
Which: A Stochastic Best-First
Search

Zachery Milton
April 17, 2008

Committee:
Tim Menzies, Ph.D.

Arun Ross, Ph.D.
Katerina Goseva-Popstojanova, Ph.D.

Motivation
● Treatment learning[1] fills a unique niche in data

mining.
– Previous work in treatment learning has only used one

heuristic
– No real validation tests made with this type of learning

● Previous work with software project defect
detection has not used treatment learning.
– These studies either use classic machine learners[2-5] or

statistical models[6-9].
– Results with these experiments do not give amount of

code that needs to be searched.

Difficulties with Prior Results in
Software Defect Detection

● The evaluations in most of these experiments are
given in probability of detection and probability of
false alarm.

● However, these results give no insight to the
amount of code scanning required for these results.
– Effort is defined as the fraction of the code

scanned over the total code in the project.

Treatment Learning

● The process of creating a rule, or treatment,
that predicts one specific class in a data set.
When this is applied to the data set, a subset
is created that will have a majority of the
desired class in it.

Rx : x=a1∧ y=a2∧b=a3

Lift

● Lift is an evaluation heuristic TAR3[1] that
uses to score its rules.

Lift Rx=
∑
i=1

n

f i ∗2i

∑
i=1

N

F i ∗2i

● The lift of a rule is equal to the sum of all
classes in the subset over the sum of all
classes in the entire set.

Which

Which

● A stochastic best-first search.
● Implemented as a Linked List.
● Learns rules by stochastically traversing the

search space.
● A treatment learner that does not have a

hard-wired evaluation heuristic.

Which
A Stochastic Best-First Search(BFS)

● In a BFS[10], layers
are expanded and
nodes are scored.

● The top N scoring
nodes are then
expanded another
layer.

Which
A Stochastic Best-First Search(BFS)

● In Which's search,
subtrees are grafted
based on how well
they score.

● This process is
called pickTwo.

Which
A Stochastic Best-First Search(BFS)

● An important difference
from the standard BFS is
that Which does not
expand all nodes at the
current level.

● Nor does it expand levels
one at a time.

● This allows it to jump
around the search space to
find an optimum rule faster.

Which
A Linked List

● Instead of storing the tree and grafting subtrees, Which
stores all explored paths as sets of attribute-value pairs
and creates new rules by the union operation.

● Which can create new rules as both conjunctions and
disjunctions.

outlook=overcast
humidity=high
rain=true
humidity=low
rain=false
...

outlook=overcast
AND rain=true

x=a1∨x=a2∧ y=b1∨y=b2∧z=c1

Which
A Linked List

● Each new rule created is inserted into the list according to
its score.

● If the new rule scores well, its chances of being picked are
high.

outlook=overcast
humidity=high
outlook=overcast
AND rain=true
rain=true
humidity=low
rain=false

humidity=high
AND outlook=overcast
AND rain=true

Which
Learns rules by stochastically traversing the

search space.
● In order to determine which

rules are to be combined,
Which stochastically picks
two rules based on
probability.

● Two random numbers are
generated and they are
compared to the
probabilities in the stack.

Which
Learns rules by stochastically traversing the

search space.
● This algorithm will create

the probability table and
select a rule index from the
table.

● Two rule indexes are
selected in this way and
their corresponding rules
are combined.

● This new rule is placed in
the list in a position
dependent on its score.

Which
A treatment learner that does not have a hard-

wired evaluation heuristic.
● The method that Which scores is user-definable.
● This allows for Which to create rules that are specific to the

domain it is being used in.
● Some example heuristics:

– J48:

– Precision

– Ripper

– Balance

H J48=−log2
p
pn

H precision=
p
pn

H Ripper=
p−n
pn

H balance=
PD2∗1−PF 2∗1−Effort 2∗

● J48 and Ripper are discussed in detail in [11] and [12] respectively

Which
A treatment learner that does not have a hard-

wired evaluation heuristic.
● The classic machine learners of J48 and Ripper have hard-

wired internal evaluations heuristics.
– This creates a general process that might not perform as

well as an internal evaluation heuristic that is specific to
an application.

– In other words, the class learners create rules on P that
are evaluated on Q.

● Which circumvents this problem by allowing user-defined
evaluation heuristics.
– Which creates rules on Q that are evaluated on Q.

Which
Algorithm

read test file
for each attribute a

for each value a[v]
score a[v]
place a[v] in list

for i = 1 to C
pick rule indexes r1, r2
newR = union(r1,r2)
score newR
place newR in list

print list.top

Experiments

● Three major sections
I. Which Parameters
II.Which and TAR3
III.Which on Defect Detection Data
IV.Micro-Sampling and Which

Category I
Which Parameters

Category I
Which on Parameters

● Experiments were done on
Which's maximum list size
being set to a finite number.

● The numbers chosen were:
– 10, 20, 50, 100, 1000,

● Experiments were ran on
defect detection data

● The results on the left show
that in most cases the stack
size being finite did not
change the overall
performance of Which

● Recommendation: Stack
size set in range [50,100]

∞

Category I
Which on Parameters

● The algorithm given earlier
shows an extreme
dependence of the run time
on the size of the list.

● This table shows the
different run times of the
Which algorithm on 3
different sets.

Category II
Comparison of Which and TAR3

Category II
Comparison of Which and TAR3

● Which was ran using the lift heuristic that TAR3
uses.

● Run on 14 UCI[22] data sets using 10x10 cross-
validation with 5 different discretization policies.
– 2bins, 4bins, 8bins, 16bins, 32 bins equal frequency

● Results show that Which wins 30.5% of the time
and ties TAR3 57.7% of the time.
– Which does as well or better than TAR3 88.2% of the

time.

Category II
Comparison of Which and TAR3

Results

Category III
Which on Defect Detection Data

Category III
Critical Information

● Distribution of faults in software projects.
● Receiver-Operating Characteristic Curves
● The “Koru” Diagram

Category III
Fault Distribution

● Several studies have
been made on the
distribution of faults in a
software project[13-17].

● This distribution closely
follows the Pareto
Distribution[18], or “80-
20” rule.
– This says that 80%

of the faults lie in
20% of the code.

Category III
The “Koru” Diagram[19]

● Specialized diagram to
illustrate the “path” a
detector takes over the
data set to reach its final
score.

● Created by taking the
subset of instances the
detector classified as true
and sorting them by their
LOC attribute.

● Starting from (0,0),
increment the PD if a true
was properly classified as
true and increment the
%LOC at every instance.

Category III
The “Koru” Diagram

Special Detectors
● Oracle

– The perfect detector
– Classifies all defective

modules perfectly.
● ManualDown

– Sort the instances in
descending order by
LOC and classify all as
true

● ManualUp
– Sort the instances in

ascending order by LOC
and classify all as true.

Category III
The “Koru” Diagram

● Evaluation Metric
– The area under the detector's path divided by

the area under the oracle's path.
● The evaluation Metric is used to see how

much like the oracle's path the detector's
path is.

● Extend the end point (x,y) of all detectors to
the point (100,y).
– Ensures the oracle has the most area.

Category III
The “Koru” Diagram

● Which's heuristic in this category is balance.
– Balance attempts to create rules that are close

as possible to (0,100) in the Koru Diagram.
– For these experiments:

●

●

●

● PD and effort too closely correlated to take
both into account.

● These scalars make low PFs much more
preferred than higher PDs

=1

=1000
=0

Category III
Experiments

● Which on MDP[20] data.
● Which on Turkey data.
● Which on AT&T data.

Category III
Experiments on MDP Data

● These experiments were done on 7 project files
with 10x3 cross-validation

● The classic machine learners of J48, NaiveBayes,
and Ripper are represented here.

● Results divided up into 3 classes:
1.Which > manualUp > classic learners

• 5/7
2.Which > all

• 1/7
3.ManualUp > classic learners > Which

• 1/7

Category III
Experiments on MDP Data

Results
● Each row of the

table on the left is a
different category.

Category III
Experiments on Turkey Data

● The Turkey data consisted of 3 data sets with
a 10x3 cross-validation.

● The classic machine learners of J48,
NaiveBayes, and Ripper are represented.

Category III
Experiments on Turkey Data

Results
● Results show that Which

wins 2/3 and loses to
manualUp and
manualDown in the other
case.

Category III
Experiments on AT&T Data.

● AT&T data consists of one project with 35
releases.
– Experiments were done using releases (1-(n-1))

for train and release n for test.
● Classic learners of J48, NaiveBayes, and

Ripper are represented.

Category III
Experiments on AT&T Data.

Results
● Typically performs better

than the classic machine
learners but loses to
manualUp and/or
manualDown.

Category III
Overall Results

TurkeyMDP AT&T

Category IV
Micro-Sampling and Which

● Micro-Sampling:
– Create an even distribution of a binary class set with N

instances in the set.

● Micro-Sampling experiments done on MDP and
Turkey data sets using a 10x3 cross-validation.

Category IV
Micro-Sampling and Which

Results
● Results show that while

Which2 is best performer, it
is hardly a stand-out
performance.

● Interesting that Micro20,
the most limiting policy,
performs better than the
other micro-sampling
policies.

● All perform very close to
the same.

Findings
● Treatment learning does indeed work over cross-

validation.
● Which, a simpler algorithm than TAR3, still performs

just as well or better 88% of the time.
● Treatment learners have a place in the field of defect

detection in software projects.
● Creating rules with the true goal in mind drastically

improves performance.
● Micro-Sampling is an effective sampling policy that

does not hurt the performance of Which.

Future Work

● Improving the run-time of the Which
algorithm.

● Fine-tuning the Which configuration
parameters.

● Converting Which to a classification learner.
● Discovering better scoring heuristics for

Which to learn with in defect detection data.

References
● [1]Ying Hu. Treatment learning: Implementation and application. Master’s thesis, University of Brittish Columbia, Brittish

Columbia, Canada, May 2003.
● [2]Lan Guo, Yan Ma, Bojan Cukic, and Harshinder Singh. Robust prediction of fault-proneness by random forests. In

ISSRE ’04: Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE’04), pages
417–428, Washington, DC, USA, 2004. IEEE Computer Society.

● [3]Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 33(1):2–13, 2007.

● [4]Tim Menzies, Justin Di Stefano, Kareem Ammar, Kenneth McGill, Pat Callis, Robert (Mike) Chapman, and John
Davis. When can we test less? In METRICS ’03: Proceedings of the 9th International Symposium on Software Metrics,
page 98, Washington, DC, USA, 2003. IEEE Computer Society.

● [5]Tim Menzies and Justin S. Di Stefano. How good is your blind spot sampling policy? Hase, 00:129–138, 2004.
● [6]Erik Arisholm and Lionel C. Briand. Predicting fault-prone components in a java legacy system. In ISESE ’06:

Proceedings of the 2006 ACM/IEEE international symposium onEmpirical software engineering, pages 8–17, New York,
NY, USA, 2006. ACM.

● [7]Robert M. Bell. Predicting the location and number of faults in large software systems. IEEE Trans. Softw. Eng.,
31(4):340–355, 2005. Member-Thomas J. Ostrand and Fellow-Elaine J. Weyuker.

● [8]John C. Munson and Taghi M. Khoshgoftaar. The detection of fault-prone programs. IEEE Trans. Softw. Eng.,
18(5):423–433, 1992.

● [9]Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are. In ISSTA ’04: Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing and analysis, pages 86–96, New York, NY, USA,
2004. ACM.

● [10]Judea Pearl. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Inference. Morgan Kaufmann,
September 1988.

● [11]J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

References
(continued)

● [12] William W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart Russell, editors, Proc. of the 12th
International Conference on Machine Learning, pages 115–123, Tahoe City, CA, July 1995. Morgan Kaufmann.

● [13]Les Hatton. Reexamining the fault density-component size connection. IEEE Softw., 14(2):89–97, 1997.
● [14]J. Juran. Juran’s Quality Control Handbook. pub-mcgraw-hill, 4th edition, 1988.
● [15]Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large industrial software system. SIGSOFT

Softw. Eng. Notes, 27(4):55–64, 2002.
● [16]T.-J. Yu, V. Y. Shen, and H. E. Dunsmore. An analysis of several software defect models. IEEE Trans. Softw. Eng.,

14(9):1261–1270, 1988.
● [17]Hongyu Zhang. On the distribution of software faults. IEEE Trans. Soft. Eng., xxx(xxx):1–2, 2008.
● [18]M. O. Lorenz. Methods of measuring the concentration of wealth. Puiblications of the American Statistical

Association, 9(70):209–219, 1905.
● [19]A. Gunes Koru, Dongsong Zhang, and Hongfang Liu. Modeling the effect of size on defect proneness for open-

source software. In PROMISE ’07: Proceedings of the Third International Workshop on Predictor Models in Software
Engineering, page 10, Washington, DC, USA, 2007. IEEE Computer Society.

● [20]Tim Menzies. Promise data. http://promisedata.org.
● [21]C. Blake and C. Merz. Uci repository of machine learning databases, 1998.

http://promisedata.org/

Experiments
Receiver-Operating Characterstic Curves

● Creates a space for
evaluating the performance
of a learner.

● Measures the true positive
rate compared to the false
positive rate, or PD
compared to PF.

PD= p
P

PF= n
N

