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Abstract

LONGITUDINAL STUDY OF FIRST-TIME FRESHMEN
USING DATA MINING
Ashutosh R. Nandeshwar

In modern world, higher education is transitioning from enrollment mode
to recruitment mode. This shift paved the way for institutional research and
policy making from historical data perspective. More and more universities
in the U.S. are implementing and using enterprise resource planning (ERP)
systems, which collect vast amounts of data. However, previous studies
focused more on the social and psychological aspects rather than the data
itself, and presented theoretical models on the student retention problem.
Although few researchers have used data mining for performance, gradua-
tion rates, and persistence prediction, research is sparse in this area, and it
lacks the rigorous development and evaluation of data mining models. The
primary objective of this research is to build and analyze data mining mod-
els using historical data to predict “high-risk” first-time freshmen students,
who are likely to dropout, using data mining.

Student retention is a major problem for higher education institutions,
and predictive models developed using traditional quantitative methods do
not produce results with high accuracy. Because of massive amounts of
data, correlation between attributes, missing values, and non-linearity of
variables, whereas, data mining techniques work well with these conditions.
The objective of this research is to study student retention problem us-
ing Weka, open-source data mining software, by selecting attributes using
feature subset selection (FSS), developing models (trees, rules, bayes, and
function based), evaluating models using quartile charts and win-loss tables.
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Chapter 1

Introduction and Research
Objective

There is nothing like looking, if
you want to find something.
You certainly usually find
something, if you look, but it is
not always quite the something
you were after.

J.R.R. Tolkien

1.1 Introduction

Following World War II, a great need for higher education institutions arose
in the United States, and the higher education leaders built institutions on
“build it and they will come” basis. After the World War II, enrollment
in the public as well as the private institutions soared (Greenberg, 2004);
however, this changed by 1990s, due to a significant drop in enrollment, uni-
versities were in a marketplace with “hypercompetition,” and institutions
faced the unfamiliar problem of receiving less applicants than they were
used to receive (Klein, 2001).

Today higher education institutions are facing the problem of student re-
tention, which is related to graduation rates; colleges with higher freshmen
retention rate tend to have higher graduation rates within four years. The

1



2 CHAPTER 1. INTRODUCTION AND RESEARCH OBJECTIVE

average national retention rate is close to 55% and in some colleges fewer
than 20% of incoming student cohort graduate (Druzdzel and Glymour,
1994), and approximately 50% of students entering in an engineering pro-
gram leave before graduation (Scalise et al., 2000). Tinto (1982) reported
national dropout rates and BA degree completions rates for the past 100
years to be constant at 45 and 52 percent respectively with the exception of
the World War II period (see Figure 1.1 for the completion rates from 1880
to 1980). Tillman and Burns at Valdosta State University (VSU) projected
lost revenues per 10 students, who do not persist their first semester, to
be $326,811. Although gap between private institutions and public insti-
tutions in terms of first-year students returning to second year is closing,
the retention rates have been constant for a long period for both types of
institutions(ACT, 2007, see Figure 1.2). National Center for Public Pol-
icy and Higher Education (NCPPHE) reported the U.S. average retention
rate for the year 2002 to be 73.6% (NCPPHE, 2007). This problem is not
only limited to the U.S. institutions, but also for the institutions in many
countries such as U.K and Belgium. The U.K. national average freshmen
retention for the year 1996 was 75% (Lau, 2003), and Vandamme (2007)
found that 60% of the first generation first-year students in Belgium fail or
dropout.

g0

70 |

= e
50 -. e B L
40

30 |

Percent Completion
L
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10 |
-
1880 1890 1900 1810 1920 1930 1940 1850 1960 1970 1980
Year
Figure 1.1: BA Degree Completion Rates for the period 1880 to 1980, where

Percent Completion is the Number of BAs Divided by the Number of First-
time Degree Enrollment Four Years Earlier (Tinto, 1982)
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Theoretical models of student departure, such as, Tinto’s student dropout
model (Tinto, 1975), described the conceptual stages of a dropout from a
college, which studied interaction between an individual and the academic
and social system of the college. While the researchers widely accept this
model and the model explains the problem, it is difficult to implement this
model using universities’ data warehouses. In addition, data warehouses
cannot capture the social aspect of a student’s experience at a college or
university.

Predictive modeling of student persistence using traditional methods,
such as, linear and logistic regression, fail to produce results with high ac-
curacy, and are prone to the problems of linearity, correlation of attributes,
missing data, and vastness of data.

Universities’ enterprise resource planning (ERP) systems collect vast
amounts of data. Typically, these data consist of demographical, financial,
and academic information; later, these data reside in some form of data
warehouses. However, this massive data storage, often, does not transform
into knowledge or information to enable administrative decision-making.
This abundance of data makes the predictive modeling of high-risk stu-
dents using data mining a perfect case. In addition, data mining techniques
are robust and work well with missing or correlated data. As business
world benefited tremendously by data mining, and data mining supported
marketing campaigns and quality assurance (Luan and Serban, 2002), it
presents an opportunity to the higher education institutions to employ the
same techniques to solve some of the major problems faced by the higher
education administrators today.

1.2 Data Mining

1.2.1 What is Data Mining?

Although data mining definitions change with the area of the researcher, the
definitions by some of the well-known researchers are apt for this research.
Hand et al. (2001) defined data mining as “the science of extracting useful
information from large data sets or databases.” Witten and Frank (2005)
defined data mining as “the process of discovering patterns in data. The
process must be automatic or (more usually) semiautomatic.” Berry and
Linoff (1997) defined data mining as “the exploration and analysis of large
quantities of data in order to discover meaningful patterns and rules.”
Data mining is also known as knowledge discovery in databases (KDD),
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and this discovery process is shown in Figure 1.3. Enterprise Resource Plan-
ning (ERP) systems hold massive amounts of data, which usually consists
of information, such as, demographic, financial, payroll, others. The data
entry people working in each functional area enter this information in ERP
systems. Database administrators load this information in databases us-
ing Extract, Transform, and Load (ETL) tools. Data analysts or miners
analyze these databases, understand the data or work with the domain ex-
perts, develop prediction, classification, or clustering models, evaluate the
models, and implement them; using this approach, data miners transform
information into tangible knowledge for decision-making.
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Figure 1.3: Data to Knowledge

Areas of computer science, statistics, database technologies, machine
learning, and others form the field of data mining. Statistics influenced
the field of data mining tremendously; so much that Kuonen (2004) asked
whether data mining is “statistical déja vu.” Amalgamation of statistics
and computer science started data mining; however, data mining as a field
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is evolving on its own. Han and Kamber (2006) described the overlap of
multiple disciplines as shown in Figure 1.4.

Statistics

Machine

Hgarithms Learning

Data
Mining

Technologies Visualization

Pattarn
Recognition

Figure 1.4: Data Mining-Confluence of Multiple Disciplines
Facts are cheap, information is

plentiful - knowledge is
precious.

Fortune cookie saying

1.2.2 Data Mining Methodology

Data mining is a non-linear process of data selection and cleaning, data
transformation, pattern, and model evaluation. To refine the model, data
miners usually apply the output of a step as an input to any other step. Han
and Kamber (2006) illustrated this non-linear process as shown in Figure
1.5. Although the progression from databases to knowledge in Figure 1.5
seems to be linear, the dotted and thick arrows show the process flow from
any node to another node.
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Figure 1.5: Knowledge Discovery Process

1.2.2.1 CRoss Industry Standard Process for Data Mining (CRISP-

DM)

DaimlerChrysler (then Daimler-Benz), SPSS (then ISL), and NCR, in 1996,
worked together to form the CRoss Industry Standard Process for Data
Mining (CRISP-DM). Their philosophy behind creating this standard was
to form non-propriety, freely available, and application-neutral standards
for data mining. Figure 1.6 shows CRISP-DM version 1.0, and it illustrates
the non-linear (cyclic) nature of data mining. Standard’s phases include,
business understanding, data understanding, data preparation, modeling,
evaluation, and deployment.

Business Understanding: Business understanding is the initial phase
of data mining process, where the business group defines project objectives,
and the data miner transforms these objectives into data mining definitions.
In addition to the project objectives, a preliminary plan is designed in this
phase to achieve these objectives. Berry and Linoff (1997) advised data

¥
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Business (
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} Data
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\
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Figure 1.6: CRISP-DM Model Version 1.0

miners to break general goals into more specific ones, and to achieve that
business knowledge is very important. Identifying the input and target
variables using the business objectives is a key process in this phase. Correct
understanding of the business objectives is imperative in this process, for
example, a person who is likely to make late payments can be a “good
customer” for a credit card company, and unless the data miners have this
knowledge they will not be able to transform this to data mining objectives.

Data Understanding: Data understanding is the phase where the
domain expertise is very important, and it is a part of the business un-
derstanding. Initial exploring of data, identifying data quality problems,
and discovering insights into the data are the phases of data understanding.
Data and business understanding are very critical to the data mining pro-
cess, as some of the attributes in the data might appear trivial to the data
miners, where, in reality, those attributes might be significant. Although
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domain expertise is imperative for data mining, it can create hindrances
while selecting attributes, as data mining algorithms might find some pat-
terns in the excluded attributes; and the cyclic nature of data mining lies
here.

Examining distributions, relation of attributes, and descriptive statistics
are the basic steps of data understanding phase. Examining relation of
attributes is useful for generating derived variables. Examining distributions
and descriptive statistics is useful for finding disparities and irregularities
in the data.

Data Preparation: Data preparation is the most labor-intensive pro-
cess of data mining. This phase includes preparation of the raw data to a
final dataset for modeling; it involves initial attribute selection and trans-
formation using the data and the business understanding. To prepare a
final dataset, treatment of dirty data and missing values is critical using
manual or automatic processes. Some of the data mining algorithms, such
as, naive bayes, handle missing data very well; however, replacing missing
values with the mean, or modeling the data to predict the missing values
are common and good practices.

Modeling: This is the core process of data mining, where models trans-
form input into output; Berry and Linoff (1997) illustrated this process as
shown in Figure 1.7. There are several data mining techniques for the same
problem, and the evaluation phase is useful to selecting the best model. The
best model, sometimes, might not be best in performance, but simplest in
explanation. Brinkman and Mclntyre (1997) cautioned on generating com-
plicated models, “policymakers may not have confidence in a forecast if they
do not understand its conceptual basis or accept its assumptions”, or as the
famous Occam’s Razor describes:

Entia non sunt multiplicanda praeter necessitatem
Or
Entities should not be multiplied more than necessary

Menzies (2006) illustrated the explanation and performance systems as
shown in Figure 1.8. As the name suggests, the explanation systems offer
explanation on how a conclusion was reached; performance systems produce
results with high accuracy, but offer no explanation. Menzies et al. (2007)
explained the trade-off between efficiency and explanation of the models:
“sometimes the explanatory power must be decreased in order to increase
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.
—

Input Model Output

Figure 1.7: Modeling Process

the efficacy of the predictor.” They offered ensemble techniques as a solution
to explain a model while producing high precision results. These techniques
included discretization, cross-validation, and feature subset selection (FSS).

Performance Systems
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= Learning

Data ,
(Test Data)

B

........... » Generalization sessssssssssppr

Explanation Systems

Figure 1.8: Performance vs. Explanation Systems

Evaluation: Before deployment of the model, this phase evaluates the
model for quality and effectiveness. This phase also evaluates the closeness
of the model from the business objective, and checks whether all important
business matters are considered or not. Evaluating the results of the model
also determine the use of the data mining model for deployment. Some
of the tools to evaluate models are confusion matrix, lift chart, and mini-
mum description length (MDL); later sections provide explanation on these
tools. Researchers use the confusion matrix, given in Table 1.1, to evaluate
different models; some of the evaluation criteria are: recall, precision, accu-
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Predicted
Yes No
Yes True Positive (TP) False Negative (FN)
No False Positive (FP) True Negative (TN)

Actual

Table 1.1: Possible Outcomes of a Two-class Prediction

racy or overall correct classification rate, and F'-score or harmonic mean of
precision and recall.

TP + TN
A = 1.1

U = TP YFN 4+ FP + TN (1L.1)
TP

1l = —— 1.2

Reca TP 7 N (1.2)
TP

Precision = m (13)

Fscore — 9 x Precision x Recall (1.4)

Precision + Recall

Deployment: After the evaluation is complete, the model is ready
for deployment; however, the project does not end here, analysts generate
reports to present the information that users can easily understand, or set
up similar models for different units.

1.2.3 Data Mining Terminology
1.2.3.1 Records or Instances

Records are the number of rows present in a file, which is to be analyzed
by the use of data mining. Records can be sequential or random depending
on the algorithm used for data mining. For a typical data mining task,
required number of records is usually high.

1.2.3.2 Fields, Attributes, Features, or Variables

As many fields influenced data mining, finding different names for a single
entity is inevitable. All of these are common names of the columnar data
in a file.
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1.2.3.3 Data or Dataset

Data or dataset are a collection of records across different fields. Re-
searchers, to represent the files, loosely use the term data.

1.2.3.4 Learners or Techniques

The tools used for data mining modeling are learners or techniques. These
learners differ by the type of output they produce, such as, prediction,
classification, clusters, and associations.

1.2.3.5 Input Variables

The variables or attributes used for modeling in order to produce an output.

1.2.3.6 Output or Target Variables

The attributes on which the modeling techniques learn are output or target
variables; however, some data mining techniques, such as, clustering and
association, learn without target variables, instead, only the input variables
are used to produce generic rules of the existing patterns in the dataset.

1.2.3.7 Training, Validation, and Test Data Set

Usually, application of a data mining technique involves creation of three
partitions of the available dataset. Models are built on the training dataset,
the models are compared or fine-tuned on the validation dataset, and the
performance of the models on unseen data is checked on the test dataset.

An example data file on weather and the decision to play golf is shown
in Figure 1.9. This file has 14 records and five variables. In this example,
the fields outlook, temperature, humidity, and windy are input variables,
and the field play is an output variable.

1.2.4 Data Mining Modeling Techniques

There are different types of modeling techniques for different types of tasks,
and there are different types of modeling techniques for a single problem.
Table 1.2 is a list of some of the data mining techniques by the task type.
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Row 1D Outlook Temperature Humidity  Windy Play
1 sunny 85 B85 FALSE no
2 SURAY 20 90 TRUE no
3 overcast 83 86 FALSE YES
4 rainy 70

75 80 FALSE yes

e T3y

11 sunny 75 70 TRUE yes
12 overcast 72 o0 TRUE yes
13 overcast g1 75 FALSE VEes
14 rainy 71 91 TRUE no

Figure 1.9: Weather Data

Data Mining Tasks Data Mining Techniques
Function Based
Linear Regression
Logistic Regression
Neural networks
Tree Based
CART
Classification or J48

Prediction M5’

Rule Based
OneR

JRip

PART

Other

Naive Bayes
Clustering K-means
Association Apriori

Table 1.2: Data Mining Techniques by Task

1.2.4.1 Classifiers

Linear Regression: Statistics heavily use linear regression, and it works
the best when all the variables are numeric, the data are non-linear in
nature, and there are no missing values. The general linear regression model
(Neter et al., 1989), with normal error terms, is given in Equation 1.5.

Y =0+ 65X+ X+ ...+ 01 Xp1 +e (1.5)
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where, By, 51, B2, ..., Bp—1 are parameters, X, X,..., X, are input vari-
ables, and € are independent and identically normally distributed error
terms with mean = 0 and variance o2.

The general linear regression model given in Equation 1.5 is represented
in vector-matrix form in Equation 1.6, and in matrix terms, the general
linear model is given in Equation 1.7. The parameters, 5y, 31,...,08, — 1,
are estimated by using Equation 1.8.

U1 1 211 oz ... Tip—1 I3} €1
Yy 1 w91 x99 ... Xop 15} €
2| _ | ?1 '22 | 2;.; 1 '2 n .2 (1.6)
Yn 1 Tn1 Tp2 ... Tpp-1 Bn €n
Y =X(+¢ (1.7)
3=(X"X)"'X"Y (1.8)

where, n is the total number of observations, and B\ are the estimated
parameters.

Logistic Regression: Logistic regression is best suitable for modeling
when the output variable is dichotomous, which can take the value of prob-
ability of success equal to one (¢q) and probability of failure to zero (1 — q).
The probability of the dependent variable (Y) or probability of success,
given the probability of the input variables (z), is given in Equation 1.9.

660+ﬁ1x1+---+ﬁp—lxp—l
P{Y =1z} =

1 + ePotbrzrit. . +Bp17p1 <1'9)
where, 3y, 51, B2,...,B,—1 are parameters, and z1,22,...,2,-1 are input
variables

A simplified model using # is given in Equation 1.10, and the logistic
model is given in Equation 1.11. The regression parameters are estimated
using maximum-likelihood.

P{Y =1z} =0 (1.10)

ePothBrzrt. By 1ap 1
1+eﬂo+ﬁ1zl+u-+ﬁp_11p_1

where, 0 =

=Bo+ re1 + ...+ Bpawp (1.11)

logitd = log T~
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Neural Networks: Although the working mechanism of the human
brain influenced artificial Neural Networks (ANN) or Multi-Layer Percep-
tron (MLP) models, these models are very similar to linear regression mod-
els. A collection of neurons or nodes is a layer, and there are many layers
in an ANN; each neuron in a layer is fully connected to all other neurons in
the following layer. The first layer receives the input, hence called an input
layer. The output of the last layer is the output of the network. Hidden
layers are the layers between the input and output layers. It is a common
practice to use either one or two hidden layers. Figure 1.10 is a represen-
tation of a feed forward network with configuration as one input layer with
three inputs, one hidden layer with two nodes, and one output layer with
single output abbreviated as 3-2-1 network (Nandeshwar, 2006). The input

Input zin Hidden |z_out, Output
— —
ar in Layer
Xy y‘—"_ Y
by

F

Figure 1.10: Feed-forward Network with 3-2-1 Architecture

layer receives signals as X7, X5, and X3. Initially, random or fixed weights
are assigned to the connections between all the neurons in all the layers,
which are denoted by matrix W and V. Matrix W denotes the weights
between the input layer and the hidden layer, and matrix V denotes the
weights between the hidden layer and the output layer. The summation
of the multiplication of the inputs of a layer with the weights of a layer is
the input of the next layer. Matrix W is multiplied with the input signals
and then summed up in the hidden layer. An activation function, given in
Equation 1.12, is applied to this summation to give new input signals for
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the next layer. The most popular activation function is the sigmoid function
or the logistic function, given by Equation (1.9) and illustrated by Figure
1.11.

y=[(z) (1.12)

where, y = output of the function, f() = linear, identity, or non-linear
function, and x = input to the function.

flx) = (1.13)

Figure 1.11: Sigmoid or Logistic Activation Function

The output of the activation function is again fed-forward and multi-
plied by the weights between hidden and output layer, i.e. matrix V. This
multiplied signal is again sent through the activation function, Equation
1.12, to give the output or result of the network. Fausett (1994) provided
mechanics of a feed-forward neural network with one hidden layer as shown
in Figure 1.12.

Backpropagation algorithm is the most common learning or training
algorithm of ANNs. Artificial neural network learn by example, and back-
propagation algorithm “trains” the neural network by looping through the
data and constantly updating the weights to minimize the difference be-
tween the actual and the predicted data. Training is stopped when the
maximum number of iterations or epochs, iterations in machine learning
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e Tumber of inpu.t units.
|pakz Humber of hidden layer neurons.
| Activations of units ¥y

For input units 3,

& =input signal;
| Weights between the input layer and the hidden layer.
[k Weights between the hidden layer and the output layer.
|z im  Inputto the hidden layer:

®
bod _im‘=2_ Wi Xi
il
lz_out; Output of the hidden neurons:
z_ouf=jf(z _in)
|¥ _ime Inputto the output layer

2
¥ imk= " VkI_ 0Ll
J=1

Mote: Ifthere is only one o tpat unit then sobscrpt & is removed
|v ot Output of the network:

y_oute= i (_)_;_x'_mj

Figure 1.12: Feed-forward Network with one Hidden Layer

language, or acceptable difference between the actual and the predicted
data is reached.

Decision Trees: Decisions tree are a collection of nodes, branches,
and leaves. Each node represents an attribute; this node is then split into
branches and leaves. Decision trees work on the “divide and conquer” ap-
proach; each node is divided, using purity information criteria, until the
data are classified to meet a stopping condition. Gini index and informa-
tion gain ratio are two common purity measurement criteria; Classification
and Regression Tree (CART) algorithm uses Gini index, and C4.5 algorithm
uses the information gain ratio (Quinlan, 1986, 1996). The Gini index is
given by Equation 1.14, and the information gain is given by Equation 1.15.

m

Io(i)=1=>_ f(i,§)" =>_ fi,5) (i k) (1.14)

=1 ik
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Ip (i) ==Y f(i,5)log, f (i, ) (1.15)
j=1
where, m is the number of values an attribute can take, and f (i, 7) is the
proportion of class in 4 that belong to the j'h class.

Figure 1.13 is an example of construction decision tree using the Titanic
data and the JMP software. Based on the impurity, JMP selected the
attribute sex (male and female) as the root node, then for attribute value
sex = female, JMP created one more split on class (first, second, third, and
crew). In order to reduce the impurity, JMP created a split on the root
node of sex =male for the attribute age (child and adult).

Rules: Construction of rules is quite similar to the construction of de-
cision trees; however, rules first cover all the instances for each class, and
exclude the instances, which do not have class in it. Therefore, these algo-
rithms are called as covering algorithms, and pseudocode of such algorithm
is given in Figure 1.14 reproduced from Witten and Frank (2005).

1.2.4.2 Feature Subset Selection (FSS)

Feature subset selection is a method to select relevant attributes (or fea-
tures) from the full set of attributes as a measure of dimensionality reduc-
tion. Although some of the data mining techniques, such as decision trees,
select relevant attributes, their performance can be improved, as the exper-
iments have shown(Witten and Frank, 2005, p. 288). Two main approaches
of feature or attribute selection are the filters and the wrappers (Witten and
Frank, 2005). A filter is an unsupervised attribute selection method, which
conducts an independent assessment on general characteristics of the data.
It is called as a filter because the attributes are filtered before the learning
procedure starts. A wrapper is a supervised attribute selection method,
which uses data mining algorithms to evaluate the attributes. It is called as
a wrapper because the learning method is wrapped in the attribute selection
technique. In an attribute selection method, different search algorithms are
employed, such as, genetic algorithm, greedy step-wise, rank search, and
others.

1.2.5 Discretization

Some of the classifiers work well with discretized variables, such as tree and
rule learners, therefore, discretizing numerical attributes is a very important
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For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A=v to the LHS of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A=v to R
Remove the instances covered by R from E

Figure 1.14: Pseudocode for a Basic Rule Learner

preprocessing step. In addition, methods often produce better results (or
run faster) , if the attributes are prediscretized(Witten and Frank, 2005, p.
287). There are two types of discretizers: unsupervised and supervised.

1.2.5.1 Unsupervised Discretization

Similar to unsupervised learning, unsupervised discretization works without
the knowledge of the class attribute. Although unsupervised discretization
is easy to understand and arguably fast, it risks the danger of excluding
some important information (for the learners) as a result of discrete intervals
being too short or too long(Witten and Frank, 2005, p. 298). Some of the
unsupervised discretization methods are:

1. Equal Interval Binning: as the name says, this discretization method
divides the attribute in equal (predetermined arbitrary) intervals.

2. Equal Frequency Binning: this method is also called as histogram
equalization, because the attributes are discretized in such a manner
so that each intervals gets equal number of instances.

3. Proportional k-interval Discretization (PKID) (Yang and Webb, 2001):
Yang and Webb (2003) warned that proportional k-interval discretiza-
tion worked better for larger datasets, and suggested weighted pro-
portional k-interval discretization. The proportional k-intervals are
calculated using the Equation 1.16.

k=+VN (1.16)
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where, N is the number of instances.

1.2.5.2 Supervised Discretization

One of the best and state of the art supervised discretization method is
Fayyad and Irani’s (1992) minimum description length (MDL) criterion and
entropy-based discretization. This discretization method is based on the
idea of reducing the impurity by splitting (cut point) the intervals where
the information value is smallest. The numeric attribute values are sorted
in the ascending order, and a split is created where the subintervals are as
pure as possible.

1.2.6 Bias

As data mining algorithms train and try to generalize the solutions, the
generalization faces the problem of bias, and different algorithms face dif-
ferent type of bias. Some of the common biases are search bias, overfitting
avoidance bias, sample bias, and language bias.

1.2.6.1 Search Bias

As data mining algorithm seek the optimal solution, which is defined by
some criteria, such as, simplicity or best fit, a search bias is created. Differ-
ent algorithms use different search heuristic, thus create search bias while
searching for the optimal solution. For example, the results would be dif-
ferent if the criterion of optimal solution is highest performance rather than
the criterion of simplest model.

1.2.6.2 Overfitting Avoidance Bias

Over generalization of the data makes the learning phase prone to poor
performance on unseen data, therefore, data mining algorithm employ over-
fitting avoidance strategies. For example, decision trees use pruning and
neural networks use penalties. These overfitting avoidance strategies create
a bias, as techniques respond differently to each overfitting strategy.

1.2.6.3 Sample Bias

Sample bias, as the name suggests, occurs when data available for training
are not representing the population fairly. Data itself creates the bias rather
than the data mining algorithm. For example, sample containing only East
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Coast data for predicting something on national basis will cause sample bias
(Menzies, 2006).

1.2.6.4 Language Bias

The structure and the working of an algorithm itself create language bias.
Different algorithms behave differently with respect to the input and the
style of generalizing. For example, some algorithms cannot take numbers
as input, classification algorithms find pattern between the input and the
output attributes, whereas, association algorithms find pattern between the
input attributes.

1.3 Need for Research

As mentioned in Section 1.1, higher education institutions face tremendous
challenge of student retention. Traditional methods used by researchers for
solving this problem do not provide accurate solutions, as these methods
face the problems of missing data, non-linearity of attributes, correlation,
and massive amounts of data, whereas, data mining algorithms excel when
presented with large amounts of data, and are robust enough to handle
other problems.

Although application of data mining in the business world is a success
story, the field of higher education is still experimenting with data mining.
In the reviewed literature, only two research studies on the application of
data mining in higher education explored other important options of data
mining, especially, feature subset selection and evaluation: Barker et al.
(2004) used principal component analysis to reduce the number of variables,
but noted that the reduced data sets produced “much worse” results than
the full data sets, and DeLong et al. (2007) mentioned the usage of attribute
evaluation techniques, such as Chi-square gain, gain ratio, and information
gain, however, did not provide comparative results.

Stewart and Levin (2001) noted, “the significance of data mining in sec-
tors such as education have yet to be vindicated.” Luan and Serban (2002)
commented, “suffice it to say that higher education is still a virgin terri-
tory for data mining.” Chang (2006) commented, “although data-mining
technologies have been applied widely and effectively in the business world,
their use is relatively new to higher education.” Herzog (2006) commented,
“published studies on the use and prediction accuracy of data mining ap-
proaches in institutional research are few.” From the above quotes, it is
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evident that there is still plenty of scope for experimentation and research
in this field.

Lack of technical expertise has somewhat hindered the higher education
researchers from exploring the data mining options fully; most of the re-
searchers on higher education are social scientists, and most of the current
research in data mining is done via “point-and-click” methods using various
data mining software (Clementine, Enterprise Miner, etc). Therefore, there
is a great need of thorough research in the field of application of data mining
to the higher education data, especially in retention.

Tinto’s (1975; 1988) theoretic model of student departure and other
models based on Tinto’s model attempted to find attributes that affect
student’s decision on departure. These attributes consisted of demograph-
ical, precollege experience, and family background information. Although
these attributes, indeed, affect student’s decision on departure, in order to
produce prediction models, data mining algorithms might not need all of
these attributes, and data mining tools can generate simplified and high
performance models.

As the results produced by some of the data mining algorithms are
not explainable, researchers term these as “black box” techniques. In the
reviewed literature, it is apparent that existing research in this field has not
attempted dimensionality reduction, as a way to increase the explanatory
power. As Menzies et al. (2007) suggested, use of ensemble techniques, such
as, discretization, cross-validation, and feature subset selection, can produce
high performance and good explanation models. Need for research can be
summarized as:

1. In the field of higher education and data mining, thorough research
using various data mining tools, especially for student retention, is
nonexistent.

2. Researchers in this field have not generated explainable high perfor-
mance models using the ensemble techniques mentioned by Menzies

et al. (2007).

1.4 Research Objectives

The major research objectives of this study are:

1. To study attributes affecting student’s drop-out decision.
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. Select attributes using different feature subset selection (FSS) tech-

niques, such as, wrappers and filters.

. Develop various data mining predictive models, such as, regression,

decision tree, rule based, and neural networks, on data with all at-
tributes and selected attributes. In addition, study the discretization
effects using different discretization techniques.

. Evaluate and compare these models using win-loss tables (Hall and

Holmes (2003)), cross-validation, and quartile charts.

. Generate explainable, but high performance, models to implement on

the current data.



Chapter 2

Literature Review

Data! Data! Datal! ...I can’t
make bricks without clay.

Sherlock Holmes

2.1 Theoretical Models of Student Dropouts

Researchers in higher education have extensively studied the theoretical
models on the student dropouts problem developed by Spady (1970; 1971),
Tinto (1975; 1988), and Bean (1980). These theoretical models led to the
development of statistical models using linear and logistic regression (Pas-
carella and Terenzini, 1979, 1980; Gillespie and Noble, 1992; Brinkman and
Meclntyre, 1997; Beil et al., 1999; Brunsden et al., 2000). This section cov-
ers theoretical models developed by Spady (1970; 1971), Tinto (1975; 1988),
and Bean (1980).

2.1.1 Spady’s Model of Student Dropouts
2.1.1.1 Introduction

Spady’s theoretical model (1970; 1971) (shown in Figure 2.1) was based on
Durkheim’s theory of suicide (Durkheim, 1951) and it focused on the in-
teraction between student attributes and the influences caused due to the
university environment. Spady argued that this interaction provides the
student with the opportunity of incorporating into the academic and the

25
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social systems of the university; and the success derived in the academic and
the social systems influence student’s dropout decision. In the academic
system, the successes in the form of rewards are grades and intellectual
development. In the social system, normative congruence and friendship
support are the successes or the rewards. Spady defined normative congru-
ence as, “attitudes, interests, and personality dispositions that are basically
compatible with the attributes and influences of the environment.” Spady
further added that normative congruence and friendship support resembled
the major social components of social integration in Durkheim’s theory of
suicide. Spady (1971) tested the theoretical model using multiple regres-

Grade
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Potential

Dropout
Decision

&

Social
Integration
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Background

Satisfaction
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Figure 2.1: Spady’s Theoretical Model (Spady, 1971)

sion with the longitudinal data of 683 first-year students. Spady collected
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these data using surveys and admissions data. Some characteristics of these
students were:

e Sixty-two percent were men and 38% women
e Two-thirds attended schools that send over 50% of graduates to college
e More than one-third ranked in the upper 2% of the graduating class

e Two-thirds scored above 90" percentile for all American students on
SAT verbal and math

2.1.1.2 Variables

Table 2.1 is a list of variables from Spady’s model on student dropout.
These variables were from nine main components of the theoretical model,
and each component had a cluster of other variables. Spady analyzed the
model by adding these variables or cluster of variables in the step-wise
multiple regression model.

2.1.1.3 Analysis

Spady analyzed the regression model by comparing the percentage of ex-
plained variance (R?) for different combinations of dependent variables by
either adding one cluster variable, or deleting one cluster variable from the
regression model. The stepwise and unique contributions of variable clus-
ters to the explained variance in first-year dropouts by sex is given in Table
2.2. Some of the key findings of this experiment were:

e Deleting institutional commitment from the full regression model re-
duced the explained variance (in first-year dropouts) by 12% for the
women and 2.52% for the men

e Grades accounted for 5.91% of the explained variance for the men and
1.26% for the women

e Grade performance was the most important component of the dropout
process for the men, followed by institutional commitment, social in-
tegration, extremes in independence from family, friendship support

e Institutional commitment was the most important component of the
dropout process for the women, followed by being a natural science
major, having high intellectual development, earning low grades, hav-
ing unsatisfactory faculty contacts
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Variable Men Women

Stepwise Unique Stepwise Unique

contribu- contribu- contribu- contribu-

tion tion tion tion
Cosmopolitanism 0.45 0.22 3.18 1.33
Family relationships 1.54 1.67 0.84 0.66
High school experiences 291 1.61 4.10 2.17
Academic potential 1.62 0.21 1.28 0.31
Personality dispositions 2.22 0.50 3.47 2.87
Value orientations 0.63 0.88 2.85 1.39
Chicago dispositions 0.19 0.16 0.09 0.57
Subcultural orientations 1.61 1.06 2.75 3.62
Structural relations 5.64 1.82 5.03 2.92
Intellectual development | 4.00 0.32 0.12 1.92
Grade performance 6.06 5.91 1.28 1.26
Social integration 1.89 0.81 1.03 0.01
Satisfaction 0.02 0.06 0.79 0.02
Institutional commitment | 2.52 2.52 11.97 11.97
Total explained variance | 31.32 38.79

Table 2.2: The Stepwise and Unique Contributions of Major Variable Clus-
ters to the Explained Variance in Dropouts

2.1.1.4 Conclusion

After analyzing the data and the results, Spady revised the theoretical
model, given in Figure 2.2, to match the consistent aspects of the data.
Solid arrows in the Figure 2.2 depict that at least one element in a compo-
nent has a statistically significant relationship with the dependent variable
on the other end of the arrow for both men and women. This revised model
indicated that friendship support for the women is directly dependent on
elements in family background and normative congruence. Extracurricular
participation and heterosexual relationship created strong friendships for
both the sexes. For the men, the analyses indicated that the students with
more conventional values, attitudes, and more socially oriented high school
experiences were more likely to establish close relationships with others than
the students without such experiences.

One of the most significant conclusions from this study was that the
subjective intellectual growth of both men and women was apparently un-
related to their previous high school performance and measured intellectual
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capabilities. Spady concluded that women’s decision to quit the college
before the second year was pragmatic and rational, as their reaction and
behavior rested on intrinsic, subjective, and social criteria, where academic
and performance factors played a secondary role. Whereas, men reflected
a sensitivity towards their roles as achievers within the formal academic
system, and men quit the college based on extrinsic factors.
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Figure 2.2: Spady’s Revised Theoretical Model of the Undergraduate
Dropout Process (Spady, 1971)

2.1.2 Tinto’s Model of Student Dropouts
2.1.2.1 Introduction

Tinto’s (1975) research paper on student dropouts is perhaps the most cited
paper! in the field of student retention. Tinto’s model like Spady’s model
(Spady, 1970, 1971) was based on Durkheim’s theory of suicide (Durkheim,
1951). Tinto argued that the student’s decision to leave or continue college
was based on the student’s integration in social and academic system; failure
in any one of them was possibly a cause of the termination of the college.
This model is given in Figure 2.3. Tinto argued that the dropout process, as

'In the area of student retention, amongst the famous models on student dropouts of
W. Spady (1970; 1971), V. Tinto (1975), and J. Bean (1980), researchers cited V. Tinto
(1975) 949 times, W. Spady (1970; 1971) 337 times, and J. Bean (1980) 244 times. (Data
from Google Scholar: http://scholar.google.com as of 02/21/08.)
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depicted in Figure 2.3, was a “longitudinal process of interactions between
the individual and the academic and social systems of the college during
which a person’s experiences in those systems (as measured by his normative
and structural integration) continually modify his goal and institutional
commitments in ways which lead to persistence and/or to varying forms of
dropout” (Tinto, 1975, p. 94).

2.1.2.2 Variables

Tinto insisted that in order to develop a predictive model of student dropout
the model should include individual characteristics and dispositions relevant
to educational persistence. Researchers measure the individual character-
istics and attributes in the forms of social status, high school experiences,
community of residence, sex, ability, race, and ethnicity. Tinto suggested
that in the predictive models, researchers should include expectational and
motivational attributes of individuals. Researchers measure these attributes
in career and educational expectations and levels of motivation for academic
achievement of the individuals. Education expectation of an individual
along with educational goal commitment was a very important input vari-
able in Tinto’s model, as students bring these aspirations to the college
environment and it predicts how the individuals interact with the environ-
ment.

Precollege experiences, such as grade-point average, academic and so-
cial attainments, were important factors in this model, and along with these
experiences individual characteristics and commitments, a student’s integra-
tion in the academic and social system, Tinto argued, was in direct relation
with the continuance of that student in the college. This integration causes
a revision in the student’s commitment towards the college and academic
aspirations, and these new commitments derive student’s decision to quit
or continue college education. If either goal commitments or institutional
commitments are low, the student is likely to dropout from that institution.
Variables from different clusters in Tinto’s model are shown in Table 2.3.

2.1.3 Bean’s Model of Student Dropouts
2.1.3.1 Introduction

Bean developed this model (shown in Figure 2.4) using path analytic tech-
niques, which the author called a “casual model”, of student dropouts based
on findings on employee attrition in work organizations (Bean, 1979, 1980);



CHAPTER 2. LITERATURE REVIEW

32

suoIsInag
nodoiqg

USLIWIWOS
[BUonmnsy|

JUSULILILLIDD
|20

SJUSLLIIWLLIDD

Amng ‘oqur ) synodoi(] juepni§ Jo [PPOJN S,0MUL], €7 03I

uonelBaju)
[EID0S

uonelBaju)
Jluapesy

wasio |pog

SUGIRISIU|
Anoey

SUGIRIBIU|
dnolsy-lasd

juswdojaasg
=l

2OUBLLIOMS
apei)

wWasAs anuapesy

USLIWIWOS
[BUonmnsy|

JUSULILILLIDD
|20

SJUSLLIIWLLIDD

Bunooyas
afa|on-a1d

4
|
|
|
hJ

sNqQuUNY
[ENRELAIpU)

- — — — —

punoufiyorg
Awey




33

THEORETICAL MODELS OF STUDENT DROPOUTS

2.1.

[OPOIN S,OLT, UI SO[BIIBA :€'Z O[¥L

9891100 JO AjTent)

sIoquIowt
sy Jo uorjisodwo))

JuouI
-o8uRLIR [RINIONIIG

SonsLIvjoRIRY))

SOTHI[I0® ]

[RUOTINYTISU]

S9OINO0S9Y

Aynoey

Uam UOI}ORIDIUL

so1)
-TAT}O® H@ﬁDUEHSU@Hp

PUOUWHTULTLOD -Xo [PULIOJ-TUIOG
[RUOIINIIISUL PUR [RUOIJRINPI JO0Je JRl[} SpIeme SUOTJRIDOSS® |UOIJRISIIU] [RIDOS

[eos juerroduat are proddns Ajmnoey pue diyspuorLij dnoi8 1oad [euLIOJU]

1uetado

-[0AOD  [RTJOD[[OIU]

oouruLIOpRd opeIr)

JU2WUOIIAUD @WQM
-[09 Ul 9oueWIOLIoq

UOI)RISOIU]
OTWOPRIY

suorjyejdad
-X0 I991RD IO Suoljr)
-0odxo [eUOIIRONPH

sue[d reuory
-RONPO  JO  SULIYT,

3

JUSUIIUITIO)) [ROY)

UOIYeONPd 9F9[[0D 10 UOIJRAIJOW PUR ‘SUOIIR}IIAX
‘suorjerrdse s eNPIAIPUI 9} 09k SOTISLIO}ORIRYD 9SO T,

[00Ts Y31y oY)
JO  SOT)SLIYORIRY))

[00Ys Y31y

soouaLIdX

juelr sse[o 10 Y45 | ut 9OURULIOJID] | [RUOIIRONDH JSR]
Iopuox)
SHl TSER
1891 pozIpIlepur)g
0018 UBIY Ul A)I[Iqe poInseayy moﬁwﬂwmwﬂmw%m
ooueuriojod opern) o T
UDIPIIYD 1107} Aqrurey
Uym drgsuorje[ol SurdIguoo ssof pue ‘earproddns ‘orern oy urypym  sdrys
-owp ‘uodo axowr Aoluo 0} puoy sivgsisiod Jo sjyuoIe] -uorje[el Jo Ajrent)
UOIRONPI S JUdIR ]
punoisyoey
Sel[Iure] sNje)s ISYSIY WO} UaIp[iyd uey) jnodoip jo snje)s OIUIou Aure; o) £qureg
SoJRI IOUSIY JIGIYXa SAI[IUIR] SNJRYS I9MO[ WO USIP[IY) | -0090I00S S AIUUR] JO SOI)SLID)ORIRY) .
uorjeue[dxy 9INSseaAl o[qeLIRA JI9)sn[D




34 CHAPTER 2. LITERATURE REVIEW

the basic assumption was that the reasons for which students leave college
were similar to the reasons for which employees leave work. Bean stud-
ied Spady’s and Tinto’s models of student dropouts that were based on
the theory of suicide, and noted that there was insufficient evidence on the
link between dropping out and suicide. Bean criticized previous research
because of the following reasons:

e Previous research ignored other literature and excluded other deter-
minants of student attrition.

e Previous research ignored the distinction between analytic variables
and demographic variables. Previous studies ignored the “directional
causality” and discreetness of the variables.

2.1.3.2 Variables

Variables and their definitions used in Bean’s model are given in Table
2.4. Arrows in the model shown in Figure 2.4 were of casual relationship,
and the signs on top of the arrow show the type of relationship (positive
or negative). Bean noted that the GPA for students was similar to the
salary for employees as a performance measure. Many other variables were
consistent with Tinto’s model (Bean, 1980, p. 156), but were derived from
Price’s1977 turnover model in work organizations.

2.1.3.3 Analysis

To test this model, Bean provided questionnaires to the freshmen; out of
2,587 new freshmen 1,111 had returned the questionnaires, and out of these
questionnaires, the author selected two homogeneous samples of 366 men
and 541 women. Bean selected only the students who were under 22 years of
age, Caucasian race, U.S. citizen, and single. Bean used multiple regression
and path analysis to analyze and test the casual model of student dropouts.

Using multiple regression, Bean found that for women institutional com-
mitment, institutional quality, and routinization were statistically signifi-
cant. Using these clusters of variables, Bean’s model had the R? value of
0.22. For men, institutional commitment, routinization, satisfaction, and
communications were statistically significant. Bean found that for women,
institutional commitment was more than 4% times as important as institu-
tional quality. The author found that the amount of explained variance for
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women (R? = 0.22) was twice the amount of explained variance for men
(R?=0.9).

Using the coefficient () values, Bean removed nonsignificant variables
from the regressions equations to create parsimonious models. Bean re-
gressed on all the clusters variables and kept important variables in the
model using R? values; the path models of student attrition for women and
men are shown in Figure 2.5 and Figure 2.6 respectively.
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Figure 2.5: Bean’s Path Model of Student Attrition for Women (Bean, 1980)

2.1.3.4 Conclusion

Using this sample of data, Bean found that institutional commitment was
the primary variable influencing dropout. In addition, the author found
that variables: routinization, opportunity (transfer, job, home), university
GPA, practical value, institutional quality, and satisfaction were important
in this model. Institutional quality and opportunity (transfer) were the
two most important variables that influenced institutional commitment for
men and women. Bean noted that performance was the only important
background variable along with routinization, development, and university
GPA. According to Bean, this model performed better (R? = 0.12 for men
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Figure 2.6: Bean’s Path Model of Student Attrition for Men (Bean, 1980)

and R? = 0.21 for women) than the earlier models except that of Spady’s
model (R? = 0.31 for men and R* = 0.39 for women)(Bean, 1980, p. 179).

2.1.4 Studies Based on Theoretical Models
2.1.4.1 Studies by Terenzini and Pascarella

Terenzini and Pascarella extensively analyzed Tinto’s model (Tinto, 1975) of
student dropout (Terenzini and Pascarella, 1980; Pascarella and Terenzini,
1979, 1980). In (Terenzini and Pascarella, 1980), the authors summarized
results from six studies performed on freshmen at Syracuse University from
1974 to 1976. Terenzini and Pascarella performed discriminant analysis and
stepwise multiple regression to construct a validity on Tinto’s model. Out of
these six studies, two of them focused on the faculty interaction component
of Tinto’s model. Summary of results from this study are given in Table
2.5.
Terenzini and Pascarella (1980)concluded on these points:

e the quality and impact of a student’s peer group relations was the
most important factor for women for persistence.
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Cluster Variable or Survey Question
Mother’s education
Background i ather’s education
Characteristics 8¢
Sex
Ethnicity

Goal Commitments

It is important for me to graduate from college

I have no idea at all what I want to major in

Initial Commitments

It is important for me to be enrolled

It is likely that I will register at this university next fall

Academic
Integration

Academic Development Scale

Faculty concern scale

GPA

Credits earned during the first semester

Hours spent on academic extra-curricular activities

Social Integration

Peer Group Relations Scale

Informal Faculty Relations Scale

Residency

Campus employment

Hours spent on social activities

Hours spent on intercollegiate athletics

Table 2.6: Variables in Stage’s Study (Stage, 1989)

e pre-college characteristics of students were significant factors in stu-

dent’s attendance behavior.

e the frequency of students’ informal contact with faculty members was
consistently related to freshmen year persistence.

2.1.4.2 Study by Stage

This study by Stage (1989) focused on analysis of college withdrawal using

Tinto’s framework, and it examined associations among background char-

acteristics, commitment levels, institutional involvement and motivational

orientations (certification, cognitive, and community service). Stage (1989)

collected the data via surveys sent to the freshmen students. Some of the
variables used in this study are given in Table 2.6. The author used logistic

regression to find significant relationships between variables and to provide

equations model.
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Subgroup Independent Variable
Mother’s education

Gender (female)

Academic integration
Institutional commitment
Ethnicity x academic integration
Ethnicity x social integration
Mother’s education

Cognitive Academic integration
Institutional commitment
Institutional commitment
Community Service | Goal commitment

Gender x Social integration

Table 2.7: Selected Variables from Stage’s Model(Stage, 1989, p. 395)

Certification

Stage (1989) used LISREL (Joreskog and Sorbom, 1989) to model the
data using logistic regression. The final model had the chi-square value
of 458.38 with 424 degrees of freedom. The author used stepwise logistic
regression to select variables with a p value less than 0.1 and p value greater
than 0.15 to remove a variable. Table 2.7 shows the variables that were
statistically significant predictors of persistence.

Some of the conclusions of this study were:

e In the certification group, positive effects for male students and low
measures of mother’s education were found towards persistence.

e In the cognitive group, students with high levels of mother’s education
were likely to persist.

e Results agreed with Tinto’s claim that background effects influenced
persistence.

e Statistically significant interaction effects were found between ethnic-
ity and social integration, ethnicity and academic integration, and
gender and social integration.

e In the certification group, minorities with high levels of academic in-
tegration were not likely to persist as majority students.

e Academic integration significantly (positively) influenced persistence.
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2.1.4.3 ACT Research Report

Gillespie and Noble (1992) studied Tinto’s model of persistence using pre-
dictor variables from five institutions. The authors used linear and logistics
regression to develop the prediction models, and the primary aim of these
prediction models was to identify high-risk students and intervening them
to keep them in school. The predictor variables used in this study are given
in Table 2.8.

Gillespie and Noble computed correlations between each predictor vari-
able and the output variable; variables that had a correlation coefficient
greater than or equal to 0.10 and statistically significant were included in
the prediction model. If the included variables had large amounts of miss-
ing data or were similar to other variables were eliminated from the model,
then the authors excluded these variables from the model.

Some of the important variables for all institutions were: goal commit-
ment, institutional commitment, academic fit ins:/ integration, and high
school preparation. For some institutions, plans to work while in school
was important in predicting persistence. In addition, this study found that
if the students’ satisfaction with their employment opportunities decreased
over time, they were more likely to persist. The authors found that the re-
sults from this study were consistence with previous research using Tinto’s
model.

2.1.4.4 Study by Dey and Astin

Dey and Astin (1993) created prediction models for student retention using
logistic regression, probit analysis, and linear regression. The authors col-
lected data on behavioral and motivational items from surveys. Table 2.9
shows all of the variables used in this study.

Dey and Astin found that the results from linear regression were close
to that of logistic regression or probit analysis. Multiple R for logit, probit,
and regression were 0.354, 0.351, and 0.323. In large samples, the fit of
predictions based on linear regression were equal or better as the fits that
were obtained with logistic regression or probit analysis.

2.2 Other Studies

Waugh et al. (1994) studied the predictive values of ethnicity, SAT/ACT
scores, and high school GPA towards retention and graduation rates. The
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Cluster Variable
Demographic characteristics
Academic development
Nature of high-school preparation
Backeround E?ctracprrlcular participation
. Financial
Information

Family attitudes towards education

Academic and personal needs

Self-reported physical health

Self-reported personality characteristics

Initial commitment
to Institution

Purpose for enrolling

Institutional choice

Importance of selected institutional characteris-
tics

Full-time/part-time enrollment

Initial and

Expected degree and strength of expectations

Certainty of career aspirations

subsequence Commitment to and value placed on college edu-
academic goal cation
commitment Actual vs expected progress in reaching academic
goals
Satisfaction with academic progress and services
Absenteeism
Does the institution meet the academic expecta-
Student /institution | tions of the student

academic fit

Course enrollment, completion and grades

Need for remediation

Perception of relationships with faculty

Amount of friendship, peer support

Student/institution | Social relationships with faculty and staff
social fit Comfort and satisfaction with the environment
Extracurricular activities
Amount of immediate family contribution
Student/institution | Hours/week spent working

financial fit

Loans required to meet expenses

Table 2.8: Predictor Variables in ACT Research Study (Gillespie and Noble,

1992)
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Variables

Age

Concern about ability to finance college education

Hours per week spent

eStudying/homework

eSocializing with friends

eTalking with teachers outside of class

eExercising/sports

ePartying

eWorking (for pay)

e Volunteer work

eStudent club/groups

eWatching TV

eHobbies

Average high school grades

Reasons for attending college

e'To be able to get a better job

eTo gain a general education and appreciation of ideas

e'To improve my reading and study skills

eThere was nothing better to do

e'To make a more cultured person

o'T0 learn more about things that interest me

oTo prepare myself for graduate or professional school

oMy parents wanted me to go

el couldn’t find a job

eWanted to get away from home

Female student

Table 2.9: Variables used in Dey and Austin’s Study1993
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Variables

Age

Sex

Ethnicity

Residency

College

High School GPA

SAT Score

First Quarter GPA

Participation in Education Opportunities Program
Enrollment in Freshman Orientation Course

Table 2.10: Variables Used in the Study by Murtaugh et al. (1999)

authors found that high school GPA had moderate correlation with grad-
uation (0.22) and retention/graduation (0.21); however, SAT (0.10) and
ACT scores (0.01) had no relationship with retention. In addition, African-
American students with low GPAs were noted as vulnerable to dropping
out.

Murtaugh et al. (1999) created prediction models on the retention of
university students using survival analysis. The authors used demographic
and academic variables, which are given in Table 2.10, for 8,867 students.
The results indicated some of the important variables: age, residency, high
school performance, and enrollment in the Freshman Orientation Course;
high school GPA had superior predictive value than SAT score. The au-
thors found that that in-state students had lower attrition rates than non-
residents.

Herzog (2005) studied the effect of different variables, such as student
demographics, high school preparation, college experience, and financial aid
status, on student return, dropout/stopout, and transfer from the university
(see Table 2.11). The author used multinomial logistic regression to study
these effects. The author found that the out-of-state students had twice
the odds of dropping out than the in-state students. Parental income for
upper-income students faced lower dropout odds. In the first term, the
middle-income students with high levels of unmet need faced twice th risk of
dropping out. The author noted that gender had no impact on retention and
that the grade point average was a strong predictor of student persistence.

Researchers have conducted longitudinal studies to study the effects of
academic variables on student retention (Gillespie and Noble, 1992; Felder
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Clusters Variables

Age

Sex

Student Demographics Ethnicity

Residency

Parent Income

High School Preparation Composite Index

On-campus Living

Credit load

GPA

Math requirement

College Experience First-year math grades

Remedial course enrollment

Peer challenge score

Class selection

Use of recreational facilities

Package

Eligibilty type

Source

Financial Aid Status
Amount

Remaining need

Second-year offers

Table 2.11: Variables in the Study by Herzog (2005)

et al., 1998; Beil et al., 1999; Ishitani and DesJardins, 2002; Ishitani and
Snider, 2004; Snider and Boston, 2004). Longitudinal studies unlike cross-
sectional studies track the same cohort for a time period. Beil et al. (1999)
studied effects of academic integration, social integration, and commitment
on student retention. The authors found that even though academic and
social integration were important, when commitment was considered in the
logistic regression model, it was a significant predictor of retention, and
academic and social integration were insignificant; however, academic and
social integration influenced commitment, in turn, affected retention. In
addition, the authors cautioned on the multicollinearity between academic
and social integration.

Ishitani and DesJardins (2002) studied national survey data using lon-
gitudinal methods (event history modeling) to research the factors that
have effect on student departure at specific period of time. The authors
found these variables to be statistically significant: family income, mother’s
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education, self-educational aspiration, first-year GPA, SAT total scores, in-
stitutional type, and financial aid.

Ishitani and Snider (2004) studied the effects of college preparation pro-
grams on student retention. The authors noted the significant influence of
student aspirations, parental encouragement, parent’s education, and high
school grades. Using survival analysis, the authors found that the students
who took SAT/ACT preparation courses were more likely to persist, stu-
dents who talked their parents about going to college were more likely to
persist, lower levels of family income, parental education and being a first-
generation college student affected the persistence negatively.

Researchers have studied the effect of financial aid and need on persis-
tence and enrollment (Braunstein et al., 1999; John, 2000; Bresciani and
Carson, 2002). Braunstein et al. (1999); John (2000) noted that financial
aid indeed had influenced the decisions of enrollment and persistence, how-
ever, it was difficult to understand the whys and the hows of the process.
College debt had an influence on whether students could afford to continue
their enrollment or re-enrollment.

Bresciani and Carson (2002) examined the effects of unmet financial
need and amount of gift aid to the student persistence, and defined unmet
need as: “unmet need is the amount of money that is left after all the
aid that is awarded to a student has been subtracted from his or her need
amount.” Financial aid offices calculate the need amount by subtracting the
expected family contribution (EFC) from the cost of attendance at a college.
Although R? value obtained using linear regression remained around 0.022,
the results explained the fact that likeliness of persistence decreased with
the amount of unmet need.

Beeson and Wessel (2002) studied the impact of working on campus on
the persistence of freshmen. The authors found that the freshmen, who
worked on campus, persisted at slightly higher rates from fall to spring of
their first year, and year to year; however, the authors did not find working
on campus statistically significant towards graduation or persistence at the
studied university.

DesJardins et al. (2002) affirmed that minority students, older students,
and low family income students had high probabilities of dropping out of
the college. The authors noted that high GPA lowered the risk of dropout,
but the effect diminished over time, and that the financial aid was an in-
significant factor for increasing graduation, however, it indeed reduced the
student stopout.

Lotkowski et al. (2004) conducted a comprehensive literature search and
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identified more than 400 studies on student retention, and selected academic
and non-academic factors from 109 studies pertaining to retention. The
authors used stepwise multiple regression to identify the factors that had the
strongest relationships with college retention; they found that high school
GPA (HSGPA) had the strongest relationship with college retention in the
academic factors and academic related skills in the non-academic factors.
Other factors are given in Table 2.12 in the order of importance from highest
to lowest.

2.3 Data Mining in Education

Various researchers have applied data mining in different areas of edu-
cation, such as enrollment management (Gonzlez and DesJardins, 2002;
Chang, 2006; Antons and Maltz, 2006), graduation (Eykamp, 2006; Bai-
ley, 2006), academic performance (Naplava and Snorek, 2001; Pardos et al.,
2006; Vandamme, 2007; Ogor, 2007), gifted education (Ma et al., 2000; Im
et al., 2005), web-based education (Minaei-Bidgoli et al., 2003), retention
(Druzdzel and Glymour, 1994; Sanjeev and Zytkow, 1995; Massa and Pu-
liafito, 1999; Stewart and Levin, 2001; Veitch, 2004; Barker et al., 2004;
Salazar et al., 2004; Superby et al., 2006; Sujitparapitaya, 2006; Herzog,
2006; Atwell et al., 2006; Yu et al., 2007; DeLong et al., 2007), and other ar-
eas (Intrasai and Avatchanakorn, 1998; Baker and Richards, 1999; Thomas
and Galambos, 2004). Luan and Serban (2002) listed some of the applica-
tions of data mining to higher education, and provided some case studies
to showcase the application of data mining to the student retention prob-
lem.. Delavari and Beikzadeh (2004); Delavari et al. (2005) proposed a data,
mining analysis model to used in higher educational system (refer to Table
A1), which identified various research areas in higher education that could
use data mining.

2.3.1 Data Mining for Enrollment Management

Gonzlez and DesJardins (2002) used artificial neural networks (ANN) to
predict application behavior, and compared the results with logistic regres-
sion. The ANN model correctly classified 80.2% of prospective students,
and the logistic regression model correctly classified 78% of prospective stu-
dents. Chang (2006) used neural networks, Classification And Regression
Tree (CART), and logistic regression to predict admissions yield. CART,
neural network, and logistic regression obtained 74%, 75%, and 64% prob-
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Variables Description Strength of
Relation-
ships

Academic- Time management skills, study | Strong

related skills skills, and study habits (taking

notes, meeting deadlines, using in-
formation resources).

Academic  self- | Level of academic self-confidence | Strong

confidence (of being successful in the academic

environment).

Academic goals | Level of commitment to obtain a | Strong

college degree.

Institutional Level of confidence in and satisfac- | Moderate

commitment tion with institutional choice.

High school | Cumulative grade point average | Moderate

grade point | student average (HSGPA) earned

average from all high school courses.

Social support Level of social support a student | Moderate

feels that the institution provides.

Contextual influ- | The extent to which students re- | Moderate

ences ceive financial aid, institution size

and selectivity.

Socioeconomic Parents educational attainment | Moderate

status and family income.

Social  involve- | Extent to which a student feels con- | Moderate

ment nected to the college environment,

peers, faculty, and others in college,
and is involved in campus activities.

ACT Assessment | College preparedness measure in | Moderate

score English, mathematics, reading, and

science.

Achievement Level of motivation to achieve suc- | Weak

motivation cess.

General self- | Level of self-confidence and self- | Weak

concept esteem.

Table 2.12: Strength of Relationships of Academic and Non-Academic Fac-
tors with Retention (Lotkowski et al., 2004)
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ability of correct classification respectively. Antons and Maltz (2006) used
decision trees, neural networks, and logistic regression to predict the en-
rollees out of the applications. For the real data, the logistic regression
model correctly classified 66% of the admitted applicants, however, it cor-
rectly classified only 49% of the enrollees and 78% of non-enrollees.
Nandeshwar and Chaudhari (2007) used ensemble data mining tech-
niques to find the reasons of student enrollment using student admissions
(demographic and academic) data. Using feature subset selection and dis-
cretization techniques, Nandeshwar and Chaudhari (2007) were able to re-
duce the number of variables to one from 287, and the authors were able to
explain the student enrollment decision using very simple rule based mod-
els with an accuracy around 83%. The authors found that the accepted
applicants decided to enroll if they received any amount of financial aid.

2.3.2 Data Mining for Graduation

Eykamp (2006) used data mining to study the effects of taking advance
placement classes reduced the time to degree. Bailey (2006) developed data
mining model to predict the graduation rates using the Integrated Postsec-
ondary Education Data System (IPEDS)!. IPEDS is a National Center for
Education Statistics (NCES) initiative that collects data from most of the
higher-education institutions. The author collected data from the IPEDS
for 5,771 institutions on various areas, such as, faculty salaries, staff head-
count, financial aid, and institutional characteristics. The objective of this
study was to determine the institutional areas that influences graduation
using CART. The best relationship between actual and predicted graduate
rate, given by Pearson’s correlation (r), was 0.885.

2.3.3 Data Mining for Academic Performance

Naplava and Snorek (2001) applied Group Method of Data Handling GMDH
on student application data to predict the success of new students at the
Czech Technical University of Prague. The authors used neural networks,
combinatorial algorithm , and Multi-layered Iterative Algorithm (MIA) to
predict the academic performance. Schumann (2005) studied high school
data to predict academic performance using data mining.

Pardos et al. (2006) used Bayesian networks to develop prediction mod-
els to asses skill models for student testing. Using the question sets from the

"http://nces.ed.gov/ipeds/
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Massachusetts Comprehensive Assessment System (MACAS), the authors
created ASSISTment, an online tutoring system, for 8"grade mathematics
students to test the grain size of the skills. The authors found that the
medium-sized (39 skills) produced the best model to track student perfor-
mance.

Vandamme (2007) applied discriminant analysis, neural networks, ran-
dom forests, and decision tree to predict students’ academic success. The
authors divided the dependent variable in three categories: low risk, medium
risk, and high risk students. Using the data collected from questionnaires,
the overall correct classification rates for decision trees, neural networks,
and discriminant analysis were 40.63%, 51.88%, and 57.35% respectively.

Ogor (2007) developed a methodology to deploy a student performance
assessment and monitoring system using data mining techniques. The au-
thor developed rule induction and neural network models to predict aca-
demic performance using student demographic information and course as-
sessment data.

2.3.4 Data Mining for Gifted Education

Ma et al. (2000) developed data mining models for selecting the right stu-
dents for remedial classes from the Gifted Education Programme (GEP)
in Singapore. Using association rule mining, the authors predicted weak
students from the GEP cohort and suggested remedial classes for these stu-
dents, whereas, traditionally, the administrators used a cutoff score on tests
to select students for remedial courses (the authors argued that this method
selected “too many” students).

As the current tests for identifying gifted students were unable to iden-
tify the “potentially gifted” students, Im et al. (2005) developed neural
network models to identify such students in Korea. The authors created
questionnaires to collect the data on students to measure the capabilities
in the areas of scientific attitude, leadership, morality, creativity, etc. In
addition, the authors build a model to evaluate the similarities between
students’ characteristics and students’ type of giftedness to create a gifted-
ness quotient.

2.3.5 Data Mining for Web-Based Education

Minaei-Bidgoli et al. (2003) used data mining to predict the final grades of
students based on the features extracted from students’ logged data in an
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education web-system at Michigan State University. The authors developed
classification models to find any patterns in the student usage data, such
as time spent on problems, reading the supporting material, total number
of tries, and others. The authors used quadratic Bayesian classifier, near-
est neighbor, Parzen-window, multi-layer perceptron, and decision tree. In
addition, the authors used Genetic Algorithm (GA) to select features to
maximize the classification accuracy. The authors found that classifiers
with GA for feature selection increased the accuracy by 10 to 12 percentage
points.

2.3.6 Data Mining for Other Applications

Intrasai and Avatchanakorn (1998) developed an academic planning appli-
cation using genetic algorithm. This application allowed administrators to
search for suitable locations to open new campuses in the rural areas of Thai-
land. From the existing university data, this application extracted clusters
of useful information to help administrators on deciding which majors to
offer and which place to build the facility depending on the student popula-
tion density in the area and travelling distance. Baker and Richards (1999)
developed forecasting models for educational spending using linear regres-
sion and neural networks. Linear regression and neural networks models
achieved an average R? value of 0.99.

Thomas and Galambos (2004) used regression and decision trees to in-
vestigate how students’ characteristics and experiences influenced their sat-
isfaction in public research university. The stepwise (forward and backward)
linear regression models resulted in R? values in the range of 0.37 to 0.58.
Using decisions tree algorithm (CHAID), the authors explained the satis-
faction of students in different areas; the author noted that the rules from
these trees supported Tinto’s theory that the effects of social integration
may compensate for weak academic integration. Beitel (2005) applied data
mining tools to predict program evaluations for primary school courses.

2.3.7 Data Mining for Student Retention

Druzdzel and Glymour (1994) were the first to apply knowledge discovery
algorithm to study the student retention problem. The authors applied
TETRAD 112, a casual discovery program developed at Carnegie Mellon
University, to the U.S. news college ranking data to find the factors that in-

2http://www.phil.cmu.edu/projects/tetrad/index.html
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fluenced student retention, and they found that the main factor of retention
was the average test score. Using linear regression, the authors found that
test scores alone explained 50.5% of the variance in freshmen retention rate.
In addition, they concluded that other factors such as student-faculty ratio,
faculty salary, and university’s educational expense per student were not ca-
sually (directly) related to student retention; and suggested that to increase
student retention universities should increase the student selectivity.

Sanjeev and Zytkow (1995) used 49er, a pattern discovery process de-
veloped by Zytkow and Zembowicz (1993), to find patterns in the form
of regularities from student databases related to retention and graduation.
The authors found that academic performance in high school was the best
predictor of persistence and better performance in college, and that the
high school GPA was a better predictor than the ACT composite score. In
addition, they found that no amount of financial aid influenced students to
enroll for more terms.

Massa and Puliafito (1999) applied Markov chains modeling technique
to create predictive models for the student dropout problem. By tracking
the students for 15 years, the authors created state variables for the number
of exams appeared, average marks obtained, and the continuation decision.
Using data mining, Stewart and Levin (2001) studied the effects of stu-
dent characteristics to persistence and success in an academic program at a
community college. They found that the student’s GPA, cumulative hours
attempted, and cumulative hours completed were the significant predictors
of persistence, and that young males were a high risk group.

Veitch (2004) used decision trees (CHAID) to study the high school
dropouts. Using 25-fold cross-validation, the overall misclassification rate
was 15.79%, and 10.36% of students, who did drop out were classified as
non-dropouts. In this study, GPA was the most significant predictor of per-
sistence. Salazar et al. (2004) used clustering algorithms and C4.5 to study
graduate student retention at Industrial University of Santander, Colombia.
The authors found that the high marks in the national pre-university test
predicted a good academic performance, and that the younger students had
higher probabilities of a good academic performance.

Barker et al. (2004) used neural networks and Support Vector Machines
(SVM) to study graduation rates; the first-year advising center (University
College at University of Oklahoma) collected data via a survey given to
all incoming freshman. It is worthwhile to note that Barker et al. (2004)
excluded all the missing data from the study, which constituted for approx-
imately 31% of the total data. Overall misclassification rate was approxi-
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mately 33% for various dataset combinations. The authors used principal
component analysis to reduce the number of variables from 56 to 14, how-
ever, reported that the results using the reduced datasets were “much worse”
than the complete datasets.

Superby et al. (2006) applied discriminant analysis, neural networks,
random forests, and decisions trees to survey data at the University of
Belgium to classify new students in low-risk, medium-risk, and high-risk
categories. The authors found that the scholastic history and socio-family
background were the most significant predictors of risk. The overall classi-
fication rates for decision trees, random forests, neural networks, and linear
discriminant analysis were 40.63%, 51.78%, 51.88%, and 57.35% respec-
tively.

Using the National Student Clearinghouse (NSC) data, Sujitparapitaya
(2006) differentiated between stopout, retained, and transfer students. The
overall classification rates for the validation sets using logistic regression,
neural networks, C5.0 were 80.7%, 84.4%, and 82.1% respectively. Herzog
(2006) used American College Test’s (ACT) student profile section data,
NSC data, and the institutional student information system data for com-
paring the results from the decision trees, the neural networks and logistic
regression to predict retention and degree-completion time. The author sub-
stituted mean average ACT scores for missing scores. Decision trees created
using C5.0 performed the best with 85% correct classification rate for fresh-
men retention, 83% correct classification rate for degree completion time
(three years or less), 93% correct classification rate for degree completion
time (six years or more ) for the validation datasets.

Atwell et al. (2006) used University of Central Florida’s student demo-
graphic and survey data to study the retention problem with the help of
data mining. In this study, university retained approximately 82% of the
freshmen from the study, and it used 285 variables to create data mining
models. The authors used nearest neighbor algorithm to impute more than
60% observations with missing values. Using decision trees with the entropy
split criterion, the authors obtained precision of 88% for the not-retained
outcome using the test data, and the actual retention rate for this test data
set was 82.61%; other results from this study are given in Table 2.13.

Yu et al. (2007) studied the data from Arizona State University using
decision trees, and included variables, such as demographic, pre-college aca-
demic performance indicators, current curriculum, and academic achieve-
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Training Validation Testing

Model Model Description data data data
Decision Tree Entropy split crite- 91% 90% 88%
1 rion

Decision Tree Chi-square split cri- 84% 83% 82%
2 terion

Decision Tree Gini Index split crite-  84% 83% 82%
3 rion

Logistic Stepwise regression  78% 7% 73%
Regression

Table 2.13: Precision Rates Obtained (Atwell et al., 2006)

ment. Some of the important predictor variables were accumulated earned
hours, in-state residence, and on campus living.

To study the retention problem using data mining for the admissions
data, DeLong et al. (2007) applied various attribute evaluation methods,
such as Chi-square gain, gain ratio, and information gain, to rank the at-
tributes. In addition, the authors tested various classifiers, such as naive
Bayes, AdaBoost M1, BayesNet, decision trees, and rules, and noted that
AdaBoost M1 with Decision Stump classifier performed the best in terms
of precision and recall, hence, used this classifier for further experimenta-
tion. The authors balanced the class variable (retained and not retained)
and obtained over 60% classification rates for both retained and not re-
tained outcome. The authors concluded that the number of programs that
the student applied to that specific institution and the student’s order of
program admit preference were the most significant predictors of retention.

2.4 Customer Retention in the Business World

The applications of data mining in the business world are plenty, such as
knowledge discovery in National Basketball Association (NBA) data (Bhan-
dari et al., 1997), forecasting in airline business (Hueglin and Vannotti,
2001), direct marketing for charity (Chan et al., 2002), identification of
early buyers (Rusmevichientong et al., 2004), application in physics (Roe
et al., 2005), and the customer retention or churn analysis (Eiben et al.,
1998; Smith et al., 2000; Ng and Liu, 2000; Bin et al., 2007).

Eiben et al. (1998) studied mutual fund investment data using logistic
regression, rough data models, and genetic programming to predict cus-
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tomer retention. The authors found that genetic programming performed
the best in terms of accuracy, and the rough data models provided meaning-
ful information of the variables. Ng and Liu (2000) applied feature selection
to create predictive models of customer retention for a confidential service
provider using data mining on the data that had 45,000 transactions per
day. Smith et al. (2000) applied neural networks, clustering, and decision
trees to the various stages of insurance claims patters. The authors found
that neural networks provided the best results for the test set. Bin et al.
(2007) used decision trees to predict customer churn in the telecommunica-
tion market in China. In some of the trained models, the recall and precision
rate for the test set were 95% and 82% respectively.

Ngai et al. (2008) presented a literature review of papers published in
peer-reviewed publications on the topic of customer relationship manage-
ment and data mining. They found that out of 87 articles, 54 articles
(61.2%) were on customer retention, which possibly means that in the do-
main of customer relationship management, researchers are applying data
mining techniques to the customer retention area than other areas. These
techniques included clustering sequence discovery, neural networks, decision
tress, logistic regression, and association rules.

2.5 Summary

Retention research goes back to early 70’s, and it is still ongoing; how-
ever, with the higher computing speeds and new algorithms, data mining
research is giving a new perspective to this century-old problem. Differ-
ent researchers built predictive models based on the theoretical framework
of Spady (1970), Tinto (1975), and Bean (1979). These theoretical models
concluded that student’s integration with the university along with the past
academic performance were key areas for student retention. Some other im-
portant variables were: high school GPA, ACT/SAT scores, on/off campus
housing, socio-economic status, and parent’s education.

Although the use of data mining in the field of education is in a nascent
stage, few researchers have applied data mining in the areas of graduation,
enrollment management, and retention. This data mining research, how-
ever, lacks in-depth analysis of different learners, discretization methods,
feature subset evaluation, and building high performance and explanation
systems. Figure 2.8 provides a visual perspective on the terms discussed in
the studied papers of this literature review.
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Chapter 3

Methodology

It doesn’t matter how beautiful
your theory is, it doesn’t
matter how smart you are. If it
doesn’t agree with experiment,
it’s wrong.

Richard Feynman

3.1 Data

The main objective of this study is to create high performance and explain-
able models using ensemble methods explained by Menzies et al. (2007).
For this study, there are three main sources of data :

1. The Integrated Postsecondary Education Data System (IPEDS): IPEDS
is the data collection initiative by National Center for Education
Statistics (NCES). IPEDS collects data from all postsecondary ed-
ucation institutes on areas such as, institutional characteristics, grad-
uation, enrollment and retention, faculty and staff, finances, and fi-
nancial aid. These data would be used to study the effects of various
institutional features on retention.

2. The institutional data warehouse: the study institution has collec-
tion of historical and current demographic and academic data. These

99
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data would be used to find the effects of demographics and academic
performance on retention

3. Freshmen survey data: the study institution conducts a survey, which
is based on Tinto’s framework, of new freshmen in their first semester;
this survey asks questions on student’s goals, career objectives, com-
mitment, and other subjects. A well-known consulting firm admin-
isters and analyzes these surveys, and predicts scores in various key
areas. These data would be used to find the effects of behavioral and
motivational indicators on retention.

3.2 Method

All of the three datasets will be analyzed separately using CRISP-DM stan-
dards. After the business and data understanding, feature subset selection
(FSS), wrappers and filters, and discretization techniques would be used to
select variables for modeling. Using these selected variables and the ranks
for these variables, these variables would be added sequentially to observe
if adding variables to the models make any significant difference. Various
combinations of datasets and classifiers would be tested and evaluated using
cross-validation, win-loss tables, and quartile charts. The methodology of
this research is depicted in Figure 3.1.
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