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1 Building the Experiment

To construct the experiment, certain aspects were first determined to be pertinent in the

final selection of top, actionable attributes in the data. The following represents brief

explanations of each method used. Results obtained from a combination of which are then

analyzed.

1.1 Number of Attributes

An attribute in the data could be something such as GPA, or ZIPCODE. The number of

attributes to select is crucial in the analysis of the data, because it allows us to conclude

how many of the attributes selected we should concentrate on. This is central in selecting

actionable attributes. For example, suppose a data set consists of 1000 attributes, but the

results from experimentation find that only 15 of the 1000 are actually important. The bulk

of subsequent attention could then be spent on what actions to take based on the 15 found,

as opposed to the rest of the 985.

In this experiment, we chose n to be the number of attributes selected in increments of

5. Thus, with a maximum of 103 attributes in each data set used in the experiment, 20

different intervals of n were chosen by our feature subset selectors (described below).

1.2 Classifiers

Classifiers are used in data mining by employing machine learning techniques in order to

learn patterns in data. Once these patterns are learned, we can then begin to attempt to

predict outcomes in the data by reflecting on data that has already been examined. We

can also determine how well a classifier predicts for the data. This is done by learning on

a certain portion of the data, and reflecting on how well predictions are made by another

portion of the data that has not yet been seen in the learning process. By examining overall

performance, we can make a statement about how much better one classifier predicts on a

specific data set than another.
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• Naive Bayes - A naive Bayes classifier is a simple and fast probabilistic classifier that

uses Bayes’ theorem to classify training data. Bayes’ theorem, as shown in Equation 1,

determines the probability P of an event H occurring given an amount of evidence

E. The classifier also assumes feature independence; the algorithm examines features

independently to contribute to probabilities, as opposed to the assumption that fea-

tures depend on other features. Surprisingly, even though feature independence is an

integral part of the classifier, it often outperforms many other learners [11].

Pr(H|E) =
Pr(E|H) ∗ Pr(H)

Pr(E)
(1)

• C4.5 - C4.5 [10] is a type of classifier known as a decision tree, and is an extension

to the ID3 [9] algorithm. A decision tree [7] (shown in Figure 1) is constructed by

first determining the best attribute to make as the root node of the tree. ID3 decides

this root attribute by using one that best classifies training examples based upon the

attribute’s information gain (described below). Then, for each value of the attribute

representing any node in the tree, the algorithm recursively builds child nodes based

on how well another attribute from the data describes that specific branch of its parent

node. The stopping criteria are either when the tree perfectly classifies all training

examples, or until no attribute remains unused. C4.5 extends ID3 by making several

improvements, such as the ability to operate on both continuous as well as discrete

attributes, training data that contains missing values for a given attribute(s), and

employ pruning techniques on the resulting tree.

• One-R - One-R, described in [6], builds rules from the data by iteratively examining

each value of an attribute and counting the frequency of each class for that attribute-

value pair. An attribute-value is then assigned the most frequently occurring class.

Error rates of each of the rules can then be calculated, and the best rules can be

ranked based on the lowest error rates.
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Figure 1: A decision tree consists of a root node and descending children nodes who denote
decisions to make in the tree’s strucure. This tree, for example, was constructed in an
attempt to optimize investment portfolios by minimizing budgets and maximizing payoffs.
The top-most branch represents the best selection in this example.

• Zero-R - Often used to evaluate the success of other classification algorithms, Zero-R

is an extremely simple algorithm that gives the majority class from the training data.

• Alternating Decision Trees - ADTrees [3] are decision trees that contain both decision

nodes, as well as prediction nodes. Decision nodes specify a condition, while prediction

nodes contain only a number. Thus, as an example in the data follows paths in the

ADTree, it only traverses branches whose decision nodes are true. The example is

then classified by summing all prediction nodes that are encountered in this traversal.

ADTrees, however, differ from binary classification trees, such as C4.5, in that in those

trees an example only traverses a single path down the tree.

• Bayesian Network - Bayesian networks, illustrated in Figure 2, are graphical models

that use a directed acyclic graph (DAG) to represent probabilistic relationships be-

tween variables. As stated in [5] Bayesian networks have four important elements to

offer:

1. Incomplete data sets can be handled well by Bayesian networks. Because the
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Figure 2: In this simple bayesian network, the variable Sprinkler is dependent upon whether
or not its raining; the sprinkler is generally not turned on when it’s raining. However, either
event is able to cause the grass to become wet - if it’s raining, or if the sprinkler is caused to
turn on. Thus, Bayesian networks excel at investigating information relating to relationships
between variables.

networks encode a correlation between input variables, if an input is not observed,

in will not necessarily produce inaccurate predictions, as would other methods.

2. Causal relationships can be learned about via Bayesian networks. For instance,

if an analyst wished to know if a certain action taken would produce a specific

result, and also to what degree.

3. Bayesian networks promote the amalgamation of data and domain knowledge by

allowing for a straightforward encoding of causal prior knowledge, as well as the

ability to encode causal relationship strength.

4. Bayesian networks avoid over fitting of data, as ”smoothing” can be used in a

way such that all data that is available can be used for training.

• Radial Basis Function Network - A radial basis function network (RBFN) [1] is a type

of network called an artificial neural network (ANN). However, RBFNs are specialized

in that they utilize a radial basis function as an activation function. An ANN’s activa-
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tion function is used in order to offer non-linearity to the network. This is important

for multi-layer networks containing many hidden layers, because their advantages lie

in their ability to learn on non-linearly separable examples.

1.3 Feature Subset Selectors

Feature Subset Selection (FSS) methods provide ways to determine how important the

attributes (or features) are in the data set, and how we can keep the best scoring ones, and

throw out the rest. However, we must experiment with varying FSS procedures, because

each method can return strikingly different results. Thus, just by experimenting with

attributes selected from a handful of FSS, we are not left with a sense of how well attributes

were selected from a data set compared to other feature selection tools.

A brief overview of the FSS methods used in this study were as follows:

• CFS - Correlation-Based Feature Selection [4] begins by constructing a matrix of

feature to feature, and feature-to-class correlations. It then uses a best first search by

expanding the best subsets until no improvement is made, in which case the search

falls to the unexpanded subset having the next best evaluation until a subset expansion

limit is met.

• Information Gain - Information Gain works by using a concept from information the-

ory known as entropy. Entropy measures the amount of uncertainty, or randomness,

that is associated with a random variable. Thus, high entropy can be seen as a lack

of purity in the data. Information gain, as described in [8] is an expected reduction of

the entropy measure that occurs when splitting examples in the data using a partic-

ular attribute. Therefore an attribute that has a high purity (high information gain)

is better at describing the data than one with a low purity. The resulting attributes

are then ranked by sorted their information gain scores in a descending order.

• Chi-squared - Attributes can also be ranked using the chi-squared statistic. The
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chi-squared statistic [2] is used in statistical tests to determine how distributions of

variables are different from one another. Note that these variables must be categor-

ical in nature. Thus, the chi-squared statistic can evaluate an attribute’s worth by

calculating the value of this statistic with respect to a class. Attributes can then be

ranked based on this statistic.

• One-R - One-R (as described above), can also be used to deliver top-ranking attributes.

Since each rule contains one attribute and a corresponding value, we can evaluate

attributes by sorting them based on the error rate of the rule associated with that

attribute-value pair. Using this, top attributes are those whose rules result in the

lowest error rates.

1.4 Cross-Validation

In the process of experimentation, it is crucial to determine a method’s performance. Using

performance criteria, further analysis can be conducted on experimental results to aid in the

search for an optimal solution. Cross-validation provides the ability to discover how well a

classifier performs on any given data set or a treatment of that data set. This is conducted

by randomly partitioning the data into two subsets, called the training set, and the testing

set. Specifically for this experiment, the data prior to partitioning has been reduced given

n attributes selected using an FSS method.

In the learning phase, only the training subset is used by the classifier. The testing set

is then used to determine how well the concepts learned from the training phase can be

applied to unseen data. However, to reduce variability, the partitioning of the data and

reclassification of resulting subsets is generally conducted multiple times. In this experi-

ment, for example, a 5 X 5 cross-validation was performed. This means that five times

we partitioned the data into a testing set consisting of 1
5 -th of the data, and a training

set of 4
5 -ths of the data. After the five rounds, median values of the validation results are

examined, and are assigned to a particular combination of the above facets.
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2 Analysis of Experimental Results

2.1 Evaluation Metrics

The evaluation metrics used in this experiment are standard in data mining to measuring

the performance of a method. These are represented as probability of detection (PD),

probability of false alarm (PF), and variance. PD denotes the probability that the classifier

will predict correctly for a given class, given both its correct and incorrect predictions.

Thus, PD values should be maximized. PF, on the other hand, is the probability that

the classifier will predict incorrectly for a given class, also given its correct and incorrect

predictions. For this reason, PF results should be minimized.

Variance was also used in the experiment based on PD and PF values independently

as an extra means of determining performance. Variance in these values provides insight

into how much reliability a classifier supports on the data. For example, if a method’s PD

values range from very low to very high, we can determine that the particular method is

not consistent in its probabilities of detection. Therefore, it is desired to have a very small

variance in both PD and PF values.

2.2 Visualizing the Results

Figures 3, 4, and 5 show the PD and PF median results for first, second and third year

retention against the variance of these values. Each point represents a specific combination

of the number of attributes selected, the feature subset selector used to select them, and the

classifier used to train on the resulting data. For example, one point on a graph could be

seen as 50/Information Gain/Naive Bayes, where 50 denotes the number of attributes used.

The color of each point shows the number of attributes used for that particular combination

representing that point.

The horizontal line segmenting the PD graphs are given as a baseline reference desig-

nated by the already existing retention rates in the data. Thus, to predict for retention

9



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

M
ed

ia
n 

(5
0t

h 
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 1 Retention - PD

20
40
60
80

100

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

M
ed

ia
n 

(5
0t

h 
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 1 Retention - PF

20
40
60
80

100

Figure 3: Probability of Detection (PD) and Probability of False Alarm (PF) with variances
for first year retention.
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Figure 4: Probability of Detection (PD) and Probability of False Alarm (PF) with variances
for second year retention.
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Figure 5: Probability of Detection (PD) and Probability of False Alarm (PF) with variances
for third year retention.
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in a given year, it is desirable to yield results higher than the baseline. As can be seen in

the figures, the median probability of detection of retention values for the first year do not

meet the baseline, and therefore we can assume that first year retention cannot accurately

be predicted for using our methods. Second year retention provides better results than first

year retention, but these results are hardly significant. For example, most of the points

lie at or below the baseline. For this reason, second year retention is also not considered

in further analysis. Lastly, third year PD values successfully exceed the baseline, and so

require more thorough examination.

2.3 Narrowing the Search

From the visualizations described above, we can narrow our space of possible combinations

to examine for third year retention. The graphs for PD and PF medians show that the range

of number of attributes that maximizes PD and minimizes PF values while maintaining

minimal variance is approximately 20 to 60. This is significant, as it allows filtering of the

results so that concentration can be placed on only treatments whose attribute numbers lie

in this range.

2.3.1 Ranking with the Mann-Whitney Test

At the moment of pruning the results based on attribute ranges, we are left with many

combinations to be analyzed. In order to rank each combination, we performed a statistical

Mann-Whitney test at 95% confidence in order to rank a treatment. A rank is determined

by how many times a combination wins compared to another. The method that won the

most number of times is then given the highest rank. The table in Figure 6 shows the top

ten ranking combinations based on a PD performance measure. Note that identical ranks

are given to those treatments whose win value is equal in magnitude.
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Rank Number of Attributes FSS Classifier
61 30 oneR bnet
61 50 cfs adtree
57 50 oneR adtree
56 30 oneR adtree
55 30 cfs adtree
52 50 oneR bnet
51 30 infogain adtree
51 30 cfs bnet
48 50 infogain adtree

Figure 6: The top ten ranking treatments for third year retention. Ranks represent how
many times a particular treatment wins over all other treatments in the experiment.

2.4 Selected FSS and Classifier

Figure 6 shows the top-most ranking combination of FSS and classifier is obtained by either

using 30 attributes, or 50. Since, the two numbers of attributes (along with their own FSS

and classifier) result in the same Mann-Whitney rank, we can make the statement that the

two are statistically similar, and thus by focusing on only 30 attributes selected, we can

concentrate on approximately 1/3 of the original data. Thus, our analysis of the results

show that 30 attributes selected using One-R as the feature subset selection method are the

most critical to third year retention.
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