\begin{thebibliography}{10} \bibitem{rbfnIntroBors} Adrian Bors. \newblock {\em Introduction of the Radial Basis Function (RBF) Networks}. \bibitem{Moore06} William~Notz David~Moore. \newblock {\em Statistics: concepts and controversies}. \newblock 2006. \bibitem{Freund99thealternating} Yoav Freund and Llew Mason. \newblock The alternating decision tree learning algorithm. \newblock In {\em In Machine Learning: Proceedings of the Sixteenth International Conference}, pages 124--133. Morgan Kaufmann, 1999. \bibitem{Hall00correlation-basedfeature} Mark~A. Hall. \newblock Correlation-based feature selection for discrete and numeric class machine learning. \newblock pages 359--366. Morgan Kaufmann, 2000. \bibitem{Heckerman96atutorial} David Heckerman. \newblock A tutorial on learning with bayesian networks. \newblock 1996. \bibitem{holte93} R.C. Holte. \newblock Very simple classification rules perform well on most commonly used datasets. \newblock {\em Machine Learning}, 11:63, 1993. \bibitem{Mitchell97DescTree} Tom~M. Mitchell. \newblock {\em Machine Learning}. \newblock McGraw-Hill, New York, 1997. \bibitem{Mitchell97} Tom~M. Mitchell. \newblock {\em Machine Learning}. \newblock McGraw-Hill, New York, 1997. \bibitem{quinlanID3} J.~Ross Quinlan. \newblock {\em Induction of decision trees}. \newblock 1 edition, 1986. \bibitem{quinlanC4.5} J.~Ross Quinlan. \newblock {\em C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning)}. \newblock Morgan Kaufmann, 1 edition, January 1993. \bibitem{NB-performance} Irina Rish. \newblock An empirical study of the naive bayes classifier. \newblock In {\em IJCAI-01 workshop on "Empirical Methods in AI"}. \end{thebibliography}