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1. Introduction

OURMINE is a data mining scripting envrionment. The current kit has tools written in BASH/
GAWK/ JAVA/ PERL/ and there is no technical block to adding other tools written in other
languages. Other toolkits impose strict limitations of the usable languages:

• MLC++ requires C++
• Extensions to WEKA (Figure 1) must be written in JAVA.

Our preference for BASH [17]/GAWK [1] over, say, LISP is partially a matter of taste but
we defend that selection as follows. Once a student learns, for example, RAPID-I’s XML
configuration tricks, then those learned skills are highly specific to that toolkit. On the other
hand, once a student learns BASH/GAWK methods for data pre-processing and reporting,
they can apply those scripting tricks to any number of future UNIX-based applications.

This paper introduces OURMINE as follows:

• First, we describe the base tool and offer some samples of coding in OURMINE;
• Next, we demonstrate OURMINE’s ability to succinctly document even complex

experiments.

2. OURMINE

OURMINE was developed to help graduate students at West Virginia University document
and execute their data mining experiments. The toolkit uses UNIX shell scripting. As a result,
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2 A. NELSON ET AL.

Figure 1. The WEKA toolit running the J48 decision tree learner.

any tool that can be executed from a command prompt can be seemlessly combined with other
tools.

For example, Figure 4 shows a simple bash function used in OURMINE to clean text
data before conducting any experiments using it. Line 5 passes text from a file, performing
tokenization, removing capitals and unimportant words found in a stop list, and then in the
next line performing Porter’s stemming algorithm on the result.

OURMINE allows connectivity between tools written in various languages as long as there
is always a command-line API available for each tool. For example, the modules of Figure 4
are written using BASH, Awk and Perl.

The following sections describe OURMINE’s functions and applications.

2.1. Built-in Data and Functions

In order to encourage more experimentation, the default OURMINE installation comes with
numerous data sets:
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 3

1 clean(){

2 local docdir=$1

3 local out=$2

4 for file in $docdir/*; do

5 cat $file | tokes | caps | stops $Lists/stops.txt > tmp

6 stems tmp >> $out

7 rm tmp

8 done

9 }

Figure 2. An OURMINE function to clean text documents and collect the results. Tokes is a tokenizer;
caps sends all words to lower case; stops removes the stop workds listed in ”$Lists/stops.txt”; and

stems performs Porter’s stemming algorithm (removes confusing suffixes).

• Text mining data sets: including STEP data sets (numeric): ap203, ap214, bbc, bbcsport,
law, 20 Newsgroup subsets [sb-3-2, sb-8-2, ss-3-2, sl-8-2]†

• Discrete UCI datasets: anneal, colic, hepatitis, kr-vs-kp, mushroom, sick, waveform-
5000, audiology, credit-a, glass, hypothyroid, labor, pcolic, sonar, vehicle, weather, autos,
credit-g, heart-c, ionosphere, letter, primary-tumor, soybean, vote,
weather.nominal, breast-cancer, diabetes, heart-h, iris, lymph, segment, splice, vowel;

• Numeric UCI datasets: auto93, baskball, cholesterol, detroit, fruitfly, longley, pbc, quake,
sleep, autoHorse, bodyfat, cleveland, echoMonths, gascons, lowbwt, pharynx, schlvote,
strike, autoMpg, bolts, cloud, elusage, housing, mbagrade, pollution, sensory, veteran,
autoPrice, breastTumor, cpu, fishcatch, hungarian, meta, pwLinear, servo, vineyard.

• The defect prediction data sets from the PROMISE repostitory: CM1, KC1, KC2, KC3,
MC2, MW1, PC1

OURMINE also comes with a variety of built-in functions to perform data mining and
text mining tasks. For a sample of these functions, see Figure 5. For a complete list, see the
appendix.

2.2. Learning and Teaching with OURMINE

Data mining concepts become complex when implemented in a complex manner. For this
reason, OURMINE utilizes simple scripting tools (written mostly in BASH or GAWK) to
better convey the inner-workings of these concepts. For instance, Figure 6 shows a GAWK
implementation used by OURMINE to determine the TF-IDF [18] values of each term in a
document. This script is simple and concise, while a C++ or Java implementation would be
large and overly complex. An additional example demonstrating the brevity of OURMINE

†http://mlg.ucd.ie/datasets
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4 A. NELSON ET AL.

abcd provides analysis of experiments, such as pd,pf,accuracy and precision values;

clean clean text for further processing, removing tokens, capitalizations, stop words, etc.;

docsToSparff constructs a sparse arff file based on a directory of documents;

docsToTfidfSparff generates a sparse arff file of TF-IDF values based on a directory of documents;

funs shows a sorted list of all available functions in OURMINE;

logArff logs all numeric values in a data set ;

malign neatly aligns text into columns;

nb Runs Naive Bayes on the data given;

rankViaInfoGain ranks attributes by InfoGain values;

makeTrainAndTest splits a dataset into a test set and a training set as train.arff and test.arff, as
well as train.lisp and test.lisp.

Figure 3. A small sample of the available OURMINE functions. Built-in functions give the user
something with which to start and begin running demos and experiments immediately. For a detailed

list of available tools, please see the appendix.

function train() { #update counters for all words in the record

Docs++;

for(I=1;I<NF;I++) {

if( ++In[$I,Docs]==1)

Doc[$I]++

Word[$I]++

Words++ }

}

function tfidf(i) { #compute tfidf for one word

return Word[i]/Words*log(Docs/Doc[i])

}

Figure 4. A GAWK implementation of TF-IDF.
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 5

#naive bayes classifier in gawk

#usage: gawk -F, -f nbc.awk Pass=1 train.csv Pass=2 test.csv

Pass==1 {train()}

Pass==2 {print $NF "|" classify()}

function train( i,h) {

Total++;

h=$NF; # the hypotheis is in the last column

H[h]++; # remember how often we have seen "h"

for(i=1;i<=NF;i++) {

if ($i=="?")

continue; # skip unknown values

Freq[h,i,$i]++

if (++Seen[i,$i]==1)

Attr[i]++} # remember unique values

}

function classify( i,temp,what,like,h) {

like = -100000; # smaller than any log

for(h in H) { # for every hypothesis, do...

temp=log(H[h]/Total); # logs stop numeric errors

for(i=1;i<NF;i++) {

if ( $i=="?" )

continue; # skip unknwon values

temp += log((Freq[h,i,$i]+1)/(H[h]+Attr[NF])) }

if ( temp >= like ) { # better hypothesis

like = temp

what=h}

}

return what;

}

Figure 5. A Naive Bayes classifier for a CSV file, where the class label is found in the last column.

script can be seen in Figure 10, which is a complete experiment whose form can easily be
taught and duplicated in future experiments.

Another reason to prefer scripting in OURMINE over the complexity of RAPID-I, WEKA,
“R”, etc, is that it reveals the inherent simplicity of many of our data mining methods. For
example, Figure 7 shows a GAWK implementation of a Naive Bayes classifier for discrete data
where the last column stores the class symbol. This tiny script is no mere toy- it successfully
executes on very large datasets such as those seen in the 2001 KDD cup and in [16]. WEKA
cannot process these large data sets since it always loads its data into RAM. Figure 7, on the
other hand, only requires memory enough to store one instance as well as the frequency counts
in the hash table “F”.

More importantly, in terms of teaching, Figure 7 is easily customizable. Figure 8 shows
four warm-up exercises for novice data miners that (a) introduce them to basic data mining
concepts and (b) show them how easy it is to script their own data miner: Each of these tasks
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6 A. NELSON ET AL.

1. Modify Figure 7 so that there is no train/test data. Instead, make it an incremental learning.
Hint: 1) call the functions train, then classify on every line of input. 2) The order is important:
always train before classifying so the the results are always on unseen data.

2. Convert Figure 7 into HYPERPIPES [3]. Hint: 1) add globals Max[h, i] and Min[h, i] to keep
the max/min values seen in every column “i”and every hypothesis class “h”. 2) Test instance
belongs to the class that most overlaps the attributes in the test instance. So, for all attributes
in the test set, sum the returned values from contains1:

function contains1(h,i,val,numerip) {

if(numericp)

return Max[h,i] >= val && Min[h,i] <= val

else return (h,i,value) in Seen

}

3. Use Figure 7 for anomaly detector. Hint: 1) make all training examples get the same class; 2) an
anomalous test instance has a likelihood 1

α
of the mean likelihood seen during training (alpha

needs tuning but alpha = 50 is often useful).
4. Using your solution to #1, create an incremental version of HYPERPIPES and a anomaly

detector.

Figure 6. Four Introductory OURMINE programming exercises.

requires changes to less than 10 lines from Figure 7. The simplicity of these customizations
fosters a spirit of “this is easy” for novice data miners. This in turn empowers them to design
their own extensive and elaborate experiments.

Also from the teaching perspective, demonstrating on-the-fly a particular data mining
concept helps not only to solidify this concept, but also gets the student accustomed to using
OURMINE as a tool in a data mining course. As an example, if a Naive Bayes classifier is
introduced as a topic in the class, an instructor can show the workings of the classifier by
hand, and then immediately afterwords compliment this by running Naive Bayes on a small
data set in OURMINE. Also, since most of OURMINE does not use pre-compiled code, an
instructor can make live changes to the scripts and quickly show the results.

We are not alone in favoring GAWK for teaching purposes. Ronald Loui uses GAWK to
teaching artifical intelligence at Washington University in St. Louis. He writes:

There is no issue of user-interface. This forces the programmer to return to the
question of what the program does, not how it looks. There is no time spent
programming a binsort when the data can be shipped to /bin/sort in no time. [8]

Function documentation provides a way for newcomers to OURMINE to not only get to
know the workings of each function, but also add to and modify the current documentation.
Instead of asking the user to implement a more complicated “man page”, OURMINE uses a
very simple system consisting of keywords such as name, args and eg to represent a function
name, its arguments and an example of how to use it. Using this documentation is simple.
Entering funs at the OURMINE prompt provides a sorted list of all available functions in
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 7

Function: j4810

Arguments: <data (arff)>

Example(s): j4810 weather.arff

Description: Uses a j48 decision tree learner on the input data

Function Code:

==============

j4810 () {

local learner=weka.classifiers.trees.J48

$Weka $learner -C 0.25 -M 2 -i -t $1

}

Figure 7. Function help in OURMINE.

ourmine. Then, by typing help X, where X is the name of the function, information about that
function is printed to the screen. See Figure 9 for an example of viewing the help document
for the function j4810. Documentation for a function is added by supplying a text file to the
helpdocs directory in OURMINE named after the function.

3. Using Ourmine for Research

OURMINE is not just a simple demonstration system for novice data miners. It can also be
used to generate journal-level publishable results. In the last three years, the authors of this
paper have published six papers in leading software engineering journals and conferences using
OURMINE [20,4, 14, 13, 2, 12].

In order to demonstate OURMINE’s use in leading edge research, we present here a recent
text mining result from an as-yet-unpublished WVU masters thesis.

Matheny [9] benchmarked various lightweight learning methods (TF*IDF, the GENIC
stochastic clusterer) against other, slower, more rigorous learning methods (PCA, K-means).
As expected, the rigorous learning methods ran much slower than the stochastic methods.
But, unexpectedly, Matheny found that the leightweight methods perform nearly as well as
the rigorous methods.

In a mature scientific discipline, it is standard practice to reproduce important results. The
results need to be reproduced since they are important:

• If the results from the experiment are correct, then text mining methods can scale to
much larget data sets.

The rest of this section describes the use of OURMINE to reproduce the experiment.

Copyright c© 2010 John Wiley & Sons, Ltd. 2010; 00:1–7
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1 demo004(){

2 local out=$Save/demo004-results.csv

3 [ -f $out ] && echo "Caution: File exists!" || demo004worker $out

4 }

5 # run learners and perform analysis

6 demo004worker(){

7 local learners="nb j48"

8 local data="$Data/discrete/iris.arff"

9 local bins=10

10 local runs=5

11 local out=$1

12 cd $Tmp

13 (echo "#data,run,bin,learner,goal,a,b,c,d,acc,pd,pf,prec,bal"

14 for((run=1;run<=$runs;run++)); do

15 for dat in $data; do

16 blab "data=‘basename $dat‘,run=$run"

17 for((bin=1;bin<=$bins;bin++)); do

18 rm -rf test.lisp test.arff train.lisp train.arff

19 makeTrainAndTest $dat $bin $bin

20 goals=‘cat $dat | getClasses --brief‘

21 for learner in $learners; do

22 $learner train.arff test.arff | gotwant > produced.dat

23 for goal in $goals; do

24 cat produced.dat |

25 abcd --prefix "‘basename $dat‘,$run,$bin,$learner,$goal" \

26 --goal "$goal" \

27 --decimals 1

28 done

29 done

30 done

31 blabln

32 done

33 done | sort -t, -r -n -k 11,11) | malign > $out

34 winLossTie --input $out --test w --fields 14 --key 4 --perform 11

35 }

Figure 8. A demo OURMINE experiment. This worker function begins by being called by the top level
function demo004 on lines 1-4. Noteworthy sections of the demo code are at: line 19, where training
sets and test sets are built from 90% and 10% of the data respectively, lines 25-27 in which values
such as pd,pf and balance are computed via the abcd function that computes values from the confusion
matrix, and line 34 in which a Wilcoxon test is performed on each learner in the experiment using pd

as the performance measure.
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 9

3.1. The Experiment

As stated above, the purpose of this experiment conducted for this paper is to verify if
lightweight data mining methods perform slower or worse than more thorough and rigorous
ones.

The data sets used in this experiment are:

• EXPRESS schemas: AP-203, AP-214
• Text mining datasets: BBC, Reuters, The Guardian (multi-view text datasets), 20

Newsgroup subsets: sb-3-2, sb-8-2, ss-3-2, sl-8-2.

3.1.1. Classes of Methods

This experiment compares different row and column reduction methods. Given a table of data
where each row is one example and each columns counts different features, then:

• Row reduction methods cluster related rows into the same group;
• Column reduction methods remove columns with little information.

Reduction methods are essential in text mining. For example:

• A standard text mining corpus may store information in tens of thousands of columns.
For such data sets, column reduction is an essential first step before any other algorithm
can execute

• The process of clustering data into similar groups can be used in a wide variety of
applications, such as:

– Marketing: finding groups of customers with similar behaviors given a large database
of customer data

– Biology: classification of plants and animals given their features
– WWW: document classification and clustering weblog data to discover groups of

similar access patterns.

3.1.2. The Algorithms

While there are many clustering algorithms used today, this experiment focused on three: a
naive K-Means implementation, GenIc [5], and clustering using canopies [10]:

1. K-means, a special case of a class of EM algorithms, works as follows:

(a) Select initial K centroids at random;
(b) Assign each incoming point to its nearest centroid;
(c) Adjusts each cluster’s centroid to the mean of each cluster;

∗http://mlg.ucd.ie/datasets
†http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
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10 A. NELSON ET AL.

Figure 9. A PCA dimension feature.

(d) Repeat steps 2 and 3 until the centroids in all clusters stop moving by a noteworthy
amount

Here we use a naive implementation of K-means, requiring K*N *I comparisons, where
N and I represent the total number of points and maximum iterations respectively.

2. GenIc is a single-pass, stochastic clustering algorithm. It begins by intially selecting K
centroids at random from all instances in the data. At the beginning of each generation,
set the centroid weight to one. When new instances arrive, nudge the nearest centroid to
that instance and increase the score for that centroid. In this process, centroids become
“fatter” and slow down the rate at which they move toward newer examples. When a
generation ends, replace the centroids with less than X percent of the max weight with
N more random centroids. Genic repeats for many generations, then returns the highest
scoring centroids.

3. Canopy clustering, developed by Google, reduces the need for comparing all items in the
data using an expensive distance measure, by first partitioning the data into overlapping
subsets called canopies. Canopies are first built using a cheap, approximate distance
measure. Then, more expensive distance measures are used inside of each canopy to
cluster the data.

As to column reduction, we will focus on two methods:

1. PCA, or Principal Components Analysis, is a reduction method that treats every instance
in a dataset as a point in N-dimensional space. PCA looks for new dimensions that better
fit these points. PCA involves the calculation of the eigenvalue decomposition of a data
covariance matrix or singular value decomposition of a data matrix. Figure 14 shows
an example of PCA. Before, on the left-hand-side, the data exists in a two-dimensional
space, neither of which captures the distribution of the data. Afterwards, on the right-
hand-side, a new dimension has been syntethesized that is more relevant to the data
distribution.

2. TF-IDF, or term frequency times inverse document frequency, reduces the number of
terms (dimensions) by describing how important a term is in a document (or collection
of documents) by incrementing its importance according to how many times the term
appears in a document. However, this importance is also offset by the frequency of the

Copyright c© 2010 John Wiley & Sons, Ltd. 2010; 00:1–7
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 11

term in the entire corpus. Thus, we are concerned with only terms that occur frequently
in a small set of documents, and very infrequently everywhere else. To calculate the
Tf*IDF value for each term in a document, we use the following equation:

Tf ∗ df(t, Dj) =
tf(ti, Dj)

|Dj | log(
|D|

df(ti)
) (1)

To reduce all terms (and thus, dimensions), we must find the sum of the above

Tf ∗ Ifdsum(t) =
∑

DjεD

Tf ∗ Idf(t, Dj) (2)

In theory, TF*IDF and GenIc should perform worse than K-Means, canopy clustering and
PCA:

• Any single-pass algorithm like GenIc can be confused by “order effects”; i.e. if the data
arrives in some confusing order then the single-pass algorithm can perform worse than
other algorithms that are allowed to examine all the data.

• TF*IDF is a heuristic method while PCA is a well-founded mathematical technique

On the other hand, the more rigorous methods are slower to compute:

• Computing the correlation matrix used by PCA requires at least a O(N2) calculation.
• As shown below, K-means is much slower than the other methods studied here.

3.1.3. Building the Experiment

This experiment was conducted entirely with OURMINE using a collection of BASH scripts,
as well as custom Java code. The framework was built as follows:

1. A command-line API was developed in Java for parsing the data, reducing/clustering
the data, and outputting the data. Java was chosen due to its preferred speed for the
execution of computationaly expensive instructions.

2. The data was then iteratively loaded into this Java code via shell scripting. This provides
many freedoms, such as allowing parameters to be altered as desired, as well as outputting
any experimental results in any manner seen fit.

Figure 15 shows the OURMINE code for clustering data using the K-means algorithm.
Shell scripting provides us with much leverage in this example. For instance, by looking at
Lines 2-5, we can see that by passing the function four parameters, we can cluster data in the
range from minK to maxK on all data in dataDir. This was a powerful feature used in this
experiment, because it provides the oppurtunity to run the clusterer across multiple machines
simultaneously. As a small example, suppose we wish to run K-means across three different
machines with a minimum K of 2 and a maximum K of 256. Since larger values of K generally
yield longer runtimes, we may wish to distribute the execution as follows:

Machine 1: clusterKmeansWorker 256 256 0 dataDir
Machine 2: clusterKmeansWorker 64 128 2 dataDir
Machine 3: clusterKmeansWorker 2 32 2 dataDir

Copyright c© 2010 John Wiley & Sons, Ltd. 2010; 00:1–7
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12 A. NELSON ET AL.

1 clusterKmeansWorker(){

2 local minK=$1

3 local maxK=$2

4 local incVal=$3

5 local dataDir=$4

6 local stats="clusterer,k,dataset,time(seconds)"

7 local statsfile=$Save/kmeans_runtimes

8 echo $stats >> $statsfile

9 for((k=$minK;k<=$maxK;k*=$incVal)); do

10 for file in $dataDir/*.arff; do

11 filename=‘basename $file‘

12 filename=${filename%.*}

13 out=kmeans_k="$k"_$filename.arff

14 echo $out

15 start=$(date +%s.%N)

16 $Clusterers -k $k $file $Save/$out

17 end=$(date +%s.%N)

18 time=$(echo "$end - $start" | bc)

19 echo "kmeans,$k,$filename,$time" >> $statsfile

20 done

21 done

22 }

Figure 10. An OURMINE worker function to cluster data using the K-means algorithm. Note that
experiments using other clustering methods (such as GenIc and Canopy), could be conducted by

calling line 16 above in much the same way, but with varying flags to represent the clusterer.

Lines 9-13 of Figure 15 load the data from dataDir for every k, and formats the name of
the output file. Then, lines 15-19 begin the timer, cluster the data, and output statistical
information such as k, the dataset, and runtime of the clusterer on that data set. This file will
then be used later in the analysis of these clusters.

Similarly, the flags in line 16 can be changed to perform a different action, such as clustering
using GenIc or Canopy, by changing -k to -g or -c respectively, as well as finding cluster
similarities (as described below) and purities, by using -sim and -purity as inputs.

Since any number of variables can be set to represent different libraries elsewhere in
OURMINE, the variable

$Reducers

is used for the dimensionality reduction of the raw dataset, as seen in Figure 16, whose overall
structure is very similar to Figure 15.

3.2. Results

To determine the overall benefits of each clustering method, this experiment used both cluster
similarities, as well as the runtimes of each method.

Copyright c© 2010 John Wiley & Sons, Ltd. 2010; 00:1–7
Prepared using speauth.cls



SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 13

1 reduceWorkerTfidf(){

2 local datadir=$1

3 local minN=$2

4 local maxN=$3

5 local incVal=$4

6 local outdir=$5

7 local runtimes=$outdir/tfidf_runtimes

8 for((n=$minN;n<=$maxN;n+=$incVal)); do

9 for file in $datadir/*.arff; do

10 out=‘basename $file‘

11 out=${out%.*}

12 dataset=$out

13 out=tfidf_n="$n"_$out.arff

14 echo $out

15 start=$(date +%s)

16 $Reducers -tfidf $file $n $outdir/$out

17 end=$(date +%s)

18 time=$((end - start))

19 echo "tfidf,$n,$dataset,$time" >> $runtimes

20 done

21 done

22 }

Figure 11. An OURMINE worker function to reduce the data using TF-IDF.

3.2.1. Similarities

Cluster similarities tell us how similar points are, either within a cluster (Intra-similarity), or
with members of other clusters (Inter-similarity). The idea here is simple: gauge how well a
clustering algorithm groups similar documents, and how well it separates different documents.
Therefore, intra-cluster similarity values should be maximized, while minimizing inter-cluster
similarities.

Similarities are obtained by using the cosine similarity between two documents. The cosine
similarity measure defines the cosine of the angle between two documents, each containing
vectors of terms. The similarity measure is represented as

sim(Di, Dj) =
Di · Dj

||Di||||Dj || = cos(θ) (3)

where Di and Dj denote two specific documents.
Cluster similarities are determined as follows:

• Cluster intra-similarity: For each document d in cluster Ci, find the cosine similarity
between d and all documents belonging to Ci

• Cluster inter-similarity: For each document d in cluster Ci, find the cosine similarity
between d and all documents belonging to all other clusters

Copyright c© 2010 John Wiley & Sons, Ltd. 2010; 00:1–7
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14 A. NELSON ET AL.

Thus the resulting sum of these values represents the overall similarities of a clustering
solution. Figure 17 shows the results from the similarity tests conducted in this experiment.
The slowest clustering and reduction methods were set as a baseline, because it was assumed
that these methods would perform the best. With intra-similarity and inter-similarity values
normalized to 100 and 0 respectively, we can see that surprisingly, faster heuristic clustering
and reduction methods perform just as well or better than more rigorous methods. Thus, the
conclusions from this experiment shows that fast heuristic methods are sufficient for large data
sets due to their scalability.

4. Conclusions

This paper has reviewed a UNIX scripting tool called OURMINE as a method of documenting,
executing, and sharing data mining experiments. We have used OURMINE to reproduce and
check an important result. From the experiment, we concluded that:

• When examining cluster inter/intra similarities resulting from each clustering/reduction
solution, we found that faster heuristic methods can outperform more rigorous ones when
observing decreases in runtimes.

• This means that faster solutions are suitable on large datasets due to scalability.

We prefer OURMINE to other tools. Four features are worthy of mention:

1. OURMINE is very succinct. As seen above, a few lines can describe even complex
experiments.

2. OURMINE code like in Figure 15 and Figure 16 is executable and can be executed by
other researchers directly.

3. Lastly, the execution environment of OURMINE is readily available. Unlike RAPID-I,
WEKA, “R”, etc, there is nothing to debug or install. Many machines already have the
support tools required for OURMINE. For example, we have run OURMINE on Linux,
Mac, and Windows machines (with Cygwin installed).

Like Ritthol et al., we doubt that the standard interfaces of tools like WEKA, etc, are
adequate for representing the space of possible experiments. Impressive visual programming
environments are not the answer: their sophistication can either distract or discourage
novice data miners from extensive modification and experimentation. Also, we find that the
functionality of the visual environments can be achieved with a little BASH and GAWK
scripts, with a fraction of the development effort and a greatly increased chance that novices
will modify the environment.

OURMINE is hence a candidate format for sharing descriptions of experiments. The
PROMISE community might find this format unacceptable but discussions about the
drawbacks (or strengths) of OURMINE would help evolve not just OURMINE, but also the
discussion on how to represent data mining experiments for software engineering.
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Reducer and Clusterer Time InterSim IntraSim Gain
TF-IDF*K-means 17.52 -0.085 141.73 141.82
TF-IDF*GenIc 3.75 -0.14 141.22 141.36
PCA*K-means 100.0 0.0 100.0 100.0
PCA*Canopy 117.49 0.00 99.87 99.87
PCA*GenIc 11.71 -0.07 99.74 99.81

TF-IDF*Canopy 6.58 5.02 93.42 88.4

Figure 12. Similarity values normalized according to the combination of most rigorous reducer and
clusterer.
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Installing OURMINE

OURMINE is an open source toolkit licensed under GPL 3.0. It can be downloaded and
installed from http://code.google.com/p/ourmine.

OURMINE is a command-line environment, and as such, system requirements are minimal.
However, in order to use OURMINE three things must be in place:

• A Unix-based environment. This does not include Windows. Any machine with OSX or
Linux installed will do.

• The Java Runtime Environment. This is required in order to use the WEKA, as well as
any other Java code written for OURMINE.

• The GAWK Programming Language. GAWK will already be installed with up-to-date
Linux versions. However, OSX users will need to install this.

To install and run OURMINE, navigate to http://code.google.com/p/ourmine and follow
the instructions.
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Built-in OURMINE Functions

Utility Functions I

Function Name Description Usage
abcd Performs confusion matrix computations on

any classifier output. This includes statistics
such as $pd, $pf, $accuracy, $balance and $f-
measure

— abcd –prefix –goal, where prefix
refers to a string to be inserted
before the result of the abcd
function, and goal is the desired
class of a specific instance.

arffToLisp Converts a single .arff file into an equivalent
.lisp file

arffToLisp $dataset.arff

blab Prints to the screen using a separate
environment. This provides the ability to
print to the screen without the output
interfering with the results of an experiment

blab $message

blabln The same as blab, except this will print a new
line after the given output

blabln $message

docsToSparff Converts a directory of document files into
a sparse .arff file. Prior to building the file,
however, the text is cleaned

docsToSparff $docDirectory $out-
put.sparff

docsToTfidfSparff Builds a sparse .arff file from a directory of
documents, as above, but instead constructs
the file based on TF-IDF values for each term
in the entire corpus.

docsToTfidfSparff $docDirectory
$numberOfAttributes $output.sparff

formatGotWant Formats an association list returned from
any custom LISP classifier containing actual
and predicted class values in order to work
properly with existing OURMINE functions

formatGotWant

funs Prints a sorted list of all available OURMINE
functions

funs

getClasses Obtains a list of all class values from a specific
data set

getClasses

getDataDefun Returns the name of a .arff relation to be used
to construct a LISP function that acts as a
data set

getDataDefun

gotwant Returns a comma separated list of actual and
predicted class values from the output of a
WEKA classifier

gotwant

help When given with an OURMINE function,
prints helpful information about the function,
such as a description of the function, how to
use it, etc.

help $function, where $function is
the name of the function
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Utility Functions II

Function Name Description Usage
makeQuartiles Builds quartile charts using any key and

performance value from the abcd results (see
above)

makeQuartiles $csv $keyField $per-
formanceField, where $keyField can
be a learner/treatment, etc., and
$performanceField can be any value
desired, such as pd, accuract, etc.

makeTrainAndTest Constructs a training set and a test set given
an input data set. The outputs of the function
are train.arff, test.arff and also train.lisp and
test.lisp

makeTrainAndTest $dataset $bins
$bin, where $dataset refers to any
data set in correct .arff format, $bins
refers to the number of bins desired
in the constuction of the sets, and
$bin is the bin to select as the test
set. For instance, if 10 is chosen as
the number of bins, and 1 is chosen
as the test set bin, then the resulting
training set would consist of 90%
of the data, and the test set would
consist of 10%.

malign Neatly aligns any comma-separated format
into an easily readable format

malign

medians Computes median values given a list of
numbers

medians

quartile Generates a quartile chart along with
min/max/median values, as well as second
and third quartile values given a specific
column

quartile

show Prints an entire OURMINE function so that
the script can be seen in its entirety

show $functionName

winLossTie Generates win-loss-tie tables given a data set.
Win-loss-tie tables, in this case, depict results
after a statstical analysis test on treatments.
These tests include the Mann-Whitney-U
test, as well as the Ranked Wilcoxon test

winLossTie –input $input.csv –
fields $numOfFields –perform $per-
formanceField –key $keyField –
$confidence, where $input.csv refers
to the saved output from the
abcd function described above, $nu-
mOfFields represents the number
of fields in the input file, $perfor-
manceField is the field on which
to determine performance, such as
pd, pf , acc, $keyField is the field
of the key, which could be a
learner/treatment, etc., and $confi-
dence is the percentage of confidence
when running the test. The default
confidence value is 95%
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Learners

Function Name Description Usage
adtree Calls WEKA’s Alternating Decision Tree adtree $train $test
bnet Calls WEKA’s Bayes Net bnet $train $test
j48 Calls WEKA’s J48 j48 $train $test
nb Calls WEKA’s Naive Bayes nb $train $test
oner Calls WEKA’s One-R oner $train $test
rbfnet Calls WEKA’s RBFNet rbfnet $train $test
ridor Calls WEKA’s RIDOR ridor $train $test
zeror Calls WEKA’s Zero-R zeror $train $test

Preprocessors

Function Name Description Usage
caps Reduces capitalization to lowercase from an

input text
caps

clean Cleans text data by removing capitals, words
in a stop list, special tokens, and performing
Porter’s stemming algorithm

clean

discretize Discretizes the incoming data via WEKA’s
discretizer

discretize $input.darff $output.arff

logArff Logs numeric data in incoming data logArff $minVal $fields, where $min-
Val denotes the minimum value to
be passed to the log function, and
$fields is the specfic fields on which
to perform log calculations

stems Performs Porter’s stemming algorithm on
incoming text data

stems $inputFile

stops Removes any terms from incoming text data
that are in a stored stop list

stops

tfidf Computes TF*IDF values for terms in a
document

tfidf $file

tokes Removes unimportant tokens or whitespace
from incoming textual data

tokes
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Feature Subset Selectors

Function Name Description Usage
cfs Calls WEKA’s Correlation-based Feature

Selector
cfs $input.arff $numAttributes $out.arff

chisquared Calls WEKA’s Chi-Squared Feature Selector chisquared $input.arff $numAttributes $out.arff
infogain Calls WEKA’s Infogain Feature Selector infogain $input.arff $numAttributes $out.arff
oneR Calls WEKA’s One-R Feature Selector oneR $input.arff $numAttributes $out.arff
pca Calls WEKA’s Principal Components Anal-

ysis Feature Selector
pca $input.arff $numAttributes $out.arff

relief Calls WEKA’s RELIEF Feature Selector relief $input.arff $numAttributes $out.arff

Clusterers

Function Name Description Usage
K-means Calls custom Java K-means $Clusterers -k $k $input.arff $out.arff, where $k

is the initial number of centroids
Genic Calls custom Java GeNic $Clusterers -g $k $n $input.arff $out.arff, where

$k is the initial number of centroids, and $n is
the size of a generation

Canopy Calls custom Java Canopy Clustering $Clusterers -c $k $p1 $p2 $input.arff $out.arff,
where k is the initial number of centroids, $p1
is a similarity percentage value for the outer
threshold, and $p2 is a similarity percentage
value for the inner threshold. If these percentages
are not desired, a value of 1 should be provided
for both

EM Calls WEKA’s Expectation-Maximization
Clusterer

em $input.arff $k, where $k is the initial number
of centroids
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