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Motivation
● Treatment learning[1] fills a unique niche in data 

mining.
– Previous work in treatment learning has only used one 

heuristic
– No real validation tests made with this type of learning

● Previous work with software project defect 
detection has not used treatment learning.
– These studies either use classic machine learners[2-5] or 

statistical models[6-9].
– Results with these experiments do not give amount of 

code that needs to be searched.



Difficulties with Prior Results in 
Software Defect Detection

● The evaluations in most of these experiments are 
given in probability of detection and probability of 
false alarm.

● However, these results give no insight to the 
amount of code scanning required for these results.
– Effort is defined as the fraction of the code 

scanned over the total code in the project.



Treatment Learning

● The process of creating a rule, or treatment, 
that predicts one specific class in a data set. 
When this is applied to the data set, a subset 
is created that will have a majority of the 
desired class in it.

Rx : x=a1∧ y=a2∧b=a3



Lift

● Lift is an evaluation heuristic TAR3[1] that 
uses to score its rules.

Lift Rx=
∑
i=1

n

f i ∗2i

∑
i=1

N

F i ∗2i

● The lift of a rule is equal to the sum of all 
classes in the subset over the sum of all 
classes in the entire set.



Which



Which

● A stochastic best-first search.
● Implemented as a Linked List.
● Learns rules by stochastically traversing the 

search space.
● A treatment learner that does not have a 

hard-wired evaluation heuristic.



Which
A Stochastic Best-First Search(BFS)

● In a BFS[10], layers 
are expanded and 
nodes are scored.

● The top N scoring 
nodes are then 
expanded another 
layer.



Which
A Stochastic Best-First Search(BFS)

● In Which's search, 
subtrees are grafted 
based on how well 
they score.

● This process is 
called pickTwo.



Which
A Stochastic Best-First Search(BFS)

● An important difference 
from the standard BFS is 
that Which does not 
expand all nodes at the 
current level.

● Nor does it expand levels 
one at a time.

● This allows it to jump 
around the search space to 
find an optimum rule faster.



Which
A Linked List

● Instead of storing the tree and grafting subtrees, Which 
stores all explored paths as sets of attribute-value pairs 
and creates new rules by the union operation.

● Which can create new rules as both conjunctions and 
disjunctions.

outlook=overcast
humidity=high
rain=true
humidity=low
rain=false
...

outlook=overcast
AND rain=true

x=a1∨x=a2∧ y=b1∨y=b2∧z=c1



Which
A Linked List

● Each new rule created is inserted into the list according to 
its score.

● If the new rule scores well, its chances of being picked are 
high.

outlook=overcast
humidity=high
outlook=overcast
AND rain=true
rain=true
humidity=low
rain=false

humidity=high
AND outlook=overcast
AND rain=true



Which
Learns rules by stochastically traversing the 

search space.
● In order to determine which 

rules are to be combined, 
Which stochastically picks 
two rules based on 
probability.

● Two random numbers are 
generated and they are 
compared to the 
probabilities in the stack.



Which
Learns rules by stochastically traversing the 

search space.
● This algorithm will create 

the probability table and 
select a rule index from the 
table.

● Two rule indexes are 
selected in this way and 
their corresponding rules 
are combined.

● This new rule is placed in 
the list in a position 
dependent on its score.



Which
A treatment learner that does not have a hard-

wired evaluation heuristic.
● The method that Which scores is user-definable.  
● This allows for Which to create rules that are specific to the 

domain it is being used in.
● Some example heuristics:

– J48:

– Precision

– Ripper

– Balance

H J48=−log2
p
pn



H precision=
p
pn

H Ripper=
p−n
pn

H balance=
PD2∗1−PF 2∗1−Effort 2∗



● J48 and Ripper are discussed in detail in [11] and [12] respectively



Which
A treatment learner that does not have a hard-

wired evaluation heuristic.
● The classic machine learners of J48 and Ripper have hard-

wired internal evaluations heuristics.
– This creates a general process that might not perform as 

well as an internal evaluation heuristic that is specific to 
an application.

– In other words, the class learners create rules on P that 
are evaluated on Q.

● Which circumvents this problem by allowing user-defined 
evaluation heuristics.
– Which creates rules on Q that are evaluated on Q.



Which
Algorithm

read test file
for each attribute a

for each value a[v]
score a[v]
place a[v] in list

for i = 1 to C
pick rule indexes r1, r2
newR = union(r1,r2)
score newR
place newR in list

print list.top



Experiments

● Three major sections
I. Which Parameters
II.Which and TAR3
III.Which on Defect Detection Data
IV.Micro-Sampling and Which



Category I
Which Parameters



Category I
Which on Parameters

● Experiments were done on 
Which's maximum list size 
being set to a finite number.

● The numbers chosen were:
– 10, 20, 50, 100, 1000, 

● Experiments were ran on 
defect detection data

● The results on the left show 
that in most cases the stack 
size being finite did not 
change the overall 
performance of Which

● Recommendation: Stack 
size set in range [50,100]

∞



Category I
Which on Parameters

● The algorithm given earlier 
shows an extreme 
dependence of the run time 
on the size of the list.

● This table shows the 
different run times of the 
Which algorithm on 3 
different sets.



Category II
Comparison of Which and TAR3



Category II
Comparison of Which and TAR3

● Which was ran using the lift heuristic that TAR3 
uses.

● Run on 14 UCI[22] data sets using 10x10 cross-
validation with 5 different discretization policies.
– 2bins, 4bins, 8bins, 16bins, 32 bins equal frequency

● Results show that Which wins 30.5% of the time 
and ties TAR3 57.7% of the time. 
– Which does as well or better than TAR3 88.2% of the 

time.



Category II
Comparison of Which and TAR3

Results



Category III
Which on Defect Detection Data



Category III
Critical Information

● Distribution of faults in software projects.
● Receiver-Operating Characteristic Curves
● The “Koru” Diagram



Category III
Fault Distribution

● Several studies have 
been made on the 
distribution of faults in a 
software project[13-17].

● This distribution closely 
follows the Pareto 
Distribution[18], or “80-
20” rule.
– This says that 80% 

of the faults lie in 
20% of the code.



Category III
The “Koru” Diagram[19]

● Specialized diagram to 
illustrate the “path” a 
detector takes over the 
data set to reach its final 
score.

● Created by taking the 
subset of instances the 
detector classified as true 
and sorting them by their 
LOC attribute.

● Starting from (0,0), 
increment the PD if a true 
was properly classified as 
true and increment the 
%LOC at every instance.



Category III
The “Koru” Diagram

Special Detectors
● Oracle

– The perfect detector
– Classifies all defective 

modules perfectly.
● ManualDown

– Sort the instances in 
descending order by 
LOC and classify all as 
true

● ManualUp
– Sort the instances in 

ascending order by LOC 
and classify all as true.



Category III
The “Koru” Diagram

● Evaluation Metric
– The area under the detector's  path divided by 

the area under the oracle's path.
● The evaluation Metric is used to see how 

much like the oracle's path the detector's 
path is.

● Extend the end point (x,y) of all detectors to 
the point (100,y).  
– Ensures the oracle has the most area.



Category III
The “Koru” Diagram

● Which's heuristic in this category is balance.
– Balance attempts to create rules that are close 

as possible to (0,100) in the Koru Diagram.
– For these experiments:

●

●

●

● PD and effort too closely correlated to take 
both into account.

● These scalars make low PFs much more 
preferred than higher PDs

=1

=1000
=0



Category III
Experiments

● Which on MDP[20] data.
● Which on Turkey data.
● Which on AT&T data.



Category III 
Experiments on MDP Data

● These experiments were done on 7 project files 
with 10x3 cross-validation

● The classic machine learners of J48, NaiveBayes, 
and Ripper are represented here.

● Results divided up into 3 classes:
1.Which > manualUp > classic learners

• 5/7
2.Which > all

• 1/7
3.ManualUp > classic learners > Which

• 1/7



Category III 
Experiments on MDP Data

Results
● Each row of the 

table on the left is a 
different category.



Category III
Experiments on Turkey Data

● The Turkey data consisted of 3 data sets with 
a 10x3 cross-validation.

● The classic machine learners of J48, 
NaiveBayes, and Ripper are represented.



Category III
Experiments on Turkey Data

Results
● Results show that Which 

wins 2/3 and loses to 
manualUp and 
manualDown in the other 
case.



Category III
Experiments on AT&T Data.

● AT&T data consists of one project with 35 
releases.
– Experiments were done using releases (1-(n-1))  

for train and release n for test.
● Classic learners of J48, NaiveBayes, and 

Ripper are represented.



Category III
Experiments on AT&T Data.

Results
● Typically performs better 

than the classic machine 
learners but loses to 
manualUp and/or 
manualDown.



Category III
Overall Results

TurkeyMDP AT&T



Category IV
Micro-Sampling and Which

● Micro-Sampling:
– Create an even distribution of a binary class set with N 

instances in the set.

● Micro-Sampling experiments done on MDP and 
Turkey data sets using a 10x3 cross-validation.



Category IV
Micro-Sampling and Which

Results
● Results show that while 

Which2 is best performer, it 
is hardly a stand-out 
performance.

● Interesting that Micro20, 
the most limiting policy, 
performs better than the 
other micro-sampling 
policies.

● All perform very close to 
the same.



Findings
● Treatment learning does indeed work over cross-

validation.
● Which, a simpler algorithm than TAR3, still performs 

just as well or better 88% of the time.
● Treatment learners have a place in the field of defect 

detection in software projects.
● Creating rules with the true goal in mind drastically 

improves performance.
● Micro-Sampling is an effective sampling policy that 

does not hurt the performance of Which.



Future Work

● Improving the run-time of the Which 
algorithm.

● Fine-tuning the Which configuration 
parameters.

● Converting Which to a classification learner.
● Discovering better scoring heuristics for 

Which to learn with in defect detection data.
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Experiments
Receiver-Operating Characterstic Curves

● Creates a space for 
evaluating the performance 
of a learner.

● Measures the true positive 
rate compared to the false 
positive rate, or PD 
compared to PF.

PD= p
P

PF= n
N


