, time, defects

China 17 499 Chinese software projects effort

Total: 774

Fig. 1. Seven data sets from promisedata.org/?cat=14:

effort is total staff months; time is calendar time (start to

stop); defects is number of delivered defects.

• In six case studies, we show that it is possible to find

changes to projects that reduce the development effort;

• In two other case studies that it is possible to find changes

to projects that reduce development effort and delivered

defects and the development time.

Secondly, we show that a very simple instance-based method

does this better than more complex model-based methods.

Thirdly, this work offers the software engineering commu-

nity a cautionary tale. Decades of research has offered us any

number of ways to analyze project data. For example, consider

the list of candidate methods that might be applied to the prob-

lem of learning changes to software projects. From the data

mining [29], AI [12], [30], [31], constraint-satisfaction [32],

and search-based SE literature [33] we see that that list

includes simulated annealing; evolutionary algorithms; tabu

search; ant-based search; various data mining tools such as

support vector machines or random forests; various Davis-

Putnam procedures; logic based-approaches such as binary-

decision diagrams; numeric methods such as integer program-

ming; or any number of AI search algorithms. This list is

hardly exhaustive (no doubt, the reader can add their own

favorite analysis method).

Given such a large and growing menagerie of candidate

tools, the temptation is to always explore novel and more

intricate tools. Certainly, some domains are inherently complex

and should be analyzed with complex tools. For example,

next release planning is a complex planning problem requiring

intricate optimization methods [34], [35].

On the other hand, most of the data sets explored by (say)

the effort estimation literature are not complex:

• The effort estimation datasets used in Mendes et al. [36],

Auer et al. [37], Baker [38], and Li et al. [39] have a

median number of rows 13,15,33,52 (respectively).

• Figure 1 shows the data explored in this study. While

one of our data sets (China) is moderately larger, most

of them contain just a few dozen rows or less.

For such small search spaces, complex tools may be an

overkill. To avoid superfluous complexity, researchers should

apply Cohen’s test; i.e. benchmark their supposedly better

tool against a simpler tool. For learning changes to software

projects, W is a candidate tool for such a comparison since:

• It is simple to implement and fast to execute;

• The algorithm scales well (runs in linear time);

• For the data studied here, it performs as least as good (or

better) than a range of model-based methods.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 3

The rest of this paper presents our model-based vs instance-

based comparison. First, our model-based results [9], [17]–

[24] are reviewed. That work resulted in SEESAW, our “best”

AI tool for conducting “what-if” model-based queries for

software process models. Next, we describe W2, an instance-

based method that improves on prior versions of W [40], [41].

This is followed a comparison of model- vs instance-based

methods for learning software project changes.

2 MODEL-BASED METHODS

The task of optimizing for a set of goals is traditionally solved

by computing partial differential equations of a model, then

exploring the surface of steepest change. A premise of this

approach is tuning stability; i.e. that the gradients at any point

in the model can be determined with certainty. For some

models, this premise does not hold. Consider the following

simplified COCOMO [42] model:

effort = a · LOCb+pmat · acap (4)

While simplified, the equation presents COCOMO’s core

assumption that software development effort is exponential on

program size. In this equation, (a, b) control the linear and

exponential effects (respectively) on model estimates; while

pmat (process maturity) and acap (analyst capability) are

project choices adjusted by managers. Equation 4 contains two

features (acap, pmat) and a full COCOMO model contains

many more project descriptors (e.g. see Figure 2).

Baker [38] learned values of (a, b) for a full COCOMO

model using Boehm’s local calibration method [43] from 300

random samples of 90% of the available project data. As

shown in Figure 3, the ranges varied widely and wildly:

(3.2 ≤ a ≤ 9.4) ∧ (0.8 ≤ b ≤ 1.12)

Such large variations confuse standard gradient descent meth-

ods as well as obscuring the effects of project changes.

Suppose some proposed technology doubles productivity, but

a moves from 9 to 4.5. The improvement resulting from that

change would be obscured by the tuning instability.

If tuning instability cannot be removed, it must be managed.

Our model-based methods assume that model predictions are

altered by project variables P and tuning variables T :

prediction = model(P, T) (5)

E.g. in local calibration, the tuning options T are the ranges

of (a, b) while the project options P are the EMi values.

At any local site, only part of the tunings is relevant: we

denote these as t ⊆ T . This subset can be found in many

ways including linear regression or local calibration. However,

if there is insufficient data for stable tunings, then T may as

well be left unconstrained, so t ⊆ T can be selected randomly.

Managers explore a specific context (the particulars of their

project) context ⊆ P and control some items of context
(control ⊆ context). Since it is too expensive to use all

control settings, we seek minimal treatments Rx ⊆ control;
i.e. no smaller treatment has the same (or better) effect as Rx.

upper: acap: analyst capability

in theory apex: applications experience

β < 0 ltex: language and tool-set experience

pcap: programmer capability

pcon: personnel continuity

plex: platform experience

site: multi-side development

tool: use of software tools

middle sced: dictated development scedule

lower: cplx: product complexity

in theory data: database size

β > 0 docu: documentation

pvol: platform volatility

rely: required reliability

ruse: required reuse

stor: required % of available RAM

time: required % of available CPU

Fig. 2. COCOMO II effort multipliers.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 3 4 5 6 7 8 9 10

b

a

Fig. 3. Learned (a, b) values via local calibration on

300*90% samples of the NASA93 COCOMO data set.

Models assess different treatments by running them on the

model and returning the one that maximizes a model’s value:

AI search
︷ ︸︸ ︷

Rx ⊆ control,mediann

t ⊆ T, value(model(Rx, t))
︸ ︷︷ ︸

random selection

 (6)

Here, mediann reports the median seen in n repeats of the

random selection and value is a domain-specific function For

example, value could be computed from the difference of the

model estimates to zero (effort, defects, development time):

value = 1−
(√

Effort2 +Defects2 + T ime2/
√
3
)

(7)

If the estimates are normalized to the range 0 . . . 1, then

0 ≤ value ≤ 1 and higher values are better.

2.1 Tuning Variance in COCOMO

Equation 6 requires that we sample over the space of model

tunings. This section describes one mechanism for sampling

across the space of the tunings within Boehm’s COCOMO ef-

fort estimator and the COQUALMO defect estimator. Perhaps

the essential point of this section is that, for instance-based

methods, none of this machinery is required.

For COCOMO effort multipliers (the features that that affect

effort/cost in a linear manner), the off-nominal ranges {vl=1,

l=2, h=4, vh=5, xh=6} change the prediction by some ratio.

The nominal range {n=3} corresponds to an effort multiplier

of 1 (i.e. no change). Hence, these ranges can be modeled

as straight lines y = mx + b passing through the point

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

(x, y)=(3, 1). Such a line has a y-intercept of b = 1 − 3m.

Substituting this value of b into y = mx+ b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (8)

where mα is the effect of α on effort/cost. The exponential

influences on cost/effort take the form:

∀x ∈ {1..6} SFi = mβ(x− 6) (9)

where mβ is the effect of factor i on effort/cost.

COQUALMO contains equations of the same syntactic form

as Equation 8 and Equation 9, but with different coefficients.

Using experience for 161 projects [42], we can find the

maximum and minimum values ever assigned to m for CO-

QUALMO and COCOMO. Hence, to explore tuning variance

(the t ∈ T term in Equation 6), all we need to do is select m
values at random from the min/max m values ever seen.

In the following, mα,mβ are COCOMO’s

linear,exponential influences on effort and cost, and mγ ,mδ

are COQUALMO’s linear,exponential influences on defects.

There are two sets of effort/cost multipliers. The positive

effort EM features, with slopes m+
α , that are proportional to

effort/cost. These features are: cplx, data, docu, pvol, rely,

ruse, stor, and time. The negative effort EM features, with

slopes m−

α , are inversely proportional to effort/cost. These

features are acap, apex, ltex, pcap, pcon, plex, sced, site, and

tool. The m ranges, as seen in 161 projects [44], are:

(
0.073 ≤ m+

α ≤ 0.21
)
∧
(
−0.178 ≤ m−

α ≤ −0.078
)

(10)

In the same sample of projects, the COCOMO effort/cost scale

factors (prec, flex, resl, team, pmat) have the range:

−1.56 ≤ mβ ≤ −1.014 (11)

There are two sets of defect multipliers and scale factors. The

positive defect features have slopes m+
γ and are proportional

to estimated defects. These features are flex, data, ruse, cplx,

time, stor, and pvol. The negative defect features, with slopes

m−

γ , that are inversely proportional to the estimated defects.

These features are acap, pcap, pcon, apex, plex, ltex, tool, site,

sced, prec, resl, team, pmat, rely, and docu.

COQUALMO divides describes how defects change in

requirements, design, and coding with tuning options:

requirements

{

0 ≤ m+
γ ≤ 0.112

−0.183 ≤ m−

γ ≤ −0.035

design

{

0 ≤ m+
γ ≤ 0.14

−0.208 ≤ m−

γ ≤ −0.048

coding

{

0 ≤ m+
γ ≤ 0.14

−0.19 ≤ m−

γ ≤ −0.053

(12)

The tuning options for the defect removal features are:

∀x ∈ {1..6} SFi = mδ(x− 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(13)

where mδ denotes the effect of i on defect removal.

context

controlable uncontrolable

project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 4. Contexts of 4 case studies. {1, 2, 3, 4, 5, 6} map
to {very low, low, nominal, high, very high, extra high}.

2.2 Case Studies

Figure 4 shows some real-world context and control informa-

tion taken from a debrief of some NASA program managers:

• Ground and flight represent typical ranges for most

NASA projects at the Jet Propulsion Laboratory (JPL);

• OSP represents the guidance, navigation, and control

aspects of NASA’s 1990 Orbital Space Plane;

• OSP2 represents a second, later version of OSP with a

more limited scope of COCOMO attributes.

The uncontrolable column in that figure shows project fea-

tures that cannot be changed; e.g. for OSP, the required

reliability is fixed at rely = 5. On the other hand, the low
and high ranges in that figure define the space of possible

changes to that project. For instance, the reliability of the JPL

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 5

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

m
e

d
ia

n
 s

c
o

re
 a

t
e

a
c
h

 r
o

u
n

d

round

pruned

time*10
defects

effort

Decisions made from round=1 to round=13:

x=0: Rx = ∅
x=1 added {pmat=3}
x=2: added {resl=4}
x=3: added {team=5}
x=4: added {aexp=4}
x=5: added {docu=3}
x=6: added {plex=4}

x=7: added {rely=3}
x=8: added {stor = 3}
x=9: added {time = 3}
x=10: added {tool = 4}
x=11: added {sced = 2}
x=12: added {site = 4}
x=13: added {acap = 5}

Fig. 5. Example of SA’s forward and back select.

flight software can vary from a ranking of 3 (nominal) to 5

(very high).

2.3 Six AI Model-Based Algorithms

The case studies of Figure 4 can be used to assess how well

different AI algorithms can find changes to software projects.

For example, a typical simulated annealing [45] (SA) run

explores 10,000 variants on some solution. A side-effect of

that run is 10,000 sets of inputs, each scored with the value
function of Equation 7. Our tool classified the outputs into the

90% rest and the 10% best seen during the run of the SA. All

the ranges from all the features were then ranked according

to how much more frequently they appeared in best than rest.

A forward select was then called using the first 1. . .x ranked

items. For example, in Figure 5, the treatment Rx at any x
value is the conjunction of ranges seen one to x (see the table

at the bottom of that figure). The y axis scores shows median

results in 100 runs of COCOMO/COQUALMO, after impos-

ing the treatment. The “pruned” range of that figure shows

the results of a back select that worked backwards over the

forward select ordering, deleting any item x whose distribution

of values was statistically insignificantly different to x − 1.

SA’s final recommendation was the treatment 1 ≤ x ≤ 13.

The improvement generated by that treatment can be seen

by comparing the values at x = 0 to x = 13.

• Defects reduced: 350 to 75;

• Time reduced: 16 to 10 months;

• Effort reduced: 170 to 80 staff months.

SA is just one way to generate a treatment. For our AI model-

based methods, we explored five others. Given a random

selected treatment, MaxWalkSat tries n modifications to ran-

domly selected features [46]. Sometimes (controlled by the α

parameter), the algorithm chooses the range that minimizes

the value of the current solution. Other times (at probability

1 − α), a random range is chosen for the feature. After N
retries, the best solution is returned. Our implementation used

n = 50, α = 0.5, and N = 10.

SEESAW [22] augments MaxWalkSat with a search heuristic

taken from simplex optimization. SEESAW ignores all ranges

except the minimum and maximum values for a feature in p.

Like MaxWalkSat, the feature chosen on each iteration is made

randomly. However, SEESAW has the ability to delay bad

decisions until the end of the algorithm (i.e., decisions where

constraining the feature to either the minimum or maximum

value results in a worse solution). Hence, SEESAW’s search

was followed by the same back-select process using for SA.

ISAMP is a fast stochastic iterative sampling method that

extends a treatment using randomly selected ranges. The algo-

rithm follows one solution, then resets to try other paths (our

implementation resets 20 times). The algorithm has proved

remarkably effective at scheduling problems, perhaps because

it can rapidly explore more of the search space [47]. To avoid

exploring low-value regions, our version of ISAMP stores

the worst solution seen so far. Any conjunction whose value
exceeds that of the worst solution is abandoned, and the new

“worst value” is stored. If a conjunction runs out of new ranges

to add, then the “worst value” is slightly decreased. This

ensures that consecutive failing searches do not permanently

raise the “worst value” by an overly permissive amount.

Our remaining algorithms use some variant of tree search.

Each branch of the tree is a different “what-if” query of

size i. If i is less than the number of input values to

COCOMO/COQUALMO, the missing values were selected at

random from the legal ranges of those inputs.

BEAM search extends search branches as follows. Each

branch forks once for every new option available to that range.

All the new leaves are sorted by their value and only the top

N ranked branches are marked for further expansion. For this

study we used N = 10 and results scored using the median

values seen in the top N branches.

A-STAR runs like BEAM, but the sort order is determined

by the sum f (the cost of reaching the current solution) plus

g (a heuristic estimate of the cost to reach the final solution).

Also, unlike BEAM, the list of options is not truncated so a

termination criterion is needed (we stop the search if the best

solution so far has not improved after m iterations). For this

study, we estimated f and g as follows:

• f was estimated as the percentage of the project descrip-

tors with ranges in the current branch;

• g was estimated using 1−Equation 7 (i.e. distance to the

utopia of no effort, no development time, and no defects).

Initially, we planned to explore more methods than SA,

MaxWalkSat, SEESAW, ISAMP, BEAM and A-STAR. How-

ever, the success of W’s instance-based approach decreased

our motivation to explore other AI model-based methods.

2.4 Comparisons of AI Model-based Methods

The above AI algorithms implemented the “AI search” of

Equation 6 to explore the tuning variance of the models in

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 6

algorithm Defects months time

SEESAW 4 4 3
BEAM 0 3 3
A-star 0 1 1

SA 0 1 1
MaxWalkSat 0 0 0

ISAMP 0 0 0

Fig. 6. Number of times algorithm were top-ranked

(largest is 4: i.e. one for each Figure 4 case study).

§2.1 (Boehm’s COCOMO effort end time estimator and his

COQUALMO defect predictor). In four case studies, context
was set to the case studies of Figure 1.

Each algorithm was run 20 times and was guided by

the value function of Equation 7. Separate statistics were

collected for the defects/effort/time predictions seen at the

policy point in the 20*4 trials. The top-ranked algorithm(s) of

Figure 6 had statistically different and lower defects/effort/time

predictions than any other algorithm(s).

Note the dramatic difference between MaxWalkSat and

SEESAW results. The difference between these two algorithms

is very small: SEESAW assumed that the local search state

space was monotonic, so it only explored minimum and

maximum values for each feature. This result underscores the

power of the simplex heuristic.

From Figure 6, the worst algorithms are MaxWalkSat and

ISAMP and the best algorithms are SEESAW and BEAM. The

performance of these best algorithms is sometimes equivalent

(e.g., in time, both algorithms achieved an equal number of

top ranks). However, BEAM is not recommended:

• BEAM runs 10 times slower than SEESAW.

• SEESAW performs better than BEAM in some cases (e.g.

in defects, BEAM is never top-ranked).

Since SEESAW performs best, we will use it for our subse-

quent comparisons with instance-based methods.

3 INSTANCE-BASED METHODS

This section described three version of the W instance-based

tool. Lessons learned from W0 [40] and W1 [41] will inform

the description of the current version, W2.

Like all instance-based methods, W assumes access to

historical cases described using P project descriptors (e.g.

analyst capability; process maturity; etc). Note that, unlike

the model-based approach, W does not assume that all cases

are described using the same set of P descriptors. Rather, P
can be varied. For example, Figure 1 lists the data sets used

in our analysis. If W was restricted to just the COCOMO

ontology, then it could only analyze two of those seven data

sets: NASA93 and COCOMO81. W’s applicability to a wide

range of data sets is an important advantage over the AI model-

based methods described above.

W’s next assumption is that each case is described by a

set of qualities such as number of defects, development time,

total staff effort etc. All these qualities are summarized into a

single value by some value function like Equation 7.

Like our model-based methods, W assumes that a manager

can offer us: a description of the context ⊆ P that interests

them and a list of controlable options which they can change

(control ⊆ context). For example, once we asked a NASA

software project manager for a description of the effects

assigning inexperienced people. The manager commented that,

at her site, such inexperience implies low applications experi-

ence (aexp), low to very low platform experience (plex), and

language and tool experience (ltex) that is not high. Next, we

asked the manager to describe the range of projects seen at his

site (using the COCOMO names of Figure 2). The resulting

context1 is shown below:

context1 =
apex ∈ {2} ∧ plex ∈ {1, 2} ∧ ltex ∈ {1, 2, 3}∧
?pmat ∈ {2, 3}∧?rely ∈ {3, 4, 5}∧?data ∈ {2, 3}∧
?cplx ∈ {4, 5}∧?time ∈ {4, 5}∧?stor ∈ {3, 4, 5}∧
?pvol ∈ {2, 3, 4}∧?acap ∈ {3, 4, 5}∧?pcap ∈ {3, 4, 5}∧
?tool ∈ {3, 4}∧?sced ∈ {2, 3}

Here, “?” are the controllables; for example, this manager is

senior enough adjust factors like schedule pressure (sced).

Note that there is no requirement for managers to include all

project descriptors in their context statement. As seen below,

W can handle contexts that are a subset of the descriptors.

W finds a project treatment Rx by studying the project

similar to the context in the case library. Formally, W explores

the neighorhood of the context, looking for ways to select

for the “best” cases. (as determined by a value functions like

Equation 7). In W2, this is a six step procedure:

1) Divide cases randomly into train : test in the ratio 2:1.

2) Used context to find the neighborhood within train.

3) Divide neighborhood into (a) the best cases that should

be emulated, and (b) the remaining cases you should

avoid (which we call rest).
4) Rank all differences between (a) and (b) according to

how strongly they select for the best cases.

5) Using the train set again, experiment with treatments

Rx built from the top ranked items found in Step4.

Return the treatment that selects for the cases in the

train set with highest median value.

6) Repeat five steps n = 20 times with other randomly

selected train : test sets. Prune unstable treatments;

i.e. those not found in the majority of repeats.

W0 and W1 neglected to test for treatment stability; hence,

Step6 was added. Step6 is also useful to resolve another

testing-related problem. Other learners such as RIPPER [48]

divide the case data three ways into train : prune : test. In

that approach, Step4 would run on train; Step5 would run

on prune, and the final result would be tested on a separate

test set. W0 tried that approach but ran into problems with

very small data sets such as the 15 rows of KEMERER or

the 18 rows of TELECOM. W2 uses the above two-way split,

and uses Step6 to avoid recommending treatments that are

over-fitted to parts of the training data.

Another issue encountered with Step2 (finding the neigh-

borhood) was that the context cannot be treated as a rigid

criteria. In our experiments with W0, we found that some data

sets were so small that, often, none of the cases contained all
the ranges mentioned in the context. For example, Figure 7.a

shows training data from NASA93. The gray cells in that

figure show ranges that do not appear in context1. Note that

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 7

Figure 7.a: RELEVANT= cases nearest to context1. Figure 7.b: Best (top) & rest (bottom). Figure 7.c: Rank with Equation 14.

row a
p
ex

p
le

x

lt
ex

p
m

at

re
ly

d
at

a
cp

lx

ti
m

e
st

o
r

p
v
o
l

ac
ap

p
ca

p

to
o
l

sc
ed

effort overlap

57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13

56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13

55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13

53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648 13

35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370 12

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11

25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11

23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11

22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11

16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11

47 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10

44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10

36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10

34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10

33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

(other cases omitted)

row a
p
ex

p
le

x

lt
ex

p
m

at

re
ly

d
at

a
cp

lx

ti
m

e
st

o
r

p
v
o
l

ac
ap

p
ca

p

to
o
l

sc
ed

ef
fo

rt

56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12

08 5 3 2 3 3 2 4 3 3 2 4 3 3 3 36

57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38

22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42

25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42

12 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48

11 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60

23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60

19 4 2 4 4 3 5 4 5 5 2 5 3 3 2 62

16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90

33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215

44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300

07 5 3 4 3 3 2 4 3 3 2 4 5 3 3 360

35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370

55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636

53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648

frequency

range b r b2/(b + r)
best rest

pmat=3 5/5 10/15 60%

sced=3 5/5 13/15 54%

tool=3 5/5 14/15 52%

acap=3 4/5 7/15 51%

data=3 4/5 9/15 46%

rely=4 3/5 6/15 36%

time=3 3/5 7/15 34%

pvol=4 2/5 2/15 30%

stor=3 3/5 10/15 28%

cplx=5 2/5 3/15 27%

stor=5 2/5 3/15 27%

cplx=4 3/5 12/15 26%

time=5 2/5 4/15 24%

pvol=3 2/5 5/15 22%

data=2 2/5 5/15 22%

rely=3 2/5 9/15 16%

pvol=2 1/5 9/15 5%

Fig. 7. Processing context1 on a training set selected from NASA93.

all rows have at least one gray cell. That is, none of that

data exactly matches context1. Consequently, W1 used some

partial match operator to compute the neighborhood. Members

of the training set were sorted according to their Euclidean

distance from the context. If a context only mentions a subset

of the project descriptors P , then W1’s distance function filled

in {P − context} with random values (selected from the

known ranges). This was repeated 50 times to generate 50

context queries that reference all project descriptors. Next, the

neighborhood was computed using the intersection of the 20

instances closest to any of those 50 queries.

This technique solved the problem of missing parts of

the context. However, it created other another problem: a

large variance in all the results. Hence, W2 used another

method: context became a set overlap membership function.

For example, context1 statement defines ranges for 14 project

descriptors. Any training case contain ranges that overlaps

with between 0 and 14 of the ranges in context1. As shown

in Figure 7.a, we can use the size of this overlap to sort the

cases. Appealing to the central limit theorem, W2 defines the

neighborhood of a query to be the K1 = 20 training cases with

largest overlap to the query. If a train set was smaller than 20

cases, all its rows were repeatedly copied until |rows > 20|.

W2’s set overlap operator is only defined for finite ranges.

Hence, W2 adds a Step0: discretization of all project descrip-

tors (but not quality attributes) into B bins. All the following

experiments assume that all numbers y are discretized using

round((y −min)/((max−min)/B)), where B = 5. Other

values for B are discussed in the future work section.

Step3 (division into best and rest) is illustrated in Fig-

ure 7.b. The neighborhood is sorted by case value; the top K2

cases are best; and the remaining K1−K2 examples are rest.
While the ranking algorithm of Step4 works best for larger

K2 values, we did not want to exceed accepted standards in

the research community. After a review of the analogy-based

estimation literature [36], [39], [49]–[51] we noted that no

researcher proposed using more than five neighbors. Hence,

we used the K2 = 5 cases with highest value (in this example,

value means lower development effort).

Step4 (rank the ranges in best) is shown in Figure 7.c. W0

used the following simple Bayesian ranking method. Observer

that nominal tool (tool = 3) occurs 5 times in best and 14

times in rest. Given that information, we can rank tool = 3
according to its ability to select best cases:

E = (tool = 3)

freq(E|best) = 5

freq(E|rest) = 14

ratio(E|best) = 5/5 = 1

ratio(E|rest) = 10/15 = 0.93

rank(E) =
ratio(E|best)

ratio(E|best) + ratio(E|rest) = 0.52

W0 encountered problems with evidence that was infrequent,

but relatively more frequent in best than rest. To avoid

this problem, W1 and W2 adds a support term. Support

should increase as the frequency of a range increases, i.e.

ratio(E|best) is a valid support measure. Hence, W2’s range

ranking formulae is:

rank(E) ∗ support(E) =
ratio(E|best)2

ratio(E|best) + ratio(E|rest) (14)

We can generate candidate treatments Rx by combining the

top x items in the rankings of Figure 7.c:

R1 : pmat = 3
R2 : pmat = 3 ∧ sced = 3
R3 : pmat = 3 ∧ sced = 3 ∧ tool = 3
R4 : pmat = 3 ∧ sced = 3 ∧ tool = 3 ∧ acap = 3
etc

Step5 (pruning the treatments) applies Rx to the projects

similar to the context; i.e. those found in the test set’s

neighborhood. For example, Figure 8 shows the K1 = 20
cases closest to context1 in the train set.

Figure 9 shows the cases from this neighborhood that satisfy

R1 : pmat = 3. It turns out, that for cases relevant to context1
in this test set, there is some association between the ranges

see in R1, R2 and R3: all these treatments select the same

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 8

rows. Only when R4 is applied does Figure 9 shrink to the

two rows containing acap = 3. W1’s results exhibited large

variances if we drew conclusions from less than three rows.

Hence, W2’s explores Rx upwards from x = 1 while:

• The number of selected rows |Rx ∧ neighborhood| ≥ 3;

• The median value of the rows selected by Rx+1 is greater

than that of Rx.

In the case of Figure 9, Step5 returns R1 (pmat = 3).

3.1 Measuring Performance

To compare the effectiveness of different treatments, we offer

the following performance measures:

• All our measures are taken from the test set.

• The baseline values are from the neighborhood of the

context; e.g. the effort column of Figure 8.

• The treated values are from the cases selected by a

treatment; e.g. the effort column of Figure 9.

• The median of a distribution is the 50-th percentile of

the sorted values in that distribution.

• The spread of a distribution is the (75-25)th percentile of

the sorted values. We use spread rather than, say, standard

deviation to avoid any parametric assumptions that our

distributions are (say) Gaussian.

• The improvement from b = baseline to t = treated is

100 ∗ (b− t)/t. Larger improvements are better.

row a
p
ex

p
le

x

lt
ex

p
m

at

re
ly

d
at

a
cp

lx

ti
m

e
st

o
r

p
v
o
l

ac
ap

p
ca

p

to
o
l

sc
ed

effort overlap

57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13

56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13

55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13

53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648 13

35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370 12

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11

25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11

23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11

22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11

16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11

47 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10

44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10

36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10

34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10

33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

Fig. 8. The K1 = 20 neighborhood of context1 in a train

set taken from NASA93.

row a
p
ex

p
le

x

lt
ex

p
m

at

re
ly

d
at

a
cp

lx

ti
m

e
st

o
r

p
v
o
l

ac
ap

p
ca

p

to
o
l

sc
ed

effort overlap

57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13

56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13

55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11

25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11

23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11

22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11

16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11

Fig. 9. All rows of Figure 8 satisfying R1 : pmat = 3.

For example, consider how pmat = 3 effects projects similar

to context1:

• Without the pmat = 3 restriction, the median and spread

of the projects similar to context1 are 235 and 633

months, respectively (see Figure 8).

• After imposing the pmat = 3 restriction, the median and

spread of projects similar to context1 are 81 and 353

months (see Figure 9).

• The observed improvement in the median is hence 66%.

• The observed improvement in the spread is hence 44%.

3.2 Complexity

Summarizing the above, W2 studies c cases which describe

projects using to p = |P | project descriptors. Much of the

processing is focused on the K1 nearest neighbors to the

context. W2 repeats its process n times (to check for stability

of the learned treatment). Prior to the repeats, any numeric

descriptors are discretized into B bins.

W2 runs in six steps. Step0’s discretization needs two

passes of c cases (one to find mins and maxs, one to convert

numerics into B bins). Hence, Step0 takes times 2c.
Step1 also takes time 2c to generate randomized train and

test sets: one pass to randomize the order of the cases, and

another to split into train and test. Assuming the use of Fisher-

Yates shuffle [52]1, randomization takes time linear on c.
Step2 and Step5 requires a third pass of the train/test set

to collect the K1 neighbors. These passes do not need to sort

all cases- just those in a “best-of” buffer of size K1. After the

Step1 randomization, quicksort can sort the neighborhood in

time, on average, 2K1log(K1) (one for train, one for test).

Step3 divides the neighborhood into best and rest- a

process that takes time K1. Then Step4 takes time equal to:

• the number of ranges to be sorted; i.e. the number

of project descriptors times the number of ranges per

descriptor (pB);

• plus the log-linear time required to sort those ranges.

• which equals time pB + pB · log(pB).

Step5 requires one pass thought the K1 members of the

train data for each candidate treatment. Given pB ranges, the

maximum number of pass is pBK1.

Finally, Step6 repeats the above steps n times to check for

stability, That is, W2 takes total time:

2c+ ; Step0
n ∗ (; Step6’s repeats

2c+ ; Step1
2K1log(K1)+ ; Step2
K1+ ; Step3
pB + pB · log(pB)+ ; Step4
pBK1 ; Step5

)

This is not a slow process. Nothing in this expression is

worse that log-linear. Also, typical values for the n, c,K1, B, p
constants are than 20, 100, 20, 5, 20 (respectively); i.e. not

overly large. Even when implemented in a slow interpreted

1. for i = n− 1 to 1: j=random in 0 ≤ j ≤ i; swap itemj with itemi

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 9

language (GAWK), W2 runs in less than half a second for

data sets up to 500 cases2.

4 MODEL- VS INSTANCE-BASED METHODS

W2 was tested against the SEESAW model-based method as

follows. SEESAW can only handle models in the COCOMO

format. Hence, for this comparison, we restrict ourselves to

data in that format. W2 used the historical cases from the

NASA93 and COCOMO81 datasets. These data sets all use

the features defined by Boehm [43]; e.g. analyst capability,

required software reliability, memory constraints, and use of

software tools. For this study, we translated them from Boehm

original COCOMO format into COCOMOII in order to add

estimated defect and development length data for multiple goal

optimizations.

Both SEESAW and W2 guided their search using Equa-

tion 7 and the four contexts of §2.2. SEESAW used those

contexts to guide their “what-if” queries around its CO-

COMO/COQUALMO models. W used those contexts, with

NASA93 and COCOMO81, using the six step procedure

described above. Recall that, in those steps, some Rx was

assessed on projects similar to the context in a test set; i.e.

all the cases in the context’s neighborhood.

Our comparison rig studied that same test neighborhood

using SEESAW. We say that rows1 are the rows selected from

the neighborhood after applying SEESAW’s recommendations

as an SQL select statement. Also, rows2 are the rows selected

by W2 from the neighborhood of the context in the test set

using the stable treatment found in Step6.

SEESAW and W2 were then assessed according to which

method returned the better set of values. That is, from rowsi,
we applied Equation 7 to find valuesi.

The NASA93 results are shown in Figure 10, divided into

the defect, effort, months reductions see in ground, flight,

OSP2 and OSP. The median and spread improvements are

shown in the middle columns. The left-hand-side bar chart

shows the 25-th to 75-th percentile range, with a black dot

marking the median point. A negative improvement denotes an

failure to find an improvement. Note that such negative results

occur only in a single result (COCOMO81, OSP2, effort).

The “Win” column of those figures indicates when any

member of a pair that was both statistically and signifi-

cantly different. Note that for most pairs, the results are

not statistically significantly different (Mann-Whitney, 95%

confidence level). The COCOMO81 comparisons are shown

in Figure 11. These are in the same format as Figure 10.

Sometimes SEESAW’s recommendations were unusually bad

for COCOMO81, and in those circumstances, often selected

nothing from the test neighborhood. This can we seen with

median = 0 improvement results seen with OSP (defects) and

OSP2 (defect and effort).

Before commenting on SEESAW vs W2, we first note that

our results should encourage more use of automatic tools

for finding changes to software projects. Observe that, in

the majority of cases, both model-based and instance-based

methods found ways to decrease both the median and spread

2. On a 3MHz dual core Macintosh running OS/X 10.6 with 4GB of ram.

MedianSpread Reduction Quartiles

Win Goal Treatment Reduc Reduc 50%

Nasa93 Ground

defects SEESAW 58% 76%
r

defects W2 21% 53%
r

effort SEESAW 67% 71%
r

effort W2 46% 35%
r

months SEESAW 32% 33%
r

months W2 18% 24%
r

Nasa93 Flight

defects SEESAW 67% 50%
r

defects W2 55% 35%
r

effort SEESAW 70% 44%
r

effort W2 66% 26%
r

months SEESAW 35% 21%
r

months W2 30% 24%
r

Nasa93 OSP

* defects W2 53% 46%
r

defects SEESAW -13% 35%
r

* effort W2 54% 56%
r

effort SEESAW -2% 68%
r

* months W2 35% 23%
r

months SEESAW -3% 19%
r

Nasa93 OSP2

* defects W2 62% 29%
r

defects SEESAW 53% 32%
r

* effort W2 61% 35%
r

effort SEESAW 41% 39%
r

months W2 35% 21%
r

months SEESAW 29% 16%
r

Fig. 10. NASA93: changes in median and spread.

MedianSpread Reduction Quartiles

Win Goal Treatment Reduc Reduc 50%

Coc81 Flight

defects W2 54% 70%
r

defects SEESAW 31% 115%
r

effort W2 51% 76%
r

effort SEESAW 34% 114%
r

* months W2 33% 36%
r

months SEESAW 9% 44%
r

Coc81 Ground

* defects W2 59% 65%
r

defects SEESAW 21% 52%
r

* effort W2 65% 72%
r

effort SEESAW 50% 67%
r

* months W2 41% 38%
r

months SEESAW 14% 31%
r

Coc81 OSP

* defects W2 62% 71%
r

defects SEESAW 2% 43%
r

* effort W2 59% 95%
r

effort SEESAW 22% 41%
r

* months W2 32% 69%
r

months SEESAW 4% 17%
r

Coc81 OSP2

defects W2 15% 81%
r

defects SEESAW 3% 88%
r

* effort W2 17% 115%
r

effort SEESAW -51% 0%
r

months SEESAW 22% 43%
r

months W2 4% 30%
r

Fig. 11. COCOMO81: changes in median and spread.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 10

-20

 0

 20

 40

 60

 80

 100

 120

p
e

rc
e

n
t

c
h

a
n

g
e

changes, sorted

35,43

spreads
medians

Fig. 12. Range of changes in median and spread gen-

erated by applying the recommendations of either W2 or

SEESAW. The median observed changes were (34, 34)%

for (medians, spreads), respectively. The -51% COC81

OSP2 outlier has been omitted for clarity.

Algorithm Wins Losses Ties

W 13 0 11
SEESAW 0 13 11

Fig. 13. Win/Loss/Tie table from Figure 10 and Figure 11.

of effort/months/defects. In all but one experiment the amount

of uncertainty in the median estimates was reduced. As shown

in Figure 12, the reduction in the spread was usually over

34%. This is an advantage of these tools since uncertainty

is an serious issue that plagues the managers of software

engineering projects. As shown in Figure 12, the expected

median reduction in any quality estimate was only 34%. Note

that if this were otherwise, then that would be a somewhat

damning critique of current software engineering practices.

To see this, consider the implications of our tools finding

recommendations that resulted in an order of magnitude reduc-

tion in effort and defects and development time. That would

suggest that the managers of software engineering projects

are routinely missing changes that would significantly improve

their projects.

In all, we show 24 results:

(
NASA93

COCOMO81

)

∗

(
defects
effort
months

)

∗

(
ground
flight
OSP
OSP2

)

We conducted statistical tests on each pair of W2 vs SEESAW

improvements in median/spread for each query. A Mann

Whitney U test (95% confidence) was performed on the two

sets of reduction distributions from each comparison. The

statistical tests are summarized in Figure 13. Note that, in

the majority case (1824), W2’s case-based reasoning performs

as well as SEESAW ′s parametric modeling.

Also, where results differed, instance-based methods can

perform much better than model-based. Observe the median

reductions for NASA93 OSP: W2 offered median reductions

of 72%, 69%, and 43% compared to SEESAW’s 22%, 37%,

13% for defects, effort, and months respectively.

In summary, a simple instance-based methods performs as

well, or better, than our best model-based method.

5 VALIDITY

Construct validity (i.e. face validity) assures that we are mea-

suring what we actually intended to measure [53]. Previous

studies have concerned themselves with the construct validity

of different performance measures for effort estimation (e.g.

[54]). While, in theory, these performance measures have an

impact on the rankings of effort estimation algorithms, we

have found that other factors dominate. In particular, Figure ??

showed that features of the data set (whether or not it is

“weak”) have a major impact on what could be concluded

after studying a particular estimator on a particular data set.

We also show empirically the surprising result that our results

are stable across a range of performance criteria.

As to the external validity of our choice of algorithms,

recalling Figure ??, it is clear that this study has not explored

the full range of effort estimation algorithms. Clearly, future

work is required to repeat this study using the “best of breed”

found here (e.g. bands one and two of Figure ?? as well as

other algorithms).

Having cast doubts on our selection of algorithms, we hasten

to add that this paper has focused on algorithms that have

been extensively studied in the literature [55] as well as the

commonly available datasets (that is, the ones available in the

PROMISE repository of reusable SE data). That is, we assert

that these results should apply to much to current published

literature on effort estimation.

As to the external validity of our choice of algorithms,

recalling Figure ??, it is clear that this study has not explored

the full range of effort estimation algorithms. Clearly, future

work is required to repeat this study using the “best of breed”

found here (e.g. bands one and two of Figure ?? as well as

other algorithms).

Having cast doubts on our selection of algorithms, we hasten

to add that this paper has focused on algorithms that have

been extensively studied in the literature [55] as well as the

commonly available datasets (that is, the ones available in the

PROMISE repository of reusable SE data). That is, we assert

that these results should apply to much to current published

literature on effort estimation.

An unexpected cause for concern with W was some in-

stability in its recommendations. After removing the nearest

neighbor filtering, the overlap method for case relevancy

filtering helps reduce this affect, as seen in Figure 14. Across

four different goals (reducing defects only, effort only, months

only, or all at once) W2 returns more stable improvements,

whereas W tends to shift it’s recommendations when changing

goals.

The above comparison was restricted to data sets with the

COCOMO ontology. This section shows that W2 can be

applied to much wider range of data sets than the model-based

methods.

As shown in Figure 1, we have access to data in a variety

of formats:

• Enhancements to a U.K. telecommunications product.

• Projects collected by Miyazaki et al [56] originally com-

paring “robust regression“ to the least squares criteria.

• Finnish Information Systems projects collected by the

TIEKE organization.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 11

Stability Comparision for NASA93 FLIGHT

g
o
a
l

a
ca

p
=

3

a
p
ex

=
3

a
p
ex

=
5

cp
lx

=
4

d
a
ta

=
2

d
a
ta

=
3

lt
ex

=
3

lt
ex

=
4

p
le

x=
3

p
m

a
t=

2

p
m

a
t=

3

p
m

a
t=

4

re
ly

=
4

re
ly

=
4

sc
ed

=
2

sc
ed

=
3

st
o
r=

3

ti
m

e=
3

ch
a
n
g
es

defects 90 65 75 3

effort 70 90 2

months 70 60 85 3

all 75 70 85 3

Stability Comparision for NASA93 GROUND

g
o
a
l

a
ca

p
=

3

a
p
ex

=
3

a
p
ex

=
5

cp
lx

=
4

d
a
ta

=
2

d
a
ta

=
3

lt
ex

=
3

lt
ex

=
4

p
le

x=
3

p
m

a
t=

2

p
m

a
t=

3

p
m

a
t=

4

re
ly

=
4

re
ly

=
4

sc
ed

=
2

sc
ed

=
3

st
o
r=

3

ti
m

e=
3

ch
a
n
g
es

defects 80 50 2

effort 60 75 2

months 75 50 75 3

all 85 80 2

Stability Comparision for NASA93 OSP

g
o
a
l

a
ca

p
=

3

a
p
ex

=
3

a
p
ex

=
5

cp
lx

=
4

d
a
ta

=
2

d
a
ta

=
3

lt
ex

=
3

lt
ex

=
4

p
le

x=
3

p
m

a
t=

2

p
m

a
t=

3

p
m

a
t=

4

re
ly

=
4

re
ly

=
4

sc
ed

=
2

sc
ed

=
3

st
o
r=

3

ti
m

e=
3

ch
a
n
g
es

defects 95 70 50 3

effort 80 70 70 3

months 55 80 2

all 50 85 60 3

Stability Comparision for NASA93 OSP2

g
o
a
l

a
ca

p
=

3

a
p
ex

=
3

a
p
ex

=
5

cp
lx

=
4

d
a
ta

=
2

d
a
ta

=
3

lt
ex

=
3

lt
ex

=
4

p
le

x=
3

p
m

a
t=

2

p
m

a
t=

3

p
m

a
t=

4

re
ly

=
4

re
ly

=
4

sc
ed

=
2

sc
ed

=
3

st
o
r=

3

ti
m

e=
3

ch
a
n
g
es

defects 60 75 95 3

effort 75 55 80 3

months 70 80 90 3

all 80 90 100 3

Fig. 14. Recommendation frequency across 20 runs of

W and W2 for reducing individual goals (defects, effort,

months) as well as all goals at once (d/e/m). Recommen-

dations that appeared less than half the time are omitted.

Note that despite chaning goal functions, W2 continues

to make similar recommendations.

• A large dataset of Chinese software projects.

• Large COBOL projects, collected by Kemerer [57].

The data sets use a variety of features such as number of

entities in the data model, number of basic logical transactions,

query count and number of distinct business units serviced.

Given that we did not have access to specific case studies

like Figure 4, synthetic queries were developed. Three queries

were generated for each of the five datasets. The first contained

the entire range of possible project project descriptors, repre-

senting complete freedom to recommend any change within

the space. The other two queries were generated by randomly

choosing 50% of each attribute values from either the lower,

middle, or upper ranges for each project descriptor.

The only quality measures available for this data was

development effort. Hence, the following results are expressed

only in terms of effort.

Effort reductions can be seen in Figure 15:

• Overall, we say a median 56% and 73% improvement in

median and spread, respectively (see the dotted line of

Figure 15.

• Large improvement in median effort were seen for the

TELECOM, KEMERER, and MIYAZAKI datasets, with

strong median reductions (>50%) and good spread re-

ductions (>25%) across all datasets.

• The FINNISH and CHINA datasets show good improve-

ments to both median and spread reductions, with some

projects demonstrating exceptional reductions in spread

 0

 25

 50

 75

 100

 0 25 50 75 100

%
 s

p
re

a
d

 i
m

p
ro

v
e

m
e

n
t

% median improvement

56, 73

Telecom
Miyazaki

Finnish
China

Kemerer

Fig. 15. Distribution of median and spread reductions in

software effort for five non-COCOMO datasets.

(>75%).

Note that it would be impossible to apply our model-based

methods to these data sets, since they are not expressed in

terms of the COCOMO ontology. That is, at least in our

experience, instance-based methods can be applied to more

data sets that effort-based methods.

6 RELATED WORK

This paper extends prior publications on W2 as follows.

Instance-based analysis of software estimation is a widely

explored area [36], [50], [51], [55]. We show here that a

simple addition to standard instance-based analysis can not

just estimates, but also recommendations on how to change

those estimated. This is an important extension since, in our

experience, if a manager is presented with an estimate, their

very next question is “what can I do to change this?”. Hence,

while the effort estimation literature describes many estimation

methods, both model-based and instance-based [28], [36],

[39], [49]–[51], [55], [58], we focus more on how to change

those estimates.

With the model-based methods, our challenge was to handle

the uncertainty associated with the tuning instability discussed

in §2. Previously, we have tried reducing that instability in

various ways:

• Feature selection to prune spurious details [59];

• Instance selection to prune irrelevancies [60];

• Extended data collection.

Despite all that work, the variance observed in our models

remains very large. Even the application of techniques such

as instance-based learning have failed to reduce variance in our

effort predictions [61]. Feature subset selection has also been

disappointing: while it reduces the median performance vari-

ance somewhat (in our experiments, from 150% to 53% [60]),

the residual error rates are large enough that it is hard to use

the predictions of these models as evidence for the value of

some proposed approach. Lastly, further data collection has not

proven useful. Certainly, there is an increase in the availability

of historical data on prior projects3. However, Kitchenham [62]

cautions that the literature is contradictory regarding the value

of using data from other companies to learn local models.

3. see http://promisedata.org.data/data and http://www.isbsg.org/.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 12

Having failed to tame tuning variance, despite years of

research, we turned to alternate methods. Much of the related

work on uncertainty in software engineering uses a Bayesian

analysis. For example, Pendharkar et al. [63] demonstrate the

utility of Bayes networks in effort estimation while Fenton

and Neil explore Bayes nets and defect prediction [64] (but

unlike this paper, neither of these teams links defect models

to effort models).

Other related work is the search-based SE approach ad-

vocated by Harman [65]. Search-Based Software Engineer-

ing (SBSE) uses optimization techniques from operations

research and meta-heuristic search (e.g., simulated annealing

and genetic algorithms) to hunt for near-optimal solutions to

complex and over-constrained software engineering problems.

Harman takes care to distinguish AI search-based methods

from those seen in standard numeric optimizations. Such

optimizers usually offer settings to all controllables. This

may result in needlessly complex recommendations since a

repeated empirical observation is that many model inputs are

noisy or correlated in similar ways to model outputs [66].

Such noisy or correlated variables can be pruned away to

generate simpler solutions that are easier and quicker to

understand. In continuous domains, there is much work on

feature selection [67] and techniques like principal component

analysis [68] to reduce the number of dimensions reported by

an analysis. Comparative studies report that discrete AI-based

methods can do better at reducing the size of the reported

theory [66].

The SBSE approach can and has been applied to many

problems in software engineering (e.g., requirements engineer-

ing [69]) but most often in the field of software testing [2].

Harman’s writing inspired us to try simulated annealing for

our model-based methods [19] (which we subsequently found

worked worse than SEESAW or W2).

7 FUTURE WORK

better optimization search

• Pareto domination [70] that rejects point X if some other

point Y is (a) not worse on any quality dimension and

(b) better on at least one.

• Or an objective function that combines the individual

qualities into a single number; e.g. Equation 6.

contrast set learning, not with this simple Bayesian trick

shown we are better than other some, not better than all

8 CONCLUSION

if no data, then model-based. but bear in mind all the draw-

backs discussed above with that approach.

not ”best”- only better than anything we’ve seen before.

Exploring software project process data may not be as com-

plex as exploring software project product data. For example,

two developers, working for one year on one project, can

generate defect data on hundreds to thousands of software

products (e.g. each module they have built). However, that

same work might contribute only one entry to a software

process data base (e.g. one row describing their applications

experience with this kind of software, the size of the final

system, and the number of staff months required to code it

all). For example:

• The effort estimation datasets used in Mendes et al. [36],

Auer et al. [37], Baker [38], and Li et al. [39] have median

number of examples 13,15,33,52 (respectively).

• the experiments of this paper were conducted on seven

projects containing 15,18,38,48,62,93,499 examples (i.e.

usually less than a few dozen examples per project).

For complex software product data, it may be advisable to

apply support vector machines, random forests, or any of the

other sophisticated analysis methods surveyed in, say, [29].

However, for software process data, it may be overkill to

apply complex tools like the various Davis-Putnam proce-

dures; binary-decision diagrams; integer programming; genetic

programming; tabu search; or the hundreds of other tools

described in the AI literature [12], [30]–[33] or the search-

based software engineering literature [33].

This is not to say that learning changes to software projects

is always best achieved using simple instance methods. For ex-

ample, the next release planning problem studied by Ruhe [35]

(and others) is a process problem of great complexity. Hence,

the Pareto frontier optimization methods employed by Ruhe

may be an appropriate technology for that domain.

Nevertheless, other areas of research advise that researchers

should at baseline their supposedly more sophisticated method

against a simpler alternative [25], [26]. Accordingly, we offer

W2 as a baseline device for learning changes to software

projects since:

• It is simple to implement and fast to execute,

• The algorithm runs in linear time, so it can scale to large

data sets.

• For the data studied here, it performs as least as good (or

better) than a range of model-based methods.

REFERENCES

[1] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification–
a concept for in-process measurements,” IEEE Transactions on Software

Engineering, vol. 18, no. 11, pp. 943–956, November 1992.

[2] J. Andrews, F. Li, and T. Menzies, “Nighthawk: A two-level genetic-
random unit test data generator,” in IEEE ASE’07, 2007, available from
http://menzies.us/pdf/07ase-nighthawk.pdf.

[3] G. Holzmann, “The model checker SPIN,” IEEE Transactions on

Software Engineering, vol. 23, no. 5, pp. 279–295, May 1997.

[4] D. Port, A. Olkov, and T. Menzies, “Using simulation to investigate
requirements prioritization strategies,” in IEEE ASE’08, 2008, available
from http://menzies.us/pdf/08simrequire.pdf.

[5] R. A. Endres, H.D, A Handbook of Software and Systems Engineering:

Empirical Observations, Laws and Theories. Addison Wesley, 2003.

[6] IEEE-1012, “IEEE standard 1012-2004 for software verification and
validation,” 1998.

[7] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian,
“Model-based tests of truisms,” in Proceedings of IEEE ASE 2002, 2002,
available from http://menzies.us/pdf/02truisms.pdf.

[8] B. Boehm, “Software engineering,” IEEE Transactions on Computers,
vol. 25, pp. 1226–1241, 1976.

[9] T. Menzies, S. Williams, O. El-rawas, B. Boehm, and J. Hihn, “How to
avoid drastic software process change (using stochastic statbility),” in
ICSE’09, 2009, available from http://menzies.us/pdf/08drastic.pdf.

[10] N. E. Fenton, M. Neil, and J. G. Caballero, “Using ranked nodes to
model qualitative judgments in bayesian networks,” IEEE Trans. on

Knowl. and Data Eng., vol. 19, no. 10, pp. 1420–1432, 2007.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 13

[11] I. H. Witten and E. Frank, Data mining. 2nd edition. Los Altos, US:
Morgan Kaufmann, 2005.

[12] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 2003.

[13] M. J. Shepperd, “Case-based reasoning and software engineering,”
Bournemouth University, UK, Tech. Rep. TR02-08, 2002.

[14] D. B. Leake, Case-Based Reasoning: Experiences, Lessons and Future

Directions. Cambridge, MA, USA: MIT Press, 1996.
[15] J. Kolodner, Case-Based Reasoning. Morgan Kaufmann, 1993.
[16] D. Leake and D. Mcsherry, “Introduction to the special issue on expla-

nation in case-based reasoning,” Artificial Intelligence Review, vol. 24,
pp. 103–108, 2005.

[17] T. Menzies, “The complexity of trmcs-like spiral specification,” in
Proceedings of 10th International Workshop on Software Specification

and Design (IWSSD-10), 2000, available from http://menzies.us/pdf/
00iwssd.pdf.

[18] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum, “On the value of
stochastic abduction (if you fix everything, you lose fixes for everything
else),” in International Workshop on Living with Uncertainty (an ASE’07

co-located event), 2007, available from http://menzies.us/pdf/07fix.pdf.
[19] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm, and

R. Madachy, “The business case for automated software engineerng,”
in ASE ’07: Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering. New York, NY,
USA: ACM, 2007, pp. 303–312, available from http://menzies.us/pdf/
07casease-v0.pdf.

[20] A. Orrego, T. Menzies, and O. El-Rawas, “On the relative merits of
software reuse,” in International Conference on Software Process, 2009,
available from http://menzies.us/pdf/09reuse.pdf.

[21] T. Menzies, S. Williams, O. Elrawas, D. Baker, B. Boehm, J. Hihn,
K. Lum, and R. Madachy, “Accurate estimates without local data?”
Software Process Improvement and Practice, vol. 14, pp. 213–225, July
2009, available from http://menzies.us/pdf/09nodata.pdf.

[22] T. Menzies, O. El-Rawas, J. Hihn, and B. Boehm, “Can we build soft-
ware faster and better and cheaper?” in PROMISE’09, 2009, available
from http://menzies.us/pdf/09bfc.pdf.

[23] P. Green, T. Menzies, S. Williams, and O. El-waras, “Understanding
the value of software engineering technologies,” in IEEE ASE’09, 2009,
available from http://menzies.us/pdf/09value.pdf.

[24] O. El-Rawas and T. Menzies, “A second look at faster, better, cheaper,”
Innovations in Systems and Software Engineering, 2011.

[25] P. Cohen, Empirical Methods for Artificial Intelligence. MIT Press,
1995.

[26] R. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Machine Learning, vol. 11, p. 63, 1993.

[27] P. Domingos and M. J. Pazzani, “On the optimality of the simple
bayesian classifier under zero-one loss,” Machine Learning, vol. 29,
no. 2-3, pp. 103–130, 1997. [Online]. Available: citeseer.ist.psu.edu/
domingos97optimality.html

[28] M. Jorgensen and M. Shepperd, “A systematic review of soft-
ware development cost estimation studies,” January 2007, avail-
able from http://www.simula.no/departments/engineering/publications/
Jorgensen.2005.12.

[29] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,” IEEE Transactions on Software Engineering, 2008.

[30] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, “Algorithms for the
satisfiability (sat) problem: A survey,” in DIMACS Series in Discrete

Mathematics and Theoretical Computer Science. American Mathemat-
ical Society, 1997, pp. 19–152.

[31] G. Gay, T. Menzies, O. Jalali, G. Mundy, B. Gilkerson, M. Feather, and
J. Kiper, “Finding robust solutions in requirements models,” Automated

Software Engineering, vol. 17, no. 1, pp. 87–116, 2010, available from
http://menzies.us/pdf/09keys2.pdf.

[32] T. E. Uribe and M. E. Stickel, “Ordered binary decision diagrams and the
davis-putnam procedure,” in In Proc. of the 1st International Conference

on Constraints in Computational Logics. Springer-Verlag, 1994, pp.
34–49.

[33] M. Harman, “The current state and future of search based software
engineering,” in Future of Software Engineering, ICSE’07, 2007.

[34] Y. Zhang, M. Harman, and S. Mansouri, “The multi-objective next
release problem,” in In ACM Genetic and Evolutionary Computation

Conference (GECCO 2007, 2007, p. 11.
[35] A. Ngo-The and G. Ruhe, “Optimized resource allocation for software

release planning,” Software Engineering, IEEE Transactions on, vol. 35,
no. 1, pp. 109–123, Jan.-Feb. 2009.

[36] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and S. Counsell,
“A comparative study of cost estimation models for web hypermedia
applications,” Empirical Software Engineering, vol. 8, no. 2, pp. 163–
196, 2003.

[37] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl,
“Optimal project feature weights in analogy-based cost estimation:
Improvement and limitations,” IEEE Trans. Softw. Eng., vol. 32, pp.
83–92, 2006.

[38] D. Baker, “A hybrid approach to expert and model-based effort esti-
mation,” Master’s thesis, Lane Department of Computer Science and
Electrical Engineering, West Virginia University, 2007, available from
https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443.

[39] Y. Li, M. Xie, and T. Goh, “A study of project selection and feature
weighting for analogy based software cost estimation,” Journal of

Systems and Software, vol. 82, pp. 241–252, 2009.
[40] A. Brady and T. Menzies, “Case-based reasoning for reducing software

development effort,” Journal of Software Engineering Applications,
December 2010, available from http://menzies.us/pdf/10w0.pdf.

[41] ——, “Case-based reasoning vs parametric models for software quality
optimization,” in PROMISE ’10: Proceedings of the 6th International

Conference on Predictive Models in Software Engineering, 2010, pp.
1–10, available from http://menzies.us/pdf/10cbr.pdf.

[42] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece,
A. W. Brown, S. Chulani, and C. Abts, Software Cost Estimation with

Cocomo II. Prentice Hall, 2000.
[43] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.
[44] ——, “Safe and simple software cost analysis,” IEEE Software, pp. 14–

17, September/October 2000, available from http://www.computer.org/
certification/beta/Boehm Safe.pdf.

[45] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671–680, 1983. [Online]. Available: citeseer.nj.nec.com/
kirkpatrick83optimization.html

[46] B. Selman, H. A. Kautz, and B. Cohen, “Local search strategies
for satisfiability testing,” in Proceedings of the Second DIMACS

Challange on Cliques, Coloring, and Satisfiability, M. Trick and
D. S. Johnson, Eds., Providence RI, 1993. [Online]. Available:
citeseer.ist.psu.edu/selman95local.html

[47] S. Craw, D. Sleeman, R. Boswell, and L. Carbonara, “Is knowledge
refinement different from theory revision?” in Proceedings of the MLNet

Familiarization Workshop on Theory Revision and Restructuring in

Machine Learning (ECML-94), S. Wrobel, Ed., 1994, pp. 32–34.
[48] W. Cohen, “Fast effective rule induction,” in ICML’95, 1995, pp. 115–

123, available on-line from http://www.cs.cmu.edu/∼wcohen/postscript/
ml-95-ripper.ps.

[49] U. Lipowezky, “Selection of the optimal prototype subset for 1-
NN classification,” Pattern Recognition Letters, vol. 19, p. 907918,
1998. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0167865598000750

[50] F. Walkerden and R. Jeffery, “An empirical study of analogy-based
software effort estimation,” Empirical Softw. Engg., vol. 4, no. 2, pp.
135–158, 1999.

[51] C. Kirsopp and M. Shepperd, “Making inferences with small numbers
of training sets,” IEEE Proc., vol. 149, 2002.

[52] R. Durstenfeld, “Algorithm 235: Random permutation,” Commun. ACM,
vol. 7, no. 7, p. 420, 1964.

[53] C. Robson, “Real world research: a resource for social scientists and
practitioner-researchers,” Blackwell Publisher Ltd, 2002.

[54] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation
study of the model evaluation criterion mmre,” IEEE Transactions on

Software Engineering, vol. 29, no. 11, pp. 985 – 995, November 2003.
[55] M. Shepperd and C. Schofield, “Estimating software project effort using

analogies,” IEEE Transactions on Software Engineering, vol. 23, no. 12,
November 1997, available from http://www.utdallas.edu/∼rbanker/SE
XII.pdf.

[56] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust regression
for developing software estimation models,” J. Syst. Softw., vol. 27, no. 1,
pp. 3–16, 1994.

[57] C. Kemerer, “An empirical validation of software cost estimation mod-
els,” Communications of the ACM, vol. 30, no. 5, pp. 416–429, May
1987.

[58] M. Shepperd, “Software project economics: A roadmap,” in Interna-

tional Conference on Software Engineering 2007: Future of Software

Engineering, 2007.
[59] Z. Chen, T. Menzies, and D. Port, “Feature subset selection can improve

software cost estimation,” in PROMISE’05, 2005, available from http:
//menzies.us/pdf/05/fsscocomo.pdf.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 14

[60] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting best practices
for effort estimation,” IEEE Transactions on Software Engineering,
November 2006, available from http://menzies.us/pdf/06coseekmo.pdf.

[61] O. Jalali, “Evaluation bias in effort estimation,” Master’s thesis, Lane
Department of Computer Science and Electrical Engineering, West
Virginia University, 2007.

[62] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross- vs.
within-company cost estimation studies: A systematic review,” IEEE

Transactions on Software Engineering, pp. 316–329, May 2007.
[63] P. C. Pendharkar, G. H. Subramanian, and J. A. Rodger, “A probabilistic

model for predicting software development effort,” IEEE Trans. Softw.

Eng., vol. 31, no. 7, pp. 615–624, 2005.
[64] N. E. Fenton and M. Neil, “A critique of software defect predic-

tion models,” IEEE Transactions on Software Engineering, vol. 25,
no. 5, pp. 675–689, 1999, available from http://citeseer.nj.nec.com/
fenton99critique.html.

[65] M. Harman and J. Wegener, “Getting results from search-based ap-
proaches to software engineering,” in ICSE ’04: Proceedings of the 26th

International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 728–729.

[66] M. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions On Knowledge And

Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003, available from
http://www.cs.waikato.ac.nz/∼mhall/HallHolmesTKDE.pdf.

[67] A. Miller, Subset Selection in Regression (second edition). Chapman
& Hall, 2002.

[68] W. Dillon and M. Goldstein, Multivariate Analysis: Methods and Ap-

plications. Wiley-Interscience, 1984.
[69] O. Jalali, T. Menzies, and M. Feather, “Optimizing requirements de-

cisions with keys,” in Proceedings of the PROMISE 2008 Workshop

(ICSE), 2008, available from http://menzies.us/pdf/08keys.pdf.
[70] J. Li and G. Ruhe, “Multi-criteria decision analysis for customization of

estimation by analogy method aqua+,” in PROMISE ’08: Proceedings

of the 4th international workshop on Predictor models in software

engineering, 2008, pp. 55–62.

Tim Menzies is a associate professor at the
Lane Department of Computer Science at West
Virginia University (USA), and has been work-
ing with NASA on software quality issues since
1998. He has a CS degree and a PhD from the
University of New South Wales and is the author
of over 160 publications. His recent research
concerns modeling and learning with a particular
focus on light weight modeling methods.

Adam Brady is a associate professor at the
Lane Department of Computer Science at West
Virginia University (USA), and has been work-
ing with NASA on software quality issues since
1998. He has a CS degree and a PhD from the
University of New South Wales and is the author
of over 160 publications. His recent research
concerns modeling and learning with a particular
focus on light weight modeling methods.

Jacky W. Keung is a associate professor at the
Lane Department of Computer Science at West
Virginia University (USA), and has been work-
ing with NASA on software quality issues since
1998. He has a CS degree and a PhD from the
University of New South Wales and is the author
of over 160 publications. His recent research
concerns modeling and learning with a particular
focus on light weight modeling methods.

Steve Williams is a associate professor at the
Lane Department of Computer Science at West
Virginia University (USA), and has been work-
ing with NASA on software quality issues since
1998. He has a CS degree and a PhD from the
University of New South Wales and is the author
of over 160 publications. His recent research
concerns modeling and learning with a particular
focus on light weight modeling methods.

Steven Williams is an undergraduate student
pursuing a BS in Computer Science at Portland
State University. He is currently working as an IT
Manager and Database Administrator at a large
non-profit organization in Portland, Oregon.

Oussama El-Rawas is a associate professor at
the Lane Department of Computer Science at
West Virginia University (USA), and has been
working with NASA on software quality issues
since 1998. He has a CS degree and a PhD
from the University of New South Wales and is
the author of over 160 publications. His recent
research concerns modeling and learning with a
particular focus on light weight modeling meth-
ods.

Phillip Green is a graduate student in the
Computer Science Department at Portland State
University. He received his BS in Physics and
Astronomy from the University of Pittsburgh in
2001. He has over six years of research ex-
perience in numeric methods and data mining.
His master thesis focuses on comparative study
of data mining techniques and equivalences
with numeric optimization techniques. He also
has interned at a software development firm in
Beaverton, Oregon.

