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Abstract—BACKGROUND: Some project data is only approx-
imately correct. This may limit our ability to draw conclusions
from project data.

AIM: To be able to reason about software projects, despite
inaccuracies in the data.

METHOD: For ten data sets, numerical data from the project
was discretized into fewer and fewer bins. A case-based planning
algorithm is applied to all versions of the data sets. The planner
seeks changes to a project that moves it from regions of (e.g.)
large effort estimates to other regions with lower effort estimates.
The effects of descretization was
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I. INTRODUCTION

Data could be collected, accurate to seven decimal places,
by N independent consultants, and then extensively auditted
prior to addition to a repository. Such a collection procedure
may be prohibitively expensive. Is there some way to define a
data quality program that balances data collection cost against
the benefits of having data at different levels of quality?

Recently, Brady [?] has proposed an algorithm for determin-
ing if data in a repository is of sufficient quality to support
business decision making. The algorithm, called ∆-resiliancy,
works as follows:
• Given some sample data data0, keep throwing away

details to generate data1, data2 etc until something
breaks; e.g. our ability to make business decisions start
to degrade.

• The data set datai−1 generated just before the breakdown
at point i has enough quality.

• Design future data collection such that it collects data of
quality datai−1.

More formally, we define ∆-reiliancy as follows:
Definition 1: A data set has “enough” quality if the
data noise is ∆ and the inferences from that data set
are not effected by noise up to the level of ∆.

Note that ∆-resiliancy requires some technique for analyzi-
ing data since the point i at which this technique starts to
fail is used to identify the point of enough quality (at i− 1).
That is, without knowledge of how the data is being used,
the above definition is not operational. Hence, ∆-resilancy is
defined for repositories that have reached level five maturity
(since, if a repository is below level five, then there are no
active optimizations being generated from the data).

The algorithm supports a cost/benefit analysis of data col-
lection; specifically, we need only collect data of enough
quality since more elaborate and expensive collection methods
is superflous. The clear advantage of this approach is that it

expresses quality in terms business users can understand; e.g.
“if you grant these funds, then we will be able to detect out-
of-control projects sooner”. This is useful since, as discussed
below, other algorithms for data quality are more algorithmic
and do not express their conclusions at the business-level
(hence, it may be difficult to use those algorithms to lobby
for extra funding for data collection).

This paper conducts an in-depth study of ∆-resiliancy on
six real-world data sets. Since ∆-resiliancy requires some op-
erational definition of how data is used to make decisions, we
will assume an instance-based reasoning decision framework.
Instance-based reasoning is a general method for reasoning
about (say) software engineering data [?], [?], [?], [?], [?] and
is known to work for the kinds of complex data sets collected
from real-world projects [?]. For this work, we use Brady and
Menzies’ W instance-based reasoning algorithm [?], [?], [?].
The results will be mixed:

1) The good news is that it is possible to reduce the
level of detail within data without comprosmining the
analysis technique. This, in turn, raises the possibility
of extensive cost-savings in repositories (by avoiding
needlessly over-elaborate data collection policies);

2) The other news is that the point at which data breaks
down is not data set dependent by instance depedent.
That is, we cannot declare that for one data set that
“this is enough quality”. Rather, we have to say that
“for instances of a certain type within a data set, then
this is enough quality.

The first result should encourage more research for algorithms
like ∆-resiliancy. The second result tells us that data quality is
not an issue that can be retired with a single paper. Rather, it is
very complex issue that will require extensive further research.

The rest of this paper is structures as follows. XXX.

II. BACKGROUND

Recent research results highlight the value of repositories of
example problems. Such repositories are useful for (a) storing
the results of case-study based research; (b) for documenting
existing baseline results; (c) for one researcher to defend a
claim that their new analysis method exceeds those baselines;
(d) for other researchers to audit such claims.

Just as the machine learning community focused on the UC
Irvine machine learning repository1, entire research commu-
nities in software engineering have now formed around:

1UCI: http://archive.ics.uci.edu/ml
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Fig. 1. Data quality definitions (gray cells denote different kinds of outliers).
Adapted from Yoon & Bae [?].

• Numerous open-source repositories such as Bugzilla2;
• The Software Infrastructure Repository (SIR)3;
• The PROMISE repository of reproducible SE results4;
• The ISBSG estimating benchmark suite5.

Numerous publications are now based on this data. While the
number of papers using ISBSG and Bugzilla data are not
known, since the PROMISE and SIR repositories came on
line in 2006 and 2001, their data has been used in at least 90
and 200 publications, respectively6.

Sen et al. document a parallel interest in commercial data
warehouses. They report that “data warehousing (DW) has
experienced tremendous growth in the last decade ... it was
cited as the highest-priority post-millennium project of more
than half of IT executives”. [?]. They define a data warehouse
process maturity model in which, at level five, ensures that
organizations can use their data to optimize their performance.

Given this increasining use of data repositories by re-
searchers and industrial practitioners, it is important to certify
the quality of that data. Software engineering data can contain
large amouts of noise (signals not connected to the known
target variables). Sen et al. note that managing poor data
quality is a very expensive task requring “subject matter
experts, who are knowledgeable about business as well as
data, are often employed to define data cleansing rules and
data quality metrics”.

Figure 1 shows Yoon & Bae’s hierarchy of data quality
issues for software engineering [?] The SE literature explores
this hierarchial with different levels of rigor. For example,
much of the SE data mining literature discusses the problem
of missing data (which Yoon & Bae would call “incorrect
values”):
• Aranda & Venolia [?] audited bug reports at Microsoft

by interviewing developers related to the reports. They
found much missing information in the bug reports.

• This result was confirmed by Bird et al. [?] who, in a
found many missing links (up to 50%) between change
logs and bug reports were not linked.

• Yet another study confirmed the Aranda & Venolia &
Bird result. Kim et al. [?] found 32% and 22% unlinked
bugs in open source systems (Eclipse 3.1 and 3.4).

• Note that change that is not linked to a bug would result

2BUGZILLA: http://www.bugzilla.org/installation-list/
3SIR: http://sir.unl.edu
4PROMISE: http://promisedata.org/data
5ISBSG: http://goo.gl/2AJCH
6SIR publications: http://sir.unl.edu/portal/usage.html

China
25% Median 75%

DevType 0 0 0
PDR-AFP 0.1 0.1 0.2

NPDU-UFP 0.1 0.1 0.2
PDR-AFP 0.1 0.1 0.2
PDR-UFP 0.1 0.1 0.2

Enquiry 1 1 2.5
Input 1 1 4

Output 1 1 4
Resource 0.5 1 1
Duration 0.5 1 1
Interface 1 2 5

NAFP 1 2 6
Added 1 2 7

Changed 1 2 4
Deletec 1 2 7

File 1 2 5.5
Kemerer

25% Median 75%
Duration 1 2 3

Hardware 1 1 1
Language 0.5 1 1

KSLOC 2 12.3 35
RAWFP 21 124 170

AdjFP 34.7 130 182
Finnish

25% Median 75%
lnsize 0.03 0.05 0.115
prod 0.183 0.428 0.874

at 1 1 1
co 1 1 1

hw 0.5 1 1
FP 14 28 64

Fig. 2. Quartiles demonstrating the ranked difference between each unique
feature value. Within each datasets, rows sorted on the median values. Data
from http://promisedata.org/data.

in an incorrect value on the classification of that change.
Bird et al. caution that such incorrect values can degrade
the performance of some predictor built from noisey
data [?].

Another issue related to “incorrectly formatted” or “incorrect
values” from Figure 1 is that of granularity. It can readily be
shown that data is collected according to a wide variety of
standards. For example, consider the issue of granularity in a
data set. How much detail is sufficient for including data in
a warehouse? If data arrived rounded to the nearest integer,
should we reject it and ask for more details?

While there may not exist domain-general answers to this
question, it is easy to show that data is collected with very
wide ranges of granularity:
• Take data from some public source (e.g. the PROMISE

repository) and sort the columns of numeric data to form
the list Ci,1, Ci,2, Ci,3, ... for each attribute i.

• Next, find the differences between adjacent members in
that list; i.e. diff(i)j = Ci,j+1 − Ci,j .

• Finally, sort those diff(i) values and report their 25th,
50th and 75-th percentile.

The results on one such analysis from PROMISE data are
shown in Figure 2. Several aspects of these results are worthy
of comment. Firstly, there is enormous difference in data
collection precision for different data values in that figure.
Some attributes show wide ranges (i.e. have have very large
median differences); for example:



• The RAWFP attribute of Kemerer has a median
difference of 124, which is nearly as large as the entire
inter-quartile for that attribute (170-21 = 149).

• The AdjFP attribte of Kemerer has a median difference
of 130 which is also nearly as large as that attribute’s
inter-quartile range (182-34.7 = 147.3).

Are such large median differences are too large or too small?
This paper argues that such questions are unanswerable unless
we know the intended use of that data. That is, in this research,
we say that data is of enough quality if it supports the inference
to which it is intended.

Such a concept of intent lets us resolve other issues.
Consider the “flat” attributes of Figure 2 (those where the
25-th percentile is the same as the 75-th percentile):
• In China, the DevType attribute is “flat”;
• In Kermer, the Hardware attribute is “flat”;
• In Finish, the at and co attributes are “flat”;

(Note that the variance of such “flat” attributes can be very
small. Hence, many machine learning algorithms would simply
ignore them since they do not offer significant differences
between classes.)

Are such “flat” attributes of low quality? Is it worthwhile to
inject more domain knowledge into such attributes, discover
more distinctions, and make them unflat? Perhaps not- espe-
cially if the inferences made from this data do not require such
“flat” data. As before, we are arguing that if the data supports
the planned inferences, then the data is of sufficient quality.

Finally, observe how some of the data in Figure 2 is
collected to a very exacting degree of procession:
• In the China data set, the median difference between nu-

meric column entries for some of the speciailized function
points is very small; e.g. see the median difference of 0.1
for PDR-AFP.

• In the Finnish data set, the median difference between
numeric column entries is very small for the insize
measure (median value of 0.05).

Should we always encourage such high degrees of precision?
Perhaps not since infinite precision would be infinitely ex-
pensive. Such exacting standards of precision are nonsensical
for noisy data(since all they do is precisely measure some
random value. This can be a major problem since many data
sets in software engineering are very noisy [?]. However,
repeating our theme, we would say that the numeric precision
of the measurements are enough if they support the required
inferences from the data. We would also say that the numeric
precision of the measurements are over-elaborted if, after
some rounding, the inferences do not change (this second
statement is the basis of the ∆-resiliancy definition from the
introduction.

III. ALGORITHMS FOR DATA QUALITY

A. Standard Methods

A standard method for data cleansing noise is to prune data
items associated with noise [?], [?]. Recent research in defect
prediction focuses on two different kinds of row pruning:

• Outlier removal that deletes a minoirty of rows: Kim
et al. [?] use case-based reasoning to prune neighbor-
ing rows containing too many contradictory conclusions.
Also Yoon & Bae [?] use association rule learning
methods to find frequent item sets. In this framework,
outliers are those rows with few frequent items. Their
methods prune 20% to 30% of the rows.

• Prototype selection that deletes most rows: Turhan et
al. [?] pruned away all but 10 training examples per test
instance using nearest neighbor methods. In doing so,
they dramatically reduced the false alarm rate of defect
predictors being trained on data from other companies.

Recent reseach in effort estimation demonstrates the value
pruning both row and columns:
• Chen et al. [?] found that removing up to 80% of the

columns significantly improved PRED(30)7 values from
(approx) 20 to 60 %. The effect was particularly marked
in smaller data sets (those with less than 30 rows).

• Kocaganeuli et al. [?] showed that when building an
effort estimator for local data, then importing effort
data from other organizations severely damages predictor
performance. However, this damaging effect is removed
if, prior to learner a predictor, they they pruned away
neighboring rows with high variance in their effort values.

(As an aside, we note that while the techniques of Kocaganeuli
et al. were evolved seperately to Kim et al, they are clearly
analagous techniques. For another example of analagous re-
search, see our work with Guo et al. where we explored a
similar association-rule approach to detect anomalies in flight
guidance systems [?].)

While row and column pruning can sometimes patch poor
data quality, they are only heuristic methods that may not
work on particular data sets. For example, for many years,
we have tried column and row pruning to reduce the noise in
this manner. The results have been disappointing. Jalali et al.
report that row pruning reduce variance in our predictions [?].
As to column pruning, while it reduces the median perfor-
mance variance somewhat (in our experiments, from 150% to
53% [?]), the residual error rates are still unacceptably large.

In summary, standard methods such as row and column
pruning are not sufficienent to repair low-quality data.

B. ∆-Resiliancy

Row and column pruning are data cleansing methods for
patching low quality data after it arrives in a repository.
In terms of setting corporate policy on data quality, the
preferred alternative is a data collection quality standard. Such
a standard can be used by data providers to certify that their
data has “enough” quality before it is added to a repository.

Recall from the above that if a repository reaches level
five maturity, then it is used for some business optimziation
task. ∆-resilinacy certifies that, up until some noise threshold
∆, that the functioning of that optimizer is not effected by
uncertainty in values. Once that value is determined, then

7The percentage of estimated within 25% of actuals.



the task of data provideers is to demonstrate that the noise
resulting from their data collection methods is less than ∆.

Consider a model that accepts N inputs N1...Nn. Let the
known values for Ni be the range V1, ...Vv:
• Since we seek a measure of noise across all Ni, we study

the rank of the values Vi using the normal ranking rules8

• Noise can change the value of that input Ni by some rank
r. Given v values for Ni, then we can express that rank
as the δi percentange 100∗r

v .
• Let ∆ be the maximum δi for all optimizer inputs.

Then:

Definition 2: The outputs of a ∆-resiliant optimizer
are not degraded when the majority of ranks in the
optimizer inputs are changed by up to ∆%.

One way to find ∆ is via descritization studies. Equal fre-
quency discretization maps numerics Ni into B bins (labelled
1, 2, ..., B), each of which contain equal number of values [?].
If an optimizer’s inner processing requires precise numeric
values, then we replace all values Vi in one bin with the
median of all the values in that bin.

To compute ∆-resiliancy, we divide the model inputs into
B bins, then execute the model. Next, we seek the smallest
value B′ such that:

1) Optimization results from inputs divided into B′−1 bins
are no worse than B′;

2) Optimization results from inputs divided into B′+1 bins
are no better than B′.

B′ offers a lower-bound on the level of detail required for
the optimizer. It is superflous to collect data at any level of
detail greater than B′ since that extra level of detail does not
improve the optimizers.

Also, B′ offers an upper bound of the resiliance of the
optimizer to noise. If we divide ranked values V1, V2, ..Vv into
B equal frequency bins, then each bin will have cardinality
v
B . For the majoirty of entries in any bin, any uncertainity in
rank (due to noise) less than V/B/4 will not change the bin
of those values (see Figure 3). Hence, once B′ is known, we
say that the optimizer is resilant to rank changes dues to noise
up to ∆ = 100/B′/4%.

IV. BUIDLING OPTIMZERS FROM SE DATA

This definition of ∆-resiliancy is based around an optimizer
that studies data in a repository to find ways to improve a
business. Hence, as a pre-condition for operationalizing ∆-
resiliancy, we need a working optimizer.

This section discusses a ranoge of optimizers that might be
used, from which it selects the W instance-based planner. The
discussion is somewhat technical and may be skippined during
a first read of this paper.

8X numbers will be ranked 1..n. Runs of conseutive equal numbers
are ranked via their average position. That is, the following n = 6
numbers (1, 2, 2, 3, 4, 5) are ranked 1, 2.5, 2.5, 4, 5, 6). For more details, see
http://goo.gl/FY4Na.

Fig. 3. Ranked values divided into B equal frequency bins. For the majority
of the ranking (e.g. those beteen 1.25 and 1.75), any rank change due to noise
less than a rank of 0.25 will not change the bin of those values.

A. Gradient Descent Optimizers

Using “what-if” queries, it is possible to use software
process models to find the fewest changes to a project that
most reduce development effort [?]. Such optimization tasks
are traditionally implemented by computing partial differential
equations of a model, and then exploring the surface of
steepest change.

A premise of this gradient descent approach is tuning
stability; i.e. that the gradients at any point in the model
can be determined with certainty. Baker [?] tested tuning
stability in the NASA93 data set (93 NASA projects using
the COCOMO ontology, see http://promisedata.org/?p=35). He
tuned the COCOMO (a, b) paramets that control for linear and
exponential effects (respectively) using from 100 samples of
90% of NASA93. The observed tunings on (a, b) covered a
very large range:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (1)

Gradient descent algorithms are confused by such large
amounts of noise. Suppose some proposed technology doubles
productivity, but a moves from 9 to 4.5. The improvement
resulting from that change would be obscured by tuning
instability.

B. AI Optimizers

The previous section argued that traditional gradient de-
scent optimizers executing over simple linear models may be
ineffective (due to the noise in SE data). When traditional
methods fail, AI search algorithms can sometimes be effective.
In this approach, we perturb the internal tunings of a model
in accordance with known variations (e.g. the known ranges
of the internal COCOMO parameters seen in 30 years of
COCOMO reserach). The AI algorithms can then sample the
space of possible behaviors, looking for stable conclusions
within a large space of possibilities. For example, given a
space of possible changes to a project, we have used AI
search algorithms to find the smallest set of changes that most
improves model output. For example,
• In [?], [?], we built optimizers using simulated annealling

(SA) and COCOMO effort/time/defect models.
• In [?], [?], [?], [?], [?], [?], we showed that SA is out-

performed by other AI algorithms. We also found that,
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Fig. 4. Effects of SEESAW optimization. As the x value increases, more
and more of SEESAW’s recommendations are applied. After some point x =
13, future changes to the recommendations result in statistically insignificant
changes. From [?].

for the purposes of COOCOMO-based optimization, our
own algorithms called SEESAW out-perfored the usual
AI algorithms (beam search, A-star, etc) [?].

The output of these AI search algorithms is an ordered set of
recommendations. It then takes linear time to explore the first
1 ≤ x ≤ all of these recommendations to find the smallest
number of recommendations that most improve a project. For
example, in Figure 4, the y-axis shows one case study using the
predictions generated by the COCOMO effort/time estimator
and the COQUALMO defect estimator9 The x-axis of that
figure shows the effect of set of changes proposed to the
project. For example:
• At x = 0, we see the predictions from the original project.
• At x = 1, 2, .. etc, we see the results of applying the

top ranked, then the second ranked (etc) recommendation
generated by the SEESAW optimizer.

• After some point (x = 13), the changes no longer become
statistically significanly different. After that point, we
prune all remaining recommendations.

Observe how the optimization recommendations of SEEAW:
• Dramatically reduces development time (from over 300

calendar months to less than 100);
• Halves the effort prediction (from over 150 months of

effort to under 75 months);
• Offers modest reductions in the number of delivered

defects (from 150 to 110).

9These y-values are the median predictions seen in 100 simulations, where
we picked inputs stochastically from the range of known project options.

C. Instance-Based Optimizers

While a successful prototype, SEESAW has certain limi-
tations. In our view, these limitations will be found in any
model-based optimizer applied to SE data:
• Data restrictions: SEESAW is a wrapper around CO-

COMO models. Hence, it can only accept projects de-
scribed in the ontology of that model- a limitation that
Shepperd views as a significant drawback in the CO-
COMO family of models [?].

• Cost: SEESAW’s optimizations are only as good as
the underlying model. Building, tuning, and maintaining
convincing software process models is a time consuming
tasks. For example, Raffo spent two years building and
tuning a software process model of the development
processes of a North American software company [?].

• Over-fitting: SEESAW samples increasingly narrow seg-
ments of the state space of a model (“ying in”, as
it were, into small cracks between the training data).
If the test data does not fall into those tiny region,
then the recommendations will fail. For example, when
SEESAW’s recommendations are tested on project data
not used to train the model, then those recommendations
fail to (e.g.) decrease development effort in over half
those experiments [?].

When model-based methods fail, the alternative are instance-
based methods that store training data in an n-dimensional
space. Inferences are then drawn from the neighors of test
instances in the training space.

Instance-based methods use no model, hence they do not
demand that the data comes in a particular form. Hence, they
do not suffer from data restrictions. As to the cost issue,
they are cheaper to develop and maintain since, in instance-
based reasoning, there is no difference in those two activities
(when new data arrives, it is added to the training space, thus
updating the instance-based reasoner). Finally, regarding over-
fitting, since there is no model, there no model to overfit.

D. Improving Software Projects with W

W requires a set of historical cases as well as a defined
context of controllable feature ranges within those cases.
Historical cases are expressed via a set of P project descriptors
such as analyst capability, function points, schedule con-
straints, etc. Each of these cases must also be labed with some
known goal metric, such as development effort in man-months.
The context consists of a subset of the project descriptors
that describe the project at hand, as well as which descriptors
are controllable. W uses the entire context to determine the
relevant neighborhood, then restricts recommendations to the
controllable descriptors only.

For example, a company may track prior software projects
via the COCOMO descriptors for analyst capability (acap),
schedule requirements (sced), lines of code (kloc), and so on.
When planning with W , the project manager could define a
new project using all available descriptors. However, business
decisions (such as a hiring freeze on analysts) would constrain



the controllable descriptors to only those deemed imple-
mentable. From these controllables, W can begin reasoning.
W assumes that a manager can offer us (a) a description

of the context ⊆ P that interests them and (b) a list
of controlable options which they can change (control ⊆
context). For example, consider the following context for a
Finnish banking software project. For simplicity’s sake, each
descriptor is rated either high, medium, or low:

context1 =
?hw ∈ {lo,md}∧?at ∈ {md, hi}∧?FP ∈ {lo,md}∧
?co ∈ {lo,md}∧?prod ∈ {md, hi} ∧ size ∈ {md, hi}∧

Here, “?” are the control labels; the manager is only con-
cerned with projects that have a low or average number of
function points (FP).
W finds a project treatment Rx by studying the project

similar to the context in the case repository. Formally, W2
explores the neighorhood of the context, looking for ways
to select for the “best” cases using some utility measure. In
this case, minimizing software effort requirements. In W , this
is a six step procedure:

1) Divide cases randomly into train : test in the ratio
N1 : N2.

2) Use context to find K nearest-neighbors within train.
3) Using the utility measure, the neighborhood into (a) the

best cases that should be emulated, and (b) the remain-
ing cases to avoid (which we call rest).

4) Rank all differences between (a) and (b) according to
how strongly they select for the best cases.

5) Use the train set again, experiment with treatments Rx

built from the top ranked items found in Step4. Return
the treatment that selects for the cases in the train set
with highest median value.

6) Test the treatment from Step6 using relevant cases from
the test set; i.e. find all rows in the neighborhood of the
context in test set; then find the subset of those rows
that match the treatment.

The current implementation of W using N1 = 2, N1 = 1,
K = 20. The following case study demonstrates one run of
W using the Finnish10 dataset. After setting aside 2/3rds
of the data for training in Step1, Figure 5 shows the most
neighborhood generated in Step2. Each instance is ranked by
how many features fall within context, labed as “overlap”
in Figure 5. Cells in gray represent ranges that fall outside
context. The top 20 rows with the highest overlap are selected.

Next, Step3 sorts the cases by utility, with K1 = 5 rows
placed into the best set and the remaining K2 = 15 rows
placed into the rest set (Figure 6). The contrast set between
these two sets is shown in Figure 7. Frequency counts are
computed for each discrete feature value, with each potential
treatment Rx ranked as follows:

rank(E) ∗ support(E) =
ratio(E|best)2

ratio(E|best) + ratio(E|rest) (2)

10PROMISE: http://promisedata.org/data

Relevant Set (Training)
hw at FP co prod size effort overlap
lo md hi md md hi 9.29 5
lo lo md md hi md 9.74 5
lo hi md hi md md 8.48 5
lo hi md lo lo md 7.71 5
lo md lo lo hi lo 8.92 5
lo lo hi md md hi 9.75 4

md lo md lo lo md 7.28 4
lo lo md hi md md 9.04 4
lo lo md hi hi md 9.08 4
lo lo lo md hi lo 8.00 4
lo lo lo md hi lo 7.83 4
lo lo md hi lo md 7.64 4
lo lo hi lo lo hi 8.41 3
hi lo hi lo md hi 9.07 3
lo md lo hi lo lo 6.38 3
lo hi lo hi lo lo 6.13 3
lo lo lo hi md lo 7.19 3
lo lo lo lo lo lo 7.00 3
lo lo lo hi md lo 7.64 2
hi lo lo lo lo lo 7.11 2

(other cases omitted)

Fig. 5. 20 most relevant cases in train set for context1.

Best set
hw at FP co prod size effort
lo hi lo hi lo lo 6.13
lo md lo hi lo lo 6.38
lo lo lo lo lo lo 7.00
hi lo lo lo lo lo 7.11
lo lo lo hi md lo 7.19

Rest set
hw at FP co prod size effort
md lo md lo lo md 7.28
lo lo lo hi md lo 7.64
lo lo md hi lo md 7.64
lo hi md lo lo md 7.71
lo lo lo md hi lo 7.83
lo lo lo md hi lo 8.00
lo lo hi lo lo hi 8.41
lo hi md hi md md 8.48
lo md lo lo hi lo 8.92
lo lo md hi md md 9.04
hi lo hi lo md hi 9.07
lo lo md hi hi md 9.08
lo md hi md md hi 9.29
lo lo md md hi md 9.74
lo lo hi md md hi 9.75

Fig. 6. Partitioning Relevant into Best and Rest

frequency
range b r b2/(b + r)

best rest
FP=lo 5/5 4/15 79%
hw=lo 4/5 13/15 38%
co=lo 2/5 5/15 22%
at=md 1/5 2/15 12%
at=hi 1/5 2/15 12%

prod=md 1/5 4/15 9%
co=md 0/5 5/15 0%
prod=hi 0/5 3/15 0%
FP=md 0/5 7/15 0%
hw=md 0/5 1/15 0%

Fig. 7. Controllable features ranked.

Note that all treatments are ranked in Figure 7, even those
that never occur in the best set. To decide which treatments
should be included as the final recommendation, the best to
worst (R1, R2, ...) individual treatments are applied to the



train set. Each time a treatment is added, the train set is
constrained to rows that only match that treatment. The median
utility of the constrainted set is compared to the original train
set. Step5 explores Rx upwards from x = 1 while:
• The median value of the rows selected by Rx+1 is greater

than that of Rx.
• The number of selected rows |Rx ∧ neighborhood| ≥ 3;

In the case of Figure 9, Step5 returns R1 (FP = lo).
Figure 9 shows the cases from this neighborhood that satisfy
R1 : FP = lo.

Relevant Set (Testing)
hw at FP co prod size effort overlap
lo hi md lo md md 7.97 6
lo md md md md md 8.72 6
lo md md md hi md 9.58 6
lo md hi md hi hi 9.84 5
lo md hi md hi hi 10.04 5
lo md md md lo hi 8.45 5
hi md lo lo md lo 6.67 4
lo lo md lo lo md 7.46 4
lo lo hi md md hi 8.99 4
lo md hi hi md hi 9.83 4

md lo hi lo lo hi 8.70 3
hi lo lo lo hi lo 9.30 3
lo lo hi hi hi hi 9.78 3
lo lo hi hi hi hi 10.19 3
lo lo lo hi lo lo 6.36 2

Fig. 8. Relevant set (Cases nearest to context1.)

Rows matching R1 : FP = lo
hw at FP co prod size effort
lo lo lo hi lo lo 6.36
hi md lo lo md lo 6.67
hi lo lo lo hi lo 9.30

Fig. 9. All rows of Figure 12 satisfying R1 : FP = lo.

Figure 9 applies R1 on the test data. Its impact is reported as
the median effort value of the cases. In the case of FP = lo,
the constrained testing set gives a median effort of 6.67, a 31%
reduction from the original estimate of 8.8.

V. RESULTS

We ran W across a series of discretized effort datasets
defined in Figure ??. For bin partitioning we used equal
frequency discretization with the number of bins ranging from
2 to 10. All datasets except for the COCOMO-based NASA93
datasets were originally numeric.

As stated earlier, given B′ bins, we compute ∆-resiliency
by the smallest B′ such that optimizations from B′ − 1 bins
are no worse than B′ and optimizations from B′ + 1 bins
are no better than B′. At this point ∆ defines the optimizer’s
resilience for up to 100/B′/4% noise levels.

Figure ?? show the results of this experiement. Note that
the leftmost column references the Mann-Whitney U ranked
test. Bin sizes of equal rank are defined to be from the same
distribution, asserting that performance is statistically no better
and no worse. Consider the Finnish dataset. 4 bin discretization
performs as well as 3 bin discretization, but no better than 5

Median Reduction Quartiles
Rank Dataset Bins Reduc 50%

1 china 8Bins 63% r
1 china 6Bins 63% r
1 china 3Bins 60% r
1 china 5Bins 59% r
1 china 10Bins 57% r
1 china 4Bins 55% r
1 china 2Bins 40% r
1 china1 6Bins 70% r
1 china1 4Bins 64% r
1 china1 10Bins 59% r
1 china1 5Bins 54% r
1 china1 2Bins 47% r
1 china1 3Bins 46% r
1 china2 6Bins 83% r
1 china2 5Bins 76% r
1 china2 4Bins 71% r
1 china2 3Bins 61% r
1 china2 10Bins 48% r
1 china2 2Bins 46% r
1 china2 8Bins 42% r
1 kemerer 6Bins 64% r
1 kemerer 4Bins 51% r
1 kemerer 3Bins 49% r
1 kemerer 2Bins 38% r
1 telecom 4Bins 81% r
1 telecom 3Bins 77% r
2 telecom 2Bins 53% r
1 miya 8Bins 72% r
1 miya 2Bins 62% r
1 miya 3Bins 54% r
2 miya 6Bins 40% r
1 finnish 4Bins 24% r
1 finnish 3Bins 22% r
1 finnish 5Bins 20% r
2 finnish 2Bins 19% r
2 finnish 6Bins 17% r

Fig. 10. Results of Discretization on W ’s effort reduction performace.

Rank changes
Attribute 25% Median 75% ∆

hw 0.5 1 1 0
at 1 1 1 1
FP 14 28 64 301
co 1 1 1 2

prod 0.183 0.428 0.874 4.312
lnsize 0.03 0.05 0.115 0.56
effort 0.024 0.0748 0.19 0.5417

Fig. 11. Measuring ∆-resiliency for the Finnish dataset

bin discretization. From this we say that ∆(finnish|W ) = 4,
asserting noise resistance for up to 100/4/4 = 6.25%.

For other datasets, the smallest ∆-resilient bin size varies
between 3 and 4 bins. This may come as a surprise, as
Kemerer, Miyazaki, Telecom, China, and Finnish are all con-
tinuous datasets with some values carried out to six decimal
places. Yet, our learner performs just as well when reduced to
simple “low, nominal, high” labelling of features.

Overall, our results demonstrate little need for fine granu-
larity in data collection. It’s quite possible to reduce data into
course chunks, thus making data collection easier.
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VI. DETERMINE LOCAL NOISE LEVELS

e.g. do test studies where the same data is collected by N
people

VII. EXTERNAL VALIDITY

just for the planning task. further work needed for more
tasks.

VIII. CONCLUSION

The core inution of ∆ resilaincy is that data quality is an
issue of “fit for purpose”. The advantage of this definition is
that we can offer a computation definition of data quality (the
data has “enough” quality if noise below known levels in the
domain do not effect the conclusion). The drawback with this
definition is that it is very tasks specific. note that for data
warehousing, should not explore just one task. presumably,
a warehouse exists for multiple tasks, not all of which may

be known at the current time. in this case, the best we can
do is determine ∆ resiliancy for known tasks, with the aim of
increasing our confidence that we have enough noise resilancy
for future tasks.
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Relevant Set (Testing) Significant
Data Subset acap time cplx aexp virt data turn rely stor lexp pcap modp vexp sced tool Cost Drivers

coc81all o • • • • • • • • • • • • • • 15
coc81-mode-embedded o • o o • o o o o • • • • • 14

coc81-mode-organic • • o • • • • o • • • • • 13
nasa93-all • • • • • • • • 8

nasa93-mode-embedded o • • • • • • • o o • 11
nasa93-mode-semidetached • • o 3

nasa93-fg-ground • o • • o 5
nasa93-missionplanning o • • • • • • o o 9

nasa93-avionicsmonitoring • o • o o o 6
nasa93-year-1975 • • • • • • • • o o 10
nasa93-year-1980 • • • o • • • • • • o 11

nasa93-center2 • • • • • o • o • • • • • • 14
Usually Significant 5 1 3 5 0 2 2 3 3 3 4 1 2 2 3
Always Significant 8 11 9 7 11 9 9 8 8 5 4 6 5 5 4

Total Significant Occurances 13 12 12 12 11 11 11 11 11 8 8 7 7 7 7

Fig. 12. •Not significantly different than 10 at 95% Confidence Interval o Not significantly different than 9 or greater at a 95% Confidence Interval


