\begin{thebibliography}{10}

\bibitem{rbfnIntroBors}
Adrian Bors.
\newblock {\em Introduction of the Radial Basis Function (RBF) Networks}.

\bibitem{Moore06}
William~Notz David~Moore.
\newblock {\em Statistics: concepts and controversies}.
\newblock 2006.

\bibitem{Freund99thealternating}
Yoav Freund and Llew Mason.
\newblock The alternating decision tree learning algorithm.
\newblock In {\em In Machine Learning: Proceedings of the Sixteenth
  International Conference}, pages 124--133. Morgan Kaufmann, 1999.

\bibitem{Hall00correlation-basedfeature}
Mark~A. Hall.
\newblock Correlation-based feature selection for discrete and numeric class
  machine learning.
\newblock pages 359--366. Morgan Kaufmann, 2000.

\bibitem{Heckerman96atutorial}
David Heckerman.
\newblock A tutorial on learning with bayesian networks.
\newblock 1996.

\bibitem{holte93}
R.C. Holte.
\newblock Very simple classification rules perform well on most commonly used
  datasets.
\newblock {\em Machine Learning}, 11:63, 1993.

\bibitem{Mitchell97DescTree}
Tom~M. Mitchell.
\newblock {\em Machine Learning}.
\newblock McGraw-Hill, New York, 1997.

\bibitem{Mitchell97}
Tom~M. Mitchell.
\newblock {\em Machine Learning}.
\newblock McGraw-Hill, New York, 1997.

\bibitem{quinlanID3}
J.~Ross Quinlan.
\newblock {\em Induction of decision trees}.
\newblock 1 edition, 1986.

\bibitem{quinlanC4.5}
J.~Ross Quinlan.
\newblock {\em C4.5: Programs for Machine Learning (Morgan Kaufmann Series in
  Machine Learning)}.
\newblock Morgan Kaufmann, 1 edition, January 1993.

\bibitem{NB-performance}
Irina Rish.
\newblock An empirical study of the naive bayes classifier.
\newblock In {\em IJCAI-01 workshop on "Empirical Methods in AI"}.

\end{thebibliography}