

Contrast Set Learning → Succinct Explanations

Contrast Set Learning (10 years later)

- No longer a post-processor to a decision tree learner
 - * TAR3: Branch pruning operators
 applied directly to discretized
 data
 - Summer'09
 - * Shoot 'em up at NASA AMES
 - * State-of-the-art numerical optimizer
 - * TAR3
 - Ran 40 times faster
 - Generated better solutions

Contrast Set Learning → Anomaly Detection

Recognize when old ideas are now out-dated

* SAWTOOTH:

- read data in "eras" of 100 instances
- * Classify all examples as "seen it"

* SAWTOOTH1:

- Report average likelihood of examples belong to "seen it"
- * Alert if that likelihood drops

SAWTOOTH2:

- * Back-end to TAR3
- Track frequency of contrast sets
- Some uniformity between contrast sets and anomaly detection

Contrast sets -> noise management

- * CLIFF: post-processor to TAR3
 - * Linear time instance selector
- * Finds the attribute ranges that change classification
- * Delete all instances that lack the "power ranges"

Contrast Sets → CLIFF → Active Learning

- Many examples, too few labels
- Reduce the time required for business users to offer judgment on business cases
- Explore the reduced space generated by CLIFF.
 - Randomly ample the instances half-way between different classes
 - Fast (in the reduced space)

Contrast sets → CLIFF → Statistical databases

- * Anonymize the data: Preserving its distributions
- For KNN, that means keep the boundaries between classes
 Which we get from CLIFF
- * Also, CLIFF empties out the instance space
 - * Leaving us space to synthesize new instances

