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ABSTRACT
Adoption of advanced automated SE (ASE) tools would be more
favored if a business case could be made that these tools are more
valuable than alternate methods. In theory, software prediction
models can be used to make that case. In practice, this is com-
plicated by the ”local tuning” problem. Normally, predictors for
software effort and defects and threat use local data to tune their
predictions. Such local tuning data is often unavailable.

This paper shows that assessing the relative merits of different
SE methods need not require precise local tunings. STAR1 is a
simulated annealer plus a Bayesian post-processor that explores the
space of possible local tunings within software prediction models.
STAR1 ranks project decisions by their effects on effort and defects
and threats. In experiments with NASA systems, STAR1 found one
project where ASE were essential for minimizing effort/ defect/
threats; and another project were ASE tools were merely optional.

Categories and Subject Descriptors
I.6 [Learning]: Machine Learning; D.2.8 [Software Engineer-
ing]: Metrics—product metrics, process metrics

Keywords
COCOMO, COQUALMO, simulated annealing, Bayes

1. INTRODUCTION
Much current ASE research concerns automatic analysis of source

code or better execution-based testing tools, These tools might, say,
verify formal properties or search for the fewest regression tests
that exercise most of the system. Some of these tools are ready for
industrial use; e.g, SPIN [?] or JPF [?], just to name a few.

Recently, the authors were asked to make the business case for
introducing some of these new ASE tools into large NASA projects.
This case proved difficult to make, due to an anti-automation bias
and the local tuning problem.
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The anti-automation bias was seen at an ICSE 2007 panel. Tim
Lister (a co-author of Peopleware [?]) commented that “sociology
beats technology in terms of successfully completing projects”- a
notion endorsed by the other panelists. That is, software project
managers should focus less on new ASE tools and more on manag-
ing the sociology aspects of their team (e.g. decrease staff turnover).

Figure 1 offers some support for this bias. This figure shows
the known relative productivity effects of changing project features.
According to this figure, the benefits of automatic tools (ranked
number nine in the list) can be equaled or bettered via other means
(e.g. any item 1 to 8 or any pair of items 10 to 22).

Note that this support for the anti-automation bias is based solely
on the development effort; i.e. Figure 1 is blind to the impact of new
ASE tools in reducing defects and any other threats to the success
of the project. A complete business case should therefore study
predictors for effort and detects and threats using, for example:

• The COQUALMO defect predictor [?, p254-268];
• The COCOMO effort predictor [?, p29-57];
• The THREAT predictor for effort & schedule overrun [?,

284-291].

Such a study is complicated by the local tuning problem. These
predictors are most accurate after they have been tuned to local
data (see §??). Unfortunately, the data required for local tuning
is difficult to obtain, especially across multiple organizations [?].

id features relative weight
1 Personnel/team capability 3.53
2 Product complexity 2.38
3 Time constraint 1.63
4 Required software reliability 1.54
5 Multi-site development 1.53
6 Doc. match to life cycle 1.52
7 Personnel continuity 1.51
8 Applications experience 1.51
9 Use of software tools 1.50
10 Platform volatility 1.49
11 Storage constraint 1.46
12 Process maturity 1.43
13 Language & tools experience 1.43
14 Required dev. schedule 1.43
15 Data base size 1.42
16 Platform experience 1.40
17 Arch. & risk resolution 1.39
18 Precedentedness 1.33
19 Developed for reuse 1.31
20 Team cohesion 1.29
21 Development mode 1.32
22 Development flexibility 1.26

Figure 1: Relative effects on development effort. Data from a
regression analysis of 161 projects [?].



This is due to the business sensitivity associated with the data as
well as differences in how the metrics are defined, collected and
archived. In many cases the required data has not been archived at
all. For example, after two years we were only able to add 7 records
to our NASA wide software cost metrics repository.

The premise of this paper is that, in terms of ranking different
methods, a precise local tuning is not required. Based on research
dating back to 1981 [?], we assert that the space of possible tunings
is well known. This space can be explored to find features that
minimize effort, defects, and threats.

To test that premise, we built the STAR1 algorithm. STAR1 uses
a simulated annealer to sample the space of possible local tunings
within COCOMO, COQUALMO and THREAT. A standard SA of-
fers constraints to all variables. STAR1, on the other hand, uses a
Bayesian method to rank those constraints according to how well
they reduce effort/ defects/ threats. Superfluous details can hence
deleted and the algorithm can return a minimal set of project deci-
sions that most reduce effort and defects and threats.

The general contributions of this paper, hence, are:

• A novel search engine for sampling, then pruning a space of
options within a model.

• A novel combination of effort/defect/threat prediction mod-
els. Previously, these three models have been analyzed one
at a time or in pairs [?, ?].

• A new solution to the local tuning problem: while waiting
for local tuning data (which may never arrive), seek stable
conclusions over the set of possible tunings.

• A demonstration that the relative merits of different project
decisions can be assessed without specific local tuning data.

More specifically, using STAR1 we we found situations where
new ASE tools were optional for one NASA systems but essential
for another (measured in terms of reducing effort and defects and
threats). Also, we did not find an either/or situation where we had
to choose, as suggested by Lister, between sociology and technol-
ogy. When ASE tools were useful, they were useful in combination
with the sociological features.

The rest of this paper documents the COCOMO, COQUAL-
MO, and THREAT models, along with the STAR1 algorithm
and 2 other estimation tools : SCAT and 2CEE, and the Tactical
and Strategic analysis. STAR1 is then applied on 5 NASA/JPL
case studies for both Tactical and Strategic analysis. In this
part, our baysian ranking is verified by comparison to an alter-
nate ranking scheme which ranks according to the average re-
sults of the attributes, otherwise called Energy Ranking. This is
followed by a complete analysis of these case studies by STAR1,
the results of which are compared to those of both SCAT and
2CEE. The paper is then concluded with notes on external va-
lidity and related work.

2. DEFINITIONS
Before we can assess the relative merits of new ASE tools versus

other methods, we must first define “new ASE tools” and “other
methods”. Such a definition can be achieved via the ontology of
COCOMO, COQUALMO, and THREAT, shown in Figure 2. This
figure lists a variety of project features with the range {very low,
low, nominal, high, very high, extremely high} or

{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}

Lister’s sociological features occur many times within Figure 2.
For example, team refers to the sociology within a development
team and its cohesiveness while pcon refers to the staff turnover rate

within a project. Also listed in Figure 2 are factors like acap, pcap
representing analyst and programmer capabilities (respectively).

As to technological features, new ASE tools appear as execution-
based testing tools and automated analysis. Chulani [?] defines the
top half of automated analysis as:

4 (high): intermediate-level module and inter-module code syn-
tax and semantic analysis. Simple requirements/design view
consistency checking.

5 (very high): More elaborate requirements/design view con-
sistency checking. Basic distributed-processing and tempo-
ral analysis, model checking, symbolic execution.

6 (extremely high): Formalized1 specification and verification.
Advanced distributed processing and temporal analysis, model
checking, symbolic execution.

The upper half of execution-based testing and tools is:

4 (high): Well-defined test sequence tailored to organization
(acceptance / alpha / beta / flight / etc.) test. Basic test cov-
erage tools, test support system.

5 (very high): More advanced test tools, test data preparation,
basic test oracle support, distributed monitoring and analysis,
assertion checking. Metrics-based test process management.

6 (extremely high): Highly advanced tools for test oracles, dis-
tributed monitoring and analysis, assertion checking Integra-
tion of automated analysis and test tools. Model-based test
process management.

A review of recent proceedings of the IEEE ASE conferences
suggests that a range of five or six in the above features includes the
kind of “new ASE tools” explored at this venue. Hence, to compare
“new ASE tools” to “other methods”, we will try to reduce effort
and defects and threats using just

automated analysis ∈ {5, 6} ∨
execution-based testing and tools ∈ {5, 6}

or “other methods” (i.e. other ranges of Figure 2).
We will end this section with the definition of Tactical and

Strategic analysis. Compared to full project analysis, both Tac-
tical and Strategic analysis seek to determine recommendations
for a subset of the COCOMO II parameters. Compared to
each other, Tactical analysis is concerned with parameters that
can be changed in the short term during the execution of the
project, while Strategic analysis is concerned with parameters
that are usually modified in the course of long term planning
for the project.

The parameters that Tactical analysis is concerned with are:
flex, resl, cplx, data, docu, ruse, stor, tool, sced.

The parameters that Strategic analysis is concerned with are:
prec, pmat, acap, pcap, pcon, apex, plex, ltex, site.

All these parameters are briefly presented in Figure 2.

3. THE MODELS
This section describes our predictors (for full details, see [?]).

Each description includes notes on the space of known tunings
within that model. In the sequel, STAR1 will explore that space.

3.1 Effort Prediction with COCOMO
COCOMO predicts development effort in calendar months where

one month is 152 hours (and includes development and manage-
ment hours). In COCOMO, the scale factors SFi of Figure 2 ef-
1Consistency-checkable pre- conditions and post-conditions, but
not necessarily mathematical theorems.



Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}

Defect removal features
execution-
based testing

all procedures and tools used for testing none basic testing at unit/ integration/ sys-
tems level; basic test data management

advanced test oralces, assertion
checking, model-based testing

automated
analysis

e.g. code analyzers, consistency and
traceability checkers, etc

syntax checking with compiler Compiler extensions for static code
analysis, Basic requirements and de-
sign consistency, traceability checking.

formalized specification and verifi-
cation, model checking, symbolic
execution, pre/post condition checks

peer reviews all peer group review activities none well-defined sequence of preperation,
informal assignment of reviewer roles,
minimal follow-up

formal roles plues extensive review
checklists/ root cause analysis, cont-
nual reviews, statistical process con-
trol, user involvement integrated
with life cycle

Scale factors:
flex development flexibility development process rigorously

defined
some guidelines, which can be relaxed only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind of

software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or few risk
eliminated

most interfaces defined or most risks
eliminated

all interfaces defined or all risks
eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 15% 55% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write statements e.g. use of simple interface widgets e.g. performance-critical embedded

systems
data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not docu-

mented
extensive reporting for each life-
cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

( frequency of major changes
frequency of minor changes )

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight inconvenience errors are easily recoverable errors can risk human life
ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to 75% of the
original estimate

no change deadlines moved back to 160% of
original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor required % of available RAM N/A 50% 95%
time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life cycle

Figure 2: Features in COCOMO, COQUALMO, and THREAT.

fect effort exponentially (on KSLOC, i.e. Thousand Source Lines
of Code) while effort multipliers EMj effect effort linearly:

months = a ∗
“
KSLOC(b+0.01∗

P5
i=1 SFi)

”
∗

0@ 17Y
j=1

EMj

1A (1)

where KSLOC is estimated directly or computed from a function
point analysis; SFi and EMj are the scale factors; effort multipli-
ers of Figure 2; and a and b are domain-specific parameters. In our
NASA data, these ranges

(3.72 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (2)

With the effort multipliers, off-nominal ranges (i.e. {vl=1, l=2,
h=4, vh=5, xh=6}) change the prediction by some amount. In the
special case of the nominal range (i.e. {n=3}), that amount is one;
i.e. the nominal range make no change to the prediction. Hence,
these ranges can be modeled as a straight line y = mx + b passing
through the point {x, y}={3, 1}. Such a line has a y-intercept of
b = 1− 3m. Substituting this value of b into y = mx + b yields:

∀x ∈ {1..6} EMi = ma(x− 3) + 1 (3)

where ma denotes the effect of effort multiplier a on effort.
The effort multipliers form into two sets:

1. The positive effort EM features, with slopes m+
a , that are

proportional to effort. These features are: cplx, data, docu,
pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopes m−
a , are in-

versely proportional to effort. These features are acap, apex,
ltex, pcap, pcon, plex, sced , site, tool.

Based on prior work [?], we can describe the space of known tun-
ings for COCOMO effort multipliers to be`

0.073 ≤ m+
a ≤ 0.21

´
∧

`
−0.178 ≤ m−

a ≤ −0.078
´

(4)

Similarly, using experience from 161 projects [?], we can say that
the space of known tunings for the COCOMO scale factors (prec,
flex, resl,team, pmat) are:

∀x ∈ {1..6} SFi = mb(x− 6) ∧ (−1.56 ≤ mb ≤ −1.014) (5)

where mb denotes the effect of scale factor b on effort.
Note that the above ranges for the slopes were obtained by find-

ing the average slope for each COCOMO attribute for both effort



multipliers and scale factors over the range of values of that at-
tribute.

3.2 Defect Prediction with COQUALMO
COQUALMO has two core models, used three ways:

• The defect introduction model is similar to Equation 1; i.e.
settings to Figure 2’s effort multipliers and scale factors map
to predictions about number of defects.

• The defect removal model represents how various tasks (peer
review, execution-based testing, and automatic analysis) de-
crease the introduction of defects.

• The above two models are repeated three times for defects
introduction & removal for requirements, design, or coding.

COQUALMO follows the same convention as COCOMO for the
effort multipliers; i.e. nominal values (n = 3) add nothing to the
predicted number of defects. As above, COQUALMO is:

∀x ∈ {1..6} EMi = mc(x− 3) + 1 (6)

where mc denotes the effect of c on defect introduction.
The effort multipliers and scale factors form two sets:

1. The positive defect features, with slopes m+
c , that are pro-

portional to the estimated introduced defects. These features
are flex, data, ruse, cplx, time, stor, and pvol.

2. The negative defect features, with slopes m−
c , that are in-

versely proportional to the estimated introduced defects. These
features are acap, pcap, pcon, apex, plex, ltex, tool, site, sced,
prec, resl, team, pmat, rely, and docu.

The space of tunings for defect introducing features are:

requirements


0 ≤ m+

c ≤ 0.112

−0.183 ≤ m−
c ≤ −0.035

design


0 ≤ m+

c ≤ 0.14

−0.208 ≤ m−
c ≤ −0.048

coding


0 ≤ m+

c ≤ 0.140

−0.19 ≤ m−
c ≤ −0.053

(7)

The space of tunings for defect removal features are:
∀x ∈ {1..6} SFi = md(x− 1)

requirements : 0.08 ≤ md ≤ 0.14
design : 0.1 ≤ md ≤ 0.156
coding : 0.11 ≤ md ≤ 0.176

(8)

where md denotes the effect of d on defect removal.

3.3 THREAT: Predicting Effort and Schedule
Overrun

The THREAT model returns a heuristic estimate of the threat
of a schedule over run in the project. This estimation model is
dependent upon the COCOMO effort multipliers

Internally, THREAT contains dozens of tables of the form of
Figure 3. Each such table adds some “threat” value to the over-
all project risk when multiplied by the effort multiplier values of
the corresponding COCOMO attributes. There are six major cate-
gories: schedule, product, personnel, process, platform and reuse.
After the threat for each category is calculated, the sum is normal-
ized to produce the final threat rating.

Figure 3 can be represented as an exponentially decaying func-
tion that peaks in one corner of the risk table at a value of two. All
the tables peak at either a value of two or four. Since this model is
heuristic in nature, the exact height of the peak is not certain. When
we perform Monte Carlo simulations over THREAT, we vary the
height of the peak by a random factor 0.5 ≤ x ≤ 1 if the peak is
four, and 0.5 ≤ x ≤ 1.5 if the peak is two.

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Figure 3: An example risk table

4. SEARCH ALGORITHMS
Having defined the internal space of our models, we now search

it. A simulated annealer is used to sample that space and a back
select algorithm is used to rank feature ranges according to how
well they reduce effort/ defects/ threats.

4.1 Simulated Annealing
Monte Carlo algorithms randomly sample the space of possible

controllable model states. A Metropolis Monte Carlo algorithm [?]
creates new states by small mutations to some current state. If a
new state is “better” (as assessed via an energy function), it be-
comes the new current state used for future mutations. Otherwise,
a Boltzmann acceptance criteria is used to probabilistically decide
to assess the new state: the worse the new state, the less likely that
it becomes the new current state. The algorithm is silent on the mu-
tation mechanism. For our experiments, we freeze 2

3
of the features

and randomly select ranges for the rest.
In 1983, Kirkpatrick et.el. [?] proposed a modification that was

inspired by a procedure used to make the strongest possible glass.
Initially, glass is heated to allow atoms to move freely. The tem-
perature is then slowly lowered such that the atoms can find the
stablest configuration with lowest energy. A simulated annealing
(SA) algorithm adds a “temperature” variable to the Boltzmann ac-
cept criteria such that, at high temperatures, it is more likely that the
algorithm will jump to a new worst current state. This allows the
algorithm to jump out of local minima while sampling the space of
options. As the temperature cools, such jumps become less likely
and the algorithm reverts to a simple hill climber.

With SA, better solutions have lower “energy” so the fitness
function E is defined such that E ≥ 0 and lower values are better.
For our purposes, we model effort (Ef ) as the distance to the origin
of the 3-D space with defects (De) and threats (Th):

E =

„q
Ef

2
+ De

2
+ Th

2
«

/
√

3 (9)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x)

≤ 1. Hence,
our energy ranges 0 ≤ E ≤ 1 and lower energies are better.

The acceptance criteria P for a new state is defined using the
current temperature T , the energy of the current solution (e), and
the energy of the new mutation (en):

P (e, en, T ) = e(e−en)/T (10)

T is defined to decrease as the simulator loops through k = 1 . . . kmax
iterations. We use T = e−100∗k/kmax.

Two advantages of SA are their implementation simplicity and
their ability to handle non-linear models:

• Implementation simplicity: Figure 4 illustrates the simplicity
of the algorithm. Memory is only required for one current
solution (s), one new solution (sn) and one best solution (sb)
that stores the best solution seen at any time in the simulation.



function sa(kmax)
s := s0; e := E(s) // Initial state, energy.
sb := s; eb := e // Initial "best" solution
k := 0 // Energy evaluation count.
while k < kmax and e > emax // Loop
sn := neighbour(s) // Pick some neighbour.
en := E(sn) // Compute its energy.
if en < eb then // Is this a new best?
sb := sn; eb := en // Yes, save it.

if random() < P(e, en, temp(k/kmax))
then s := sn; e := en // Maybe jump

k := k + 1 // One more evaluation done
return sb // Return best

Figure 4: SA pseudo-code: a new solution sn (with new energy
en) replaces the current solution if (a) it has a lower energy or
(b) the acceptance predicate P endorses it. Only in the case of
(a) should the new solution replaces the current best solution.

Figure 5: Processing a JPL requirements model.

• Non-linear models: Previously [?, ?], we have applied SA to
non-linear JPL requirements models where minimizing the
cost of project mitigations can decrease the number of re-
quirements achieved by that project. Hence, decreasing both
the cost and achieved requirements is a non-linear problem
that must trade between minimizing cost and increasing re-
quirements coverage. The top-left line of Figure 5 divides
the behavior of the JPL requirements models before and af-
ter simulated annealing. As shown below the line, initial
Monte Carlo sampling of the possible mitigations lead to a
large range of costs and benefits. Simulated annealing found
a set of mitigations that lead to the small cloud of solutions
above the line. Compared to the initial samples, these new
solutions had decreased cost, increased benefit (number of
requirements covered), and decreased variance (shrank the
space of solutions).

Two disadvantages of SA algorithms are their incompleteness and
the complexity of their solutions:

• Incompleteness: In our domain, we have some evidence that
the incomplete nature of the heuristic SA search is not a ma-
jor problem. Figure 6 shows a sample run of our SA tool
running on our prediction models for K = 10, 000 simula-
tions. As k increases for 1. . .10, 000, it becomes less and
less likely that a better best has been missed. Hence, we run
our simulations for ten times the period it takes for best to
stabilize (at k ≈ 1000).

• Solution complexity: Simulated annealers offer constraints
to all controllable features. Often this is an over-constrained
solution since, in many domains, a repeated empirical result

Figure 6: Dots & lines are SA output from current & best solu-
tion (respectively) after k simulations.

is a feature subset selection effect; i.e. models that constrain
M variables perform just as well, or better, than models that
constrain N variables (M � N ) [?, ?]. For example, Ko-
havi [?] studied some machine learners to find that using just
19% of the available features increased prediction accuracy
by just 2.14% (on average). For another example, when fea-
ture subset selection was applied to the JPL requirements
model of Figure 5, we found that up to 2

3
-rds of the fea-

tures can be left unconstrained, without effecting the con-
clusions [?].

In terms of the goal of this paper, exploring feature subset se-
lection is very important. Before we can remove non-essential fea-
tures, we must first rank them according to their effectiveness. As
we shall see, this ranking will be insightful to the task of assessing
the relative value of new ASE tools and other methods for reducing
effort/ defects/ threats.

4.2 Ranking Methods
There are two ranking methods that can be used by STAR1.

Thses are Bayesian ranking and Energy ranking. The former
is the main ranking method used by STAR1, while the latter is
included in STAR1 for verifying that the Bayesian ranking is
valid.

4.2.1 Support-Based Bayesian Ranking
STAR1 ranks the features ranges seen in K runs of a simulated

annealer by dividing the K runs into:

• Best: those associated with the BEST% solutions (i.e. those
with the BEST% least energy);

• And the rest (i.e. the other 100-BEST% of solutions).

It then computes the probability that a range is found in best. using
Bayes’ Theorem. Informally, the theorem says next = old ∗ new
i.e. what we’ll believe next comes from how new evidence effects
old beliefs. More formally:

P (H|E) = P (E|H)P (H) / P (E) (11)

i.e. using evidence E and a prior probability P (H) for hypothesis
H ∈ {best, rest}. The theorem calculate a posteriori probability
P (H|E). Simple Bayes classifiers are often called “näive” since
they assume independence of each feature. While this assumption
simplifies the implementation (frequency counts are required only
for each feature), it is possible that correlated events are missed by



this “näive” approach. Domingos and Pazzani show theoretically
that the independence assumption is a problem in a vanishingly
small percent of cases [?]. This explains the repeated empirical
result that, on average, seemingly näive Bayes classifiers perform
as well as other seemingly more sophisticated schemes (e.g. see
Table 1 in [?]).

When applying the theorem, likelihoods are computed from ob-
served frequencies, then normalize to create probabilities (this nor-
malization cancels out P (E) in Equation 11, so it need not be com-
puted). For example, after K = 10, 000 runs divided into 1,000
lowest 10% best solutions and 9,000 rest, the range rely = vh
might appears 10 times in the best solutions, but only 5 times in
the rest. Hence:

E = (reply = vh)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (12)

Previously [?] we have found that Equation 12 is a poor ranking
heuristic since it is distracted by low frequency evidence. For ex-
ample, note how the probability of E belonging to the best class is
moderately high even though its support is very low; i.e. P (best|E) =
0.66 but freq(E|best) = 0.01.

To avoid such unreliable low frequency evidence, we augment
Equation 12 with a support term. Support should increase as the
frequency of a range increases, i.e. like(x|best) is a valid support
measure. STAR1 hence ranks ranges via

P (best|E) ∗ support(best|E) =
like(x|best)2

like(x|best) + like(x|rest)
(13)

4.2.2 Score-Based Energy Ranking
While the main ranking algorithm used by STAR1 is the Bayesian

method explained above, another very basic and intuitive baseline
method was implemented to test Bayesian ranking. This method is
Score-Based Energy Ranking. Basically this ranking scheme uses
the means of the results from the Simulated Annealing simulations
to assess and rank COCOMO II attribute-value combinations. The
mean results are based the scores generated by the Energy Func-
tion of the SA algorithm. These scores are basically the distance
from the origin to a point in three dimentional space whose coor-
dinates are the normalized Effort, Defects, and Threat scores from
our models. Energy Ranking works as follows:

1. DATA COLLECTION: This is done while the SA algorithm
is running whenever the algorithm generates a new candidate
best result. The attribute-value combinations that are used for
that candidate are detected, and data concerning the score is
stored for each of these used attribute-value combinations.

2. MEAN SCORE CALCULATION: After the SA goes through
its K runs, the mean scores for all the attribute-value com-
binations are calculated. After this step, the attribute-value
combinations are ready to be ranked.

While Energy Ranking seems to be simple enough, is has one
main potential weakness: outliers in simulations could taint the
score of an otherwise good attribute-value combination, causing its
rank to decrease compared to seemingly worse combinations. This

issue is not present in Bayesian Ranking since it is dependent on
frequency and support rather than scores.

4.3 The STAR1 Algorithm
To apply Equation 13, STAR1 runs in six phases. In terms of

standard machine learning theory, step 1 generates a training set;
steps 2,3,4 do some generalization; and step 5 tests the learned the-
ory on data not seen during training.

1. SAMPLE: To sample the ranges from the models, STAR1 runs
the simulated annealer K1 = 1, 000 times.

2. DISCRETIZE: The data seen in the K1 samples is then dis-
cretized into D = 10 bins. Discretization converts a con-
tinuous range into a histogram with n break points b1 . . . bn

where (∀i < j : bi ≤ bj). After discretization, many obser-
vations can fall into the same range between bi and bi+1 at
frequency counts ci. This study used equal width discretiza-
tion; i.e.

∀i, j : (bi − bi−1) = (bj − bj−1)

3. CLASSIFY: The ranges are then classified into those seen in
BEST% best or rest.

4. RANK: The ranges are then ranked in increasing order either
using Support-Based Bayesian Ranking §?? or Score-Based
Energy Ranking §??.

5. PRUNE: STAR1 then runs K2 experiments with the models
where the top ranked ranges 1..X ranges are pre-set and the
remaining ranges can be selected at random. In terms of the
business case for automated software engineering tools, this
step is crucial since it would rank new ASE tools alongside
other methods.

6. REPORT: STAR1 returns the 1..X ranges that produce the least
effort, defects, and threats.

To run our experiments, we had to apply our engineering judg-
ment to set the parameters:

K1 = 1, 000, K2 = 1, 000, D = 10, BEST = 10%

Initially, we planned experiments that varied these parameters, as
well as trying other discretization policies. However, our initial
results were so promising (see below) that we are not currently mo-
tivated to explore other parameter settings (such an exploration is
planned for future work).

Note that for Energy Ranking, the algorithm is slightly different.
Energy ranking does not require the disretizing and the classifying
steps

5. OTHER TOOLS
In this paper, results from STAR1 are compared with results from

two COCOMO II effort estimation tools. These tools are SCAT and
2CEE.

5.1 SCAT
SCAT is an acronym for Software Cost Analysis Tool. It is an

Excel-based version of the University of Southern Californias Con-
structive Cost Model II (COCOMO II). SCAT is dependent on a
preclibrated COCOMO II model, as it is unable to perform local
calibration. SCAT is also an adaptation to COCOMO II that al-
lows the use of a range of inputs (Low, Most Likely, High) to cap-
ture uncertainty and generate probability distributions through the
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Figure 7: Four of the five case studies.

use of Monte Carlo techniques. Therefore, unlike the USC version
of COCOMO, which produces a single point estimate, SCAT pro-
duces distributional estimates in the form of cumulative distribution
functions (also known as S-curves).

The purpose of this tool is to provide software cost estimates us-
ing a Monte Carlo simulation in combination with COCOMO II
cost drivers and algorithms. SCAT is the current tool used within
JPL, and is therefore considered to be the baseline in our case stud-
ies.

5.2 2CEE
2CEE is a COCOMO II based software effort estimation tool.

2CEE is the brainchild of collaboration between NASAs Jet Propul-
sion Laboratory (JPL) and West Virginia University (WVU). It is
designed to explore the uncertainty in the model and in the esti-
mate, to allow estimates early in the lifecycle by representing new
projects as ranges of values, and to provide numerous calibration
options including stratification and feature selection. By automat-
ing many tasks for the user it provides gains in cost analyst effi-
ciency.

2CEE uses historical project data for COCOMO II model cali-
bration and estimation of COCOMO II effort for new projects. Fur-
thermore, the estimates are generated through a Monte Carlo simu-
lation, with the ability to run an n-fold cross validation on available
data.

6. EXPERIMENTS
In this section, we will present experimental data related to STAR1.

We will present first how well STAR1 works in some case studies
and examples with different internal settings. After that we will
present a comparison with the two other tools that have been briefly
introduced in §??.

6.1 STAR1 Experimental Data
STAR1 was tested on the four case studies of Figure 7:

• OSP: The Orbital Space Plane GNC prototype (a 1990s NASA
system). OSP was an early prototype for OSP2.

• OSP2: the guidance and navigation control system of a cur-
rent NASA launch vehicle, under development.

• FLIGHT/GROUND: these two are project templates used for
nasa projects.

In Figure 7, values are fixed while ranges represent a space of
options. In the sequel, this observation will be important: OSP2
constrains most of its features to fixed values while OSP allows
more variation in feature ranges. Flight and Ground are more like
project templates that, for the most part, enforce restrictions on the
ranges of the project. OSP and OSP2 and both considered ”Flight”
projects.

6.2 STAR1 vs. SCAT vs. 2CEE
While STAR1 has been shown above to be effective as a rec-

comendation tool for reducing COCOMO effort, defects, and threat,
we would like to compare it to other tools that are used for the
purpose of reducing COCOMO effort. These tools are SCAT and
2CEE. Note that this comparison isn’t exactly an apples to apples
comparison, reason being that STAR1 takes a fundamentally differ-
ent approach compared to those two other tools. While SCAT and
2CEE depend on having a calibrated COCOMO model, STAR1 by-
passes that dependency by exploring the space of possible calibra-
tions of the model, and attempting to reduce the COCOMO effort
by presenting model recommendations to be applied by the project.
It also differs in that it doesn’t only work with simply one model,
but rather works with a family of models, which in this case is the
COCOMO family of models consisting of the Effort, Defects, and
Risk models presented in §??.

For this comparison we use the effort results from STAR1 asso-
ciated with full analysis, along with results from the other two tools
after running them on th same projects that STAR1 was run on.

7. EXTERNAL VALIDITY
One benefits of STAR1’s analysis is a reduction in sampling bias.

Conclusions reached from prediction models tuned to local data are



biased by that tuning. The conclusions reached here, on the other
hand, are stable over a large space of possible tuning biases.

Another issue is model bias. The above conclusions are drawn
from the internal space of some software prediction models. Clearly,
if those predictions models are wrong, then these conclusions are
also wrong, For example, the reader might believe that this analysis
has overlooked the impact of features not mentioned in Figure 2.

One mitigation for this risk is to use the best available models.
The models used here have been extensively validated:

• Chulani et.al. [?] reports a one study with a Bayesian tuning
algorithm using 161 projects. After tuning, a cross-validation
study showed that COCOMO produced effort estimates that
are within 30% of the actuals, 69% of the time.

• Studies with the COCOMO-81 project database have shown
that the THREAT index correlates with well with the months

KDSI
(KDSI= thousand of delivered source lines of code). This
result is consistent with the the base premise of THREAT;
i.e. bad management can delay software delivery.

• COQUALMO was developed using extensive feedback from
the COCOMO affiliates group. This group comprises dozens
of companies, that have donated 161 data sets, that meet each
year to discuss improvements to the current set of models2.

Another threat to external validity are the biases of the authors.
Given the intended publication venue, and the authors’ history of
publishing on automatic SE tools, perhaps this study is inherently
biased in favor of new ASE tools.

To enable other researchers to question our biases, we take care
to make our case studies fully reproducible. Reproducibility is an
important methodological principle in other disciplines since it al-
lows a community to confirm, refute, or even improve prior results.
In our view, in the field of software engineering, there are all too
few examples of reproduced, and extended, results. Accordingly,
an appendix to this paper details how to install and run the software
required to repeat the OSP&OSP2 case studies. Such reproducibil-
ity allows other researchers to check if our advocacy of automated
tools biases our conclusions.

Yet another threat to external validity is our evaluation bias.
Tacit in Equation 9 is an assumption that reductions in threat, effort,
and defects are of equal value. This may not be the case, especially
for safety critical software where reducing defects has top priority,
regardless of the cost.

Having documented this problem, we now ignore it. This paper
has shown that there exists at least one evaluation bias under which
ASE tools are essential to at least one project. For this paper, that
will suffice.

The final threat to external validity is STAR1’s search bias. There
are 2N possible combinations of N ranges but STAR1’s PRUNE
operator only explores N of them. Hence, in theory, the rankings
of Figure 15 and Figure 17 may not accurately reflect the true rela-
tive effectiveness of the ranges.

There is some theoretical and empirical evidence that this search
bias is not a major issue. Clark has conducted a theoretical study
concluding that Equation 13 offers the wrong rankings in a very
small percent of cases [?]. To check his theory, Clark ran numerous
experiments comparing (a) the estimated “best” combinations of
ranges found by Equation 13 and the (b) actual best combinations
found by generating combinations, then trying each one against the
training data. In all those experiments, Clark only found one minor
case where ranking(a) 6= ranking(b).

Clark’s results explains the U-shape seen in the above plots. If
the rankings of Equation 13 were accurate then, initially, perfor-
2http://sunset.usc.edu/events/2006/CIIForum/

mance should improve as an increasing number of effective ranges
are applied. Eventually we run out of the effective ranges and start
applying ranges with low probability and support of belonging to
the best class. After that point, performance should degrade. In the
middle of these two extremes would be a low energy valley where
the most effective constraints have been applied. Such U-shape
performance plots were seen in Figure 15 and Figure 17.

Clark’s analysis is too long to present here. However, a small
simulation illustrates his style of argument. STAR1’s PRUNE op-
erator ranks N ranges in the order 1, 2, 3..N . Consider a greedy
search that returns the first 1, 2, 3...X ≤ N of these ranges. Such
a search grows X till some superset 1..Y performs worse the subset
1..X (X < Y ). For this greedy search to be optimal, then longer
combinations 1..Y can’t be more effective than shorter combina-
tions 1..X .

This condition can be checked via simulation. Consider the case
of N = 100 ranges classified into 1000 best cases and 9000 rest
cases; i.e. P (best) = 10%, and P (rest) = 90%. A simula-
tor can randomly generates N=100 pairs {a, b} for F (a|best) and
F (a|rest) (respectively) where

1 ≤ a ≤ 1000 ∧ 1 ≤ b ≤ 9000

After Equation 13 ranks the pairs, the simulator picks two combi-
nations 1..X and 1..Y where 1 ≤ X < Y ≤ 100. According
to Equation 12, 98% of time, the shorter combination has a higher
probability than the longer one of being best. That is, STAR1’s
linear search over Equation 13’s rankings 1 to N will not miss in-
teresting combinations.



8. RELATED WORK
This report is somewhat at odds with a standard IEEE ASE pa-

per. For example, there many reports at this conference of innova-
tive tools that find defects missed by other methods. Such reports
offer strong support for the utility of new ASE tools. However, note
that they assess the new ASE tools soley in terms of defect detec-
tion. In the paper, on the other hand, we have tried to assess new
ASE tools in the terms of multiple success criteria (defect removal,
effort, threats).

This paper was motivated by a lack of results regarding the rela-
tive merits of new ASE tools versus different methods. To be fair,
apart from Figure 1, the general software engineering literature is
weak on the relative merits of any set of methods. We recently
reviewed the (approx) 100 V&V methods offered by the SE liter-
ature3. While some evidence was offered for the value of general
techniques4 there was very little precise evidence on the merits of
a particular tool. Further, there was almost no comparisons of the
relative effectiveness of pairs of methods applied to the same task.

Lacking results from the literature, we turned to model-based
methods. This work is an example of the Harman’s search-based
software engineering (SBSE) paradigm [?, ?] where SE activities
are recast as optimization problems. STAR1 searches COCOMO-
family software prediction models. Numerous alternate models
have been developed by the software prediction and modeling com-
munity5. Some of these are specialized models are built to serve
the needs of a particular software development organization. The
COCOMO family of models, on the other hand, were built to gen-
eralize across the community of the COCOMO affiliates.

Historically, this work was inspired by Josephson and Chan-
drasekaran’s work on exploration of large design spaces [?]. In
1999, Josephson reviewed our earliest prototype, which was taking
too long to terminate. His proposed solution, (try some stochastic
sampling) eventually grew into STAR1.

We have recently become aware that STAR1’s Bayesian rank-
ing methods is analogous to Ruinstein’s cross-entropy method [?].
Cross-entropy is applied during simulated annealing to speed up
convergence to best solutions (by avoiding rare events). In future
work, we will explore more the connection of our Bayesian ranking
to cross-entropy.

Prior related work by this team includes:

• The TAR1 minimal contrast set learner, reported at ASE 2000,
explored a Monte Carlo simulations of the COCOMO and
THREAT models [?].

• TAR2 [?], an optimized version of TAR1, was applied at
ASE 2002 [?] and RE’02 [?] to different software prediction
models.

This paper reports numerous improvements over this prior work:

• Previously, we worked on a single prediction model or pairs
of predictive models. This paper is the first to study effort
and defects and threats in one combined analysis.

• This prior work did not adjust the parameters internal to the
prediction model. This new work, on the other hand, makes
extensive adjustments to those parameters.

• Previously, our learners commented on just a small subset of
the ranges. This new work ranks all the ranges, allow man-
agers to perform their own detailed analysis of the relative
effects of different project decisions.

3Wallace and Fujii’s definitions of V&V [?]; the IEEE 2004 stan-
dard on V&V [?]; NASA’s recommended V&V practices [?]
4E.g. improving software maturity decreases rework [?]
5http://www.icsp-conferences.org/icsp2007/

• This new learner runs much faster than the prior work. STAR1
generated the OSP and OSP2 results in less than a minute. A
similar range ranking, by TAR1, would require an overnight
run [?]. TAR2 (and a later version, TAR3) run much faster
but even those optimized systems would require 20 to 30
minutes to generate feature range rankings.

• Not only does STAR1 search faster but it explores a larger
space. As far as we know, this is the first report of an exten-
sive exploration of the space of tunings internal to COCOMO
family prediction models.

9. DISCUSSION
We defined “new ASE tools” to be:

automated analysis ∈ {5, 6} ∨
execution-based testing and tools ∈ {5, 6}

Making the business case for new ASE tools is complicated by
an anti-automation bias (”sociology beats technology”) and insuf-
ficient data for local tuning of prediction models.

We hypothesized that precise local tunings are not required to
assess the relative merits of new ASE tools over other methods
The space of tunings is well known- we just need to find what
conclusions are stable within that space. Simulated annealing was
used to sample that space and generate a set of 10% best and 90%
rest solutions The N ranges in those solutions were ranked using
a support based Bayesian method. Experiments were performed
where the top X ≤ N ranged ranges were set and COCOMO,
COQUALMO, and THREAT were allowed to randomly select the
remaining ranges.

By varying the size of X , it was possible to find project deci-
sions that most minimized effort/ defect/ threat. Inspecting those
decisions for two NASA systems, we found that new ASE tools
were optional in one (OSP) and essential in the other (OSP2).

Any generalization based on just two case studies should be treated
with caution. The follow observations should therefore be checked
on other projects:

• Recall that (a) OSP was an early prototype for OSP2 and
that (b) new ASE tools were optional for OSP but essential
for OSP2. That is, project maturity may be a selector for the
successful use of new ASE tools.

• In Figure 15 and Figure 17, only very high and extremely
high range automated analysis or execution-based testing and
tools were used to minimize effort or defects or threats. Lower
range usage of these tools was never useful. That is, when
using new ASE tools, use them thoroughly or not at all.

• In our case studies augmenting sociological decisions with
new ASE tools can lead to the greatest reduction in effort/
defects/ threats. That is sociology does not beat technology
and technology can compliment sociology.

• When this study could make the business case for new ASE
tools, a pre-condition for that case was the inclusion of soci-
ological decisions (e.g. about process maturity and sched-
ule pressure) along with the new ASE tools. Hence ASE
researchers need to study both software development tech-
nology and sociology.

Our conclusions are project-specific but the method of generating
them is general to any project that can be described in terms of
the Figure 2 table. An appendix of this paper describes how to
download, install, and use STAR1 to find the most important fea-
ture ranges that reduce effort / defects / threats for projects.



10. REFERENCES
APPENDIX
A. OBTAINING AND USING STAR1

These instructions should support a LINUX and CYGWIN in-
stall of STAR1. In the event of technical difficulties, please contact
the first two authors (Menzies or Elrawas).

bash -i
[ ! -d "$HOME/bin" ] && mkdir $HOME/bin
export PATH="$PATH:$HOME/bin"
wget http://unbox.org/wisp/tags/STAR/1.0/STAR_1.0.zip
unzip STAR_1.0.zip
make # requires gcc
cd ˜/STAR
cd eg
./1 | tee osp2.out | less
./2 | tee osp.out | less

To run STAR1 on projects other than OSP or OSP2:

• Copy and edit one of the projects files in
˜/STAR/STAR_projects.

• Note that you will have to edit both a x.ranges and x.values
file.

• Then copy and edit (e.g.) ˜/STAR/eg/1 to point to your
edited project details.

B. PLOTS
This section has the plots.
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Figure 8: Strategic analysis: ALL results. Note the policy point
being at X=13.
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Figure 9: Strategic analysis: flight results. Note the policy point
being at X=13.
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Figure 10: Strategic analysis: ground results. Note the policy
point being at X=12.
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Figure 11: Strategic analysis: OSP results. Note the policy
point being at X=10.
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Figure 12: Strategic analysis: OSP2 results. Note the policy
point being at X=7.
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Figure 13: Tactical analysis: ALL results. Note the policy point
being at X=14.
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Figure 14: Tactical analysis: flight results. Note the policy point
being at X=12.



 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0  10  20  30  40  50  60

E
ne

rg
y

median
spread

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60

D
ef

ec
ts

median
spread

 0
 100
 200
 300
 400
 500
 600
 700

 0  10  20  30  40  50  60

E
ffo

rt

median
spread

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  10  20  30  40  50  60

T
hr

ea
t

median
spread

X feature = range
1 ruse = 2
2 flex = 4
3 automated analysis = 6 NN
4 peer reviews = 6
5 execution testing and tools = 6 NN
6 resl = 5
7 docu = 1
8 cplx = 2
9 stor = 3

10 data = 2
11 ruse = 3

Figure 15: Tactical analysis: ground results. Note the policy
point being at X=11.
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Figure 16: Tactical analysis: OSP results. Note the policy point
being at X=12.
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Figure 17: Tactical analysis: OSP2 results. Note the policy
point being at X=6.


