
Open Source Data Mining with OURMINE

September 1, 2009

Adam Nelson, Tim Menzies, Gregory Gay
CSEE, WVU, Morgantown, WV

anelson8@mix.wvu.edu, tim@menzies.us, gregoryg@csee.wvu.edu

Abstract

In this paper we discuss OURMINE as a data mining environment
for the development and deployment of experiments, as well as its
application in both data mining instruction and acquisition. Finally,
we introduce two recent experiments conducted using OURMINE. The
first experiment is to determine how defect predictors learned from one
site can apply to another using PROMISE data. This is important
because it shows that not only can this data be used for academic
purposes, but also in industry; companies can use PROMISE data
to build their own defect predictors when local data is not available.
The second experiment conducted explores benefits of faster clustering
and reduction algorithms over more rigorous methods using cluster
inter/intra similarities and purity measures.

1 Introduction

Open source environments are abundantly available for data mining. Tools
such as “R”1, ORANGE2 (see Figure 2), MATLAB 3, and even WEKA 4 [12]
from the Waikato University’s Computer Science Machine Learning Group,
which was given the 2005 SIGKDD Data Mining and Knowledge Discovery
Service Award, are among the most popular. While these tools are notewor-
thy, used by hundreds of data miners for both teaching and experimentation,

1http://www.r-project.org/
2http://magix.fri.uni-lj.si/orange/
3http://www.mathworks.com
4http://www.cs.waikato.ac.nz/ml/weka/

1

Figure 1: WEKA.

our issue with these tools is the same as raised by Ritthoff et al. [10]. Data
mining in the real world is complex, and requires leveraging the combination
of a multitude of tools including data pre-processors, data miners and report
generators instead of simply running a single algorithm. We agree with Rit-
thoff et al. that an interface given by a tool such as WEKA does not support
fast generation of these required combinations.

The demand for connectivity between data miners in other tools has
yielded many results. For instance, WEKA introduced a visual program-
ming environment where nodes denote data pre-processors and miners, etc.
These nodes are then connected by arcs, representing data flows between
them. Similarly, ORANGE provides a visual representation, as seen in Fig-
ure 2.

But while these visual environments are important, they are not always
beneficial. In fact, according to Gay et al. [3], data mining students find
these visual environments discouraging or distracting due to tool complexity
or wasted time in the construction of these environments instead of actually
data mining.

As we will discuss in this paper, in our experience, OURMINE provides a
preferable environment for building and sharing publishable experiments over
existing data mining toolkits. Thus, we present two experiments conducted
using OURMINE whose results could be inserted into a research paper or
thesis.

2

Figure 2: Orange.

2 OURMINE

OURMINE is a toolkit being used at West Virginia University to not only
teach data mining through small examples, but also to provide an environ-
ment in which to conduct even large, time consuming experiments.

The toolkit operates on UNIX-based operating systems and as such uses
shell scripting at its core. As a result, this allows any tool that can be ex-
ecuted from a command prompt to be seemlessly “linked” with other tools.
As an example, you see in Figure 3 a simple bash function used in OUR-
MINE to clean text data before conducting any experiments using it. Line
6 shows passing text from a file, performing tokenization, removing capitals
and unimportant words found in a stop list, and then in the next line per-
forming Porter’s stemming algorithm on the result. The modules shown are
written using BASH, awk and perl. Therefore, OURMINE allows connectiv-
ity between tools written in various languages as long as there is always a
command-line API available for each tool.

The following sections describe OURMINE’s functions and applications.

2.1 Built-in Data and Functions

OURMINE comes with the following data sets to begin conducting experi-
ments right after installation (found in the appendix):

• Text, including STEP datasets (numeric): ap203, ap214, bbc, bbcsport,
law, 20 Newsgroup subsets [sb-3-2, sb-8-2, ss-3-2, sl-8-2]5

• UCI (discrete): anneal, colic, hepatitis, kr-vs-kp, mushroom, sick, waveform-
5000, audiology, credit-a, glass, hypothyroid, labor, pcolic, sonar, vehi-

5http://mlg.ucd.ie/datasets

3

1 clean(){

2 local docdir=$1

3 local out=$2

4

5 for file in $docdir/*; do

6 cat $file | tokes | caps | stops $Lists/stops.txt > tmp

7 stems tmp >> $out

8 rm tmp

9 done

10 }

Figure 3: An OURMINE function to clean text documents and collect the
results.

cle, weather, autos, credit-g, heart-c, ionosphere, letter, primary-tumor,
soybean, vote,
weather.nominal, breast-cancer, diabetes, heart-h, iris, lymph, seg-
ment, splice, vowel

• UCI (numeric): auto93, baskball, cholesterol, detroit, fruitfly, longley,
pbc, quake, sleep, autoHorse, bodyfat, cleveland, echoMonths, gascons,
lowbwt, pharynx, schlvote, strike, autoMpg, bolts, cloud, elusage, hous-
ing, mbagrade, pollution, sensory, veteran, autoPrice, breastTumor,
cpu, fishcatch, hungarian, meta, pwLinear, servo, vineyard

• PROMISE (discrete): CM1, KC1, KC2, KC3, MC2, MW1, PC1

OURMINE also comes with a variety of built-in functions to perform data
mining and text mining tasks. Just a few of these functions can be seen in
Figure 7.

2.2 Adding/Modifying Code

Adding custom scripts to OURMINE is done by either supplying a new
executable BASH file or by only adding to/modifying functions in the already
existing code. Either method can be done quickly without a lot of knowledge
of either BASH or of how OURMINE’s file structure works. For example, if
a user wished to add a myFunctions.sh to be used in the environment

• Create an executable myFunctions.sh containing any custom scripts

• Include this file in $HOME/opt/ourmine/our/lib/sh/minerc.sh

To add to or modify code in already existing files, an edit and save is all
that is required.

4

#update counters for all words in the record

function train() {

Documents++;

for(I=1;I<NF;I++) {

if(++In[$I,Documents]==1)

Document[$I]++

Word[$I]++

Words++

}

}

#compute tfidf for one word

function tfidf(i) {

return Word[i]/Words*log(Documents/Document[i])

}

Figure 4: A GAWK implementation of TF-IDF.

Once this basic structure of OURMINE is learned, however, more ad-
vanced additions can be made such as including multiple directories of BASH
files, some of whose functions call code written in other files and other lan-
guages located elsewhere in the codebase. This gives a nearly limitless op-
portunity for customization.

2.3 Learning and Teaching with OURMINE

Standard data mining concepts can sometimes appear to be overly com-
plex when implemented using an intricate, highly specific system such as
those found in WEKA, etc. For this reason, OURMINE utilizes scripting
using BASH [8] and GAWK [1] to better convey the inner-workings of these
concepts. For instance, Figure 4 shows a GAWK implementation used by
OURMINE to determine the TF-IDF [9] values of each term in a document.
This script is simple and concise, while a C++ or Java implementation would
be large and overly complex. GAWK is used in OURMINE for its simplicity
and power. An associate professor of Computer Science at Washington Uni-
versity in St. Louis, R. Loui, encourages the use of GAWK in his artificial
intelligence classes, and writes:

There is no issue of user-interface. This forces the programmer
to return to the question of what the program does, not how it
looks. There is no time spent programming a binsort when the
data can be shipped to /bin/sort in no time. [6]

5

Another reason for OURMINE’s scripting approach is due to its applica-
ble generality. If a student learns a highly specific portion of a toolkit, those
learned skills are generally confined to that environment. However, skills
obtained from learning to use scripting within OURMINE can be used in a
variety of future applications.

Function documentation provides a way for newcomers to OURMINE to
not only get to know the workings of each function, but also add to and
modify the current documentation. Instead of asking the user to implement
a more complicated “man page”, OURMINE uses a very simple system con-
sisting of keywords such as name, args, eg to represent a function name, its
arguments and an example of how to use it. Using this documentation is
simple. Entering funs at the OURMINE prompt provides a sorted list of all
available functions in ourmine. Then, by typng help X, where X is the name
of the function, information about that function is printed to the screen.
See Figure 6 for an example of viewing the help document for the function
j4810. Documentation for a function is added by supplying a text file to the
helpdocs directory in OURMINE named after the function.

From the teaching perspective, demonstrating on-the-fly a particular data
mining concept helps not only to solidify this concept, but also gets the
student accustomed to using OURMINE as a tool in the course. As an
example, if a Naive Bayes classifier is introduced as a topic in the class, an
instructor can show the workings of the classifier by hand and a calculator,
and then immediately afterwords, compliment this by running Naive Bayes
on a small dataset in OURMINE. Also, since most of OURMINE does not
use pre-compiled code, an instructor can make live changes to the scripts and
quickly show the results.

Figure 5 shows a data mining experiment to be used as a demo. Once a
student learns the basic mechanics of this demo experiment, its framework
can be copied to another function within OURMINE to conduct a custom
experiment using any number of tools.

3 Using Ourmine for Research

In order to demonstrate OURMINE as not only a tool used for data mining
instruction and acquisition, or on only smaller experiments conducted in a
classroom setting, the first author of this paper has reproduced variations
of two recent, publishable experiments using OURMINE. The second experi-
ment uses code written entirely by the first author, while the first uses scripts
written by all authors of this paper.

The first experiment, based on those conducted by Turhan et al. [11],

6

1 demo004(){

2 demo004worker

3 }

4 # run learners and perform analysis

5 demo004worker(){

6 local learners="nb j48"

7 local data="$Data/discrete/iris.arff"

8 local bins=10

9 local runs=5

10 local out=$Save/demo004-results.csv

11 cd $Tmp

12 (echo "#data,run,bin,learner,goal,a,b,c,d,acc,pd,pf,prec,bal"

13 for((run=1;run<=$runs;run++)); do

14 for dat in $data; do

15 blab "data=‘basename $dat‘,run=$run"

16 for((bin=1;bin<=$bins;bin++)); do

17 rm -rf test.lisp test.arff train.lisp train.arff

18 makeTrainAndTest $dat $bin $bin

19 goals=‘cat $dat | getClasses --brief‘

20 for learner in $learners; do

21 $learner train.arff test.arff | gotwant > produced.dat

22 for goal in $goals; do

23 cat produced.dat |

24 abcd --prefix "‘basename $dat‘,$run,$bin,$learner,$goal" \

25 --goal "$goal" \

26 --decimals 1

27 done

28 done

29 done

30 blabln

31 done

32 done | sort -t, -r -n -k 11,11) | malign > $out

33 less $out

34 }

Figure 5: A demo OURMINE experiment. The worker function cycles
through specified learners over a data set, and analyzes the results to find
a,b,c,d,accuracy,pd,pf,precision and balance values.

7

Function: j4810

Arguments: <data (arff)>

Example(s): j4810 weather.arff

Description: Uses a j48 decision tree learner on the input data

Function Code:

==============

j4810 () {

local learner=weka.classifiers.trees.J48

$Weka $learner -C 0.25 -M 2 -i -t $1

}

Figure 6: Function help in OURMINE.

abcd provides analysis of experiments, such as pd,pf,balance and precision values;

clean clean text for further processing, removing tokens, capitalizations, stop
words, etc.;

docsToSparff constructs a sparse arff file based on a directory of documents;

docsToTfidfSparff generates a sparse arff file of TF-IDF values based on a di-
rectory of documents;

funs shows a sorted list of all available functions in OURMINE;

logArff logs all numeric values in a data set ;

malign neatly aligns text into columns;

nb Runs Naive Bayes on the data given;

rankViaInfoGain ranks attributes by InfoGain values;

makeTrainAndTest splits a dataset into a test set and a training set as train.arff
and test.arff, as well as train.lisp and test.lisp.

Figure 7: OURMINE functions give the user something with which to start
and begin running demos and experiments.

as well as Gay et al., focuses on binary defect prediction. In [11], Turhan et
al. conducted three experiments to rule in favor of cross-company (CC) data
obtained from other sites, or within-company (WC) data gathered locally.
The conclusions of those experiments show that CC data, when applied using

8

relevancy filtering, as explained below, can lead to defect predictors almost
as effective as WC data. Thus, as stated by Gay et al., “...while local data
is the preferred option, it is feasible to use imported data provided that it is
selected by a relevancy filter.”

The second experiment was a small-scale reproduction of that conducted
by a graduate computer science student at West Virginia University to be
used in a Master’s thesis. The purpose of the experiment is to show that
faster heuristic means of clustering and dimensionality reduction yield results
comparable to slower, more rigorous methods when examining these methods’
runtimes, cluster similarities, as well as cluster purities.

In the following sections we describe the experiments and show some of
the scripts used to conduct them. Finally we analyze the results.

3.1 Experiment I

OURMINE was used to reproduce Turhan et al.’s experiment; with a Naive
Bayes classifier in conjunction with a k-Nearest Neighbor (k-NN) relevancy
filter. Relevancy filtering is used to group similar instances together in order
to obtain a learning set that is homogeneous with the testing set. Thus, by
using a training set that shares similar characteristics with the testing set,
it is assumed that a bias in the model will be introduced. The k-NN filter
works as follows: for each instance in the test set, the k nearest neighbors in
the training set are chosen. Then, duplicates are removed and the remaining
instances are used as the new training set.

Recently in the paper [3], Gay et al. confirmed that using a relevancy
filter on CC data is nearly as good as WC data, however in that experiment,
a locally weighted scheme was used as the filter via lwl [2] instead of k-NN.

3.1.1 Building the Experiment

A sample of the script used to conduct this experiment is shown in Figure 8.
The complete script can be located as per directions in the appendix.

To begin, the data in this study were the same as used by Gay et al.; seven
PROMISE defect data sets (CM1, KC1, KC2, KC3, MC2, MW1, PC1) were
used to build seven combined data sets each containing 6

7
-th of the data. For

instance, the file combined PC1.arff contains all seven data sets except PC1,
which is used as the training set for the cross-company (CC) data.

Next, as can be seen in line 15 of Figure 8, a 10-way cross validation was
conducted by calling makeTrainAndTest, which is a built-in OURMINE
function that randomly shuffles the data and constructs both a test set,
containing 10% of the data, and a training set containing 90% of the data.

9

This was repeated ten times, and the resulting data was used in proceeding
studies. For instance, in lines 18-24, the original test and training sets are
used for the first WC study. However, in the WC experiment using relevancy
filtering (lines 25-33), the same test set is used, but with the newly created
training set. Lines 34-41 show the first CC study. This study is identical to
the WC study except that as we saw before, we use combined X.arff files,
instead of shared X.arff .

We chose to use a Naive Bayes classifier for this study because this is
what was chosen in the original experiment conducted by Turhan et al. in
[11], as well as because Naive Bayes has been shown to perform better on
PROMISE defect data sets than other learners [5].

3.1.2 Results

Our results for this experiment can be found in Figure 14 and Figure 15.
Figure 14 shows pd (probability of detection) values sorted in decreasing
order, while Figure 15 shows pf (probability of false alarm) values sorted in
increasing order. Note that a higher pd is better, while a lower pf is better.
The last column of each figure shows quartile charts of the methods’ pd and
pf values. The black dot in the center of each plot represents the median
value, and the line going from left to right from this dot show the second and
third quartile respectively.

Column one of each figure gives a method its rank based on their results of
a Mann-Whitney test at 95% confidence. A rank is determined by how many
times a learner or learner/filter loses compared to another. The method that
lost the least number of times is given the highest rank.

The following are important conclusions derived from these results:

• When CC data is used, relevancy filtering is crucial. According to our
results, cross-company data with no filtering (Naive Bayes alone) yields
the worst pd and pf values.

• When relevancy filtering is performed on this CC data, we obtain better
pd and pf results than using just WC and Naive Bayes.

• When considering only filtered data or only unfiltered data, the highest
pd and lowest pf values are obtained by using WC data as opposed to
CC data. This suggests that WC data gives the best results.

These finds were consistent with Turhan et al.’s results:

• Significantly better defect predictors are produced from using WC data.

10

1 promiseDefectFilterExp(){

2 local learners="nb"

3 local datanames="CM1 KC1 KC2 KC3 MC2 MW1 PC1"

4 local bins=10

5 local runs=10

6 local out=$Save/defects.csv

7 for((run=1;run<=$runs;run++)); do

8 for dat in $datanames; do

9 combined=$Data/promise/combined_$dat.arff

10 shared=$Data/promise/shared_$dat.arff

11 blabln "data=$dat run=$run"

12 for((bin=1;bin<=$bins;bin++)); do

rm -rf test.lisp test.arff train.lisp train.arff

13 cat $shared |

14 logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff

15 makeTrainAndTest logged.arff $bins $bin

16 goals=‘cat $shared | getClasses --brief‘

17 for learner in $learners; do

18 blabln "WC"

19 $learner train_shared.arff test_shared.arff | gotwant > produced.dat

20 for goal in $goals; do

21 cat produced.dat | abcd --prefix "$dat,$run,$bin,WC,$learner,$goal" \

22 --goal "$goal" \

23 --decimals 1

24 done

25 blabln "WCkNN"

26 rm -rf knn.arff

27 $Clusterers -knn 10 test_shared.arff train_shared.arff knn.arff

28 $learner knn.arff test_shared.arff | gotwant > produced.dat

29 for goal in $goals; do

30 cat produced.dat | abcd --prefix "$dat,$run,$bin,WkNN,$learner,$goal" \

31 --goal "$goal" \

32 --decimals 1

33 done

34 blabln "CC"

35 makeTrainCombined $combined > com.arff

36 cat com.arff | logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff

37 $learner logged.arff test_shared.arff | gotwant > produced.dat

38 for goal in $goals; do

39 cat produced.dat | abcd --prefix "$dat,$run,$bin,CC,$learner,$goal" \

40 --goal "$goal" \

41 --decimals 1

...

Figure 8: A sample of the script used in conducting the WC vs. CC experi-
ment.

• However, CC data leads to defect predictors nearly as effective as WC
data when using relevancy filtering.

Thus, this study also makes the same conclusions as Turhan et al. A
company should use local data to develop defect predictors if that local de-

11

velopment data is available. However, if local data is not available, relevancy-
filtered cross-company data provides a feasible means to build defect predic-
tors.

3.2 Experiment II

As stated above, the purpose of this experiment conducted for this paper is
to verify if heuristic clustering/reduction methods outperform slower, more
thorough and rigorous ones when comparing runtimes

The datasets used in this experiment are:

• EXPRESS schemas: AP-203, AP-214

• Text mining datasets: BBC, Reuters, The Guardian (multi-view text
datasets), 20 Newsgroup subsets [sb-3-2, sb-8-2, ss-3-2, sl-8-2]6

3.2.1 Clustering

The process of clustering data into similar groups can be used in a wide
variety of applications, such as:

• Marketing: finding groups of customers with similar behaviors given a
large database of customer data

• Biology: classification of plants and animals given their features

• WWW: document classification and clustering weblog data to discover
groups of similar access patterns 7

Thus the purpose of clustering is to “determine the intrinsic grouping in
a set of unlabeled data” 7.

3.2.2 Reduction Methods

Data can sometimes be overwhelmingly large, containing a great number
of attributes, or dimensions. In order to reduce this vast multidimensional
space, there exist dimensionality reduction methods. Dimensionality reduc-
tion filters the attributes, and attempts to select the most valid ones. In “A
Survey of Dimension Reduction Techniques” 8 by I.K. Fodor, Fodor writes:

6http://mlg.ucd.ie/datasets
7http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
8https://e-reports-ext.llnl.gov/pdf/240921.pdf

12

One of the problems with high-dimensional datasets is that, in
many cases, not all the measured variables are “important” for
understanding the underlying phenomena of interest.

In other words, in order to reduce the size (and inevitable number of com-
putations) of our data, our goal is to extract the most relevant information
and throw out the rest.

3.2.3 The Algorithms

While there are many clustering algorithms used today, this experiment fo-
cused on three: a naive K-Means implementation, GenIc [4], and clustering
using canopies [7].

K-means, a special case of a class of EM algorithms, works as follows:

1. Select initial K centroids at random;

2. Assign each incoming point to its nearest centroid;

3. Adjusts each cluster’s centroid to the mean of each cluster;

4. Repeat steps 2 and 3 until the centroids in all clusters stop moving by
a noteworthy amount

Here we use a naive implementation of K-means, requiring K*N *I com-
parisons, where N and I represent the total number of points and maximum
iterations respectively.

GenIc is a single-pass, stochastic clustering algorithm. It begins by in-
tially selecting K centroids at random from all instances in the data. At
the beginning of each generation, set the centroid weight to one. When new
instances arrive, nudge the nearest centroid to that instance and increase the
score for that centroid. In this process, centroids become “fatter” and slow
down the rate at which they move toward newer examples. When a genera-
tion ends, replace the centroids with less than X percent of the max weight
with N more random centroids. Repeat for many generations and return the
highest scoring centroids.

Canopy clustering, developed by Google, reduces the need for comparing
all items in the data using an expensive distance measure, by first partitioning
the data into overlapping subsets called canopies. Canopies are first built
using a cheap, approximate distance measure. Then, more expensive distance
measures are used inside of each canopy to cluster the data.

PCA, or Principal Components Analysis, is a reduction method that
treats every instance in a dataset as a point in N-dimensional space. PCA

13

looks for new dimensions that better fit these points. In more mathematical
terms, it maps possibly correlated variables into a smaller set of uncorrelated
variables, which are called principal components. Figure 9 shows an exam-
ple of how two dimensions can be approximated in a single new dimension
feature, as seen by the dashed line.

Figure 9: A PCA dimension feature.

TF-IDF, or term frequency times inverse document frequency, reduces
the number of terms (dimensions) by describing how important a term is
in a document (or collection of documents) by incrementing its importance
according to how many times the term appears in a document. However, this
importance is also offset by the frequency of the term in the entire corpus.
Thus, we are concerned with only terms that occur frequently in a small
set of documents, and very infrequently everywhere else. To calculate the
Tf*IDF value for each term in a document, we use the following equation:

Tf ∗ df(t,Dj) =
tf(ti, Dj)

|Dj|
log(

|D|
df(ti)

) (1)

To reduce all terms (and thus, dimensions), we must find the sum of the
above

Tf ∗ Ifdsum(t) =
∑
DjεD

Tf ∗ Idf(t,Dj) (2)

3.2.4 Building the Experiment

This experiment was conducted entirely with OURMINE using a collection
of BASH scripts, as well as custom Java code. The framework was built as
follows:

14

1. A command-line API was developed in Java for parsing the data, reduc-
ing/clustering the data, and outputting the data. Java was chosen due
to its preferred speed for the execution of computationaly expensive
instructions.

2. The data was then iteratively loaded into this Java code via shell script-
ing. This provides many freedoms, such as allowing parameters to be
altered as desired, as well as outputting any experimental results in
any manner seen fit.

Figure 10 shows the OURMINE code for clustering data using the K-
means algorithm. Shell scripting provides us with much leverage in this
example. For instance, by looking at Lines 2-5, we can see that by passing
the function four parameters, we can cluster data in the range from minK
to maxK on all data in dataDir. This was a powerful feature used in this
experiment, because it provides the oppurtunity to run the clusterer across
multiple machines simultaneously. As a small example, suppose we wish to
run K-means across three different machines, with a minimum K of 2 and a
maximum K of 256. Since larger values of K generally yield longer runtimes,
we may wish to distribute the execution as follows:

Machine 1: clusterKmeansWorker 256 256 0 dataDir

Machine 2: clusterKmeansWorker 64 128 2 dataDir

Machine 3: clusterKmeansWorker 2 32 2 dataDir

Lines 9-13 of Figure 10 load the data from dataDir for every k, and formats
the name of the output file. Then, lines 15-19 begin the timer, cluster the
data, and output statistical information such as k, the dataset, and runtime
of the clusterer on that dataset. This file will then be used later in the
analysis of these clusters.

Similarly, the flags in line 16 can be changed to perform a different ac-
tion, such as clustering using GenIc or Canopy, by changing -k to -g or -c
respectively, as well as finding cluster similarities and purities (as described
below), by using -sim and -purity as inputs.

Since any number of variables can be set to represent different libraries
elsewhere in OURMINE, the variable

$Reducers

is used for the dimensionality reduction of the raw dataset, as seen in Fig-
ure 11, whose overall structure is very similar to Figure 10.

15

1 clusterKmeansWorker(){

2 local minK=$1

3 local maxK=$2

4 local incVal=$3

5 local dataDir=$4

6 local stats="clusterer,k,dataset,time(seconds)"

7 local statsfile=$Save/kmeans_runtimes

8 echo $stats >> $statsfile

9 for((k=$minK;k<=$maxK;k*=$incVal)); do

10 for file in $dataDir/*.arff; do

11 filename=‘basename $file‘

12 filename=${filename%.*}

13 out=kmeans_k="$k"_$filename.arff

14 echo $out

15 start=$(date +%s.%N)

16 $Clusterers -k $k $file $Save/$out

17 end=$(date +%s.%N)

18 time=$(echo "$end - $start" | bc)

19 echo "kmeans,$k,$filename,$time" >> $statsfile

20 done

21 done

22 }

Figure 10: An OURMINE worker function to cluster data using the K-means
algorithm. Note that experiments using other clustering methods (such as
GenIc and Canopy), could be conducted by calling line 16 above in much the
same way, but with varying flags to represent the clusterer.

3.3 Results

To determine the overall benefits of each clustering method, this experiment
used both cluster similarities and cluster purities.

3.3.1 Purities

When we cluster data that already has classes available to us, we can deter-
mine cluster purity. A cluster is considered relatively “pure” if it contains a
high percentage of points that share the same class. Thus, we can say that
this is a measure of the “quality of a clustering solution”9.

To determine the purity of individual clusters, the equation

purity(Ca) =
1

|Ca|
∗ max(|Ca|cl=b) (3)

was used, where a cluster Ca contains |Ca|cl=b number of points assigned to

9http://www.cse.iitm.ac.in/~cs672/purity.pdf

16

1 reduceWorkerTfidf(){

2 local datadir=$1

3 local minN=$2

4 local maxN=$3

5 local incVal=$4

6 local outdir=$5

7 local runtimes=$outdir/tfidf_runtimes

8 for((n=$minN;n<=$maxN;n+=$incVal)); do

9 for file in $datadir/*.arff; do

10 out=‘basename $file‘

11 out=${out%.*}

12 dataset=$out

13 out=tfidf_n="$n"_$out.arff

14 echo $out

15 start=$(date +%s)

16 $Reducers -tfidf $file $n $outdir/$out

17 end=$(date +%s)

18 time=$((end - start))

19 echo "tfidf,$n,$dataset,$time" >> $runtimes

20 done

21 done

22 }

Figure 11: An OURMINE worker function to reduce the data using TF-IDF.

class b. However, a high purity using this equation always is easy to obtain.
For instance, if a cluster contains only one instance from the dataset, the
purity of that cluster is always 1. Therefore, this study uses a weighted sum
of these purities

purity =
k∑

a=1

|Ca|
|D|

∗ purity(Ca) (4)

where |D| denotes the number of documents in the dataset.
To determine cluster purities, the following text datasets were used in

conjunction with their natural classes:

• BBC: 5 natural classes (business, entertainment, politics, sport, tech)

• BBCSPORT: 5 natural classes (athletics, cricket, football, rugby, ten-
nis)10

The results of the cluster purity experiments are shown in Figure 12. By
examining these results, we can see that the more complete methods (in this

10http://mlg.ucd.ie/datasets/bbc.html

17

case K-means) yields the highest overall weighted purity. However, since
each data set and its class distribution can drastically alter the outcome of
these values, it is sometimes beneficial to use fast heuristic methods, as seen
in the results for the BBC data set.

3.3.2 Similarities

Cluster similarities tell us how similar points are, either within a cluster
(Intra-similarity), or with members of other clusters (Inter-similarity). The
idea here is simple: gauge how well a clustering algorithm groups similar
documents, and how well it separates different documents.

A cluster’s intra-similarity is given by

intraSima =
∑
dεCa

∑
d′εCa

cos(d, d′)

n2
a

(5)

where d is a specific document in cluster Ca, n represents the number
of documents in the cluster, and cos(d, d′) is the cosine similarity between
document d and d′.

A cluster’s inter-similarity to other clusters is given by

interSimab =
∑
dεCa

∑
d′εCb

cos(d, d′)

nanb

(6)

where Ca and Cb represent different clusters, and na and nb denote the
number of documents contained in these clusters.

Finally, the overall similarities of a clustering solution are

intraSim =
∑

i

ni

N
intraSima (7)

interSim =
∑

i

ni

N
interSimab (8)

Figure 13 shows the results from the cluster inter/intra similarity tests.

4 Conclusions

In this paper we have discussed OURMINE has an important tool in the
development and deployment of data mining experiments, as well as its use
in data mining instruction. We have also used OURMINE to reproduce
two publishable experiments that yielded noteworthy results. In our first
experiment, we concluded that:

18

• When local data is available, that data should be used to build defect
predictors

• If local data is not available, however, imported data can be used to
build defect predictors when using relevancy filtering, because...

• Imported data that uses relevency filtering performs nearly as well as
using local data to build defect predictors

In our second experiment, we learned:

• When examining cluster purities and cluster inter/intra similarities re-
sulting from each clustering/reduction solution, we found that faster
heuristic methods can outperform more rigorous ones when observing
decreases in runtimes.

• This means that while the slower solutions are more rigorous, they do
not maintain scalability.

We prefer OURMINE to other visual tools such as WEKA, etc., because
much like Ritthoff et al., we acknowledge the standard interface’s ability
to represent only a small subset of possible experiments. Complex visual
environments can result in the data mining novice to become discouraged
or distracted from learning to focus on actually data mining and conducting
meaningful experiments.

References

[1] Brian W. Kernighan Alfred V. Aho and Peter J. Weinberger. The AWK
Programming Language. Addison-Wesley, 1988.

[2] Eibe Frank, Mark Hall, and Bernhard Pfahringer. Locally weighted
naive bayes. In Proceedings of the Conference on Uncertainty in Artifi-
cial Intelligence, pages 249–256. Morgan Kaufmann, 2003.

[3] Gregory Gay, Tim Menzies, Bojan Cukic, and Burak Turhan. How to
build repeatable experiments. In PROMISE ’09: Proceedings of the 5th
International Conference on Predictor Models in Software Engineering,
pages 1–9, New York, NY, USA, 2009. ACM.

[4] Chetan Gupta and Robert Grossman. Genic: A single pass generalized
incremental algorithm for clustering. In In SIAM Int. Conf. on Data
Mining. SIAM, 2004.

19

[5] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings. IEEE Transactions on Software Engineering, May
2008.

[6] R. Loui. Gawk for ai. Class Lecture. Available from http://menzies.

us/cs591o/?lecture=gawk.

[7] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient cluster-
ing of high-dimensional data sets with application to reference matching.
In KDD ’00: Proceedings of the sixth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 169–178, New
York, NY, USA, 2000. ACM.

[8] Chet Ramey. Bash, the bourne-again shell. 1994. Available from http:

//tiswww.case.edu/php/chet/bash/rose94.pdf.

[9] Juan Ramos. Using tf-idf to determine word relevance in document
queries. In Proceedings of the First Instructional Conference on Ma-
chine Learning, 2003. Available from http://www.cs.rutgers.edu/

~mlittman/courses/ml03/iCML03/papers/ramos.pd%f.

[10] O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske.
Yale: Yet another learning environment. In LLWA 01 - Tagungs-
band der GI-Workshop-Woche, Dortmund, Germany, pages 84–92, Oc-
tober 2001. Available from http://ls2-www.cs.uni-dortmund.de/

~fischer/publications/YaleLLWA01.pdf.

[11] Burak Turhan, Tim Menzies, Ayse B. Bener, and Justin Di Stefano.
On the relative value of cross-company and within-company data for
defect prediction. Empirical Software Engineering, 2009. Available from
http://menzies.us/pdf/08ccwc.pdf.

[12] Ian H. Witten and Eibe Frank. Data mining. 2nd edition. Morgan
Kaufmann, Los Altos, US, 2005.

Installing OURMINE

OURMINE is an open source toolkit licensed under GPL 3.0. It can be
downloaded and installed from http://code.google.com/p/ourmine.

OURMINE is a command-line environment, and as such, system require-
ments are minimal. However, in order to use OURMINE three things must
be in place:

20

• A Unix-based environment. This does not include Windows. Any
machine with OSX or Linux installed will do.

• The Java Runtime Environment. This is required in order to use the
WEKA, as well as any other Java code written for OURMINE.

• The GAWK Programming Language. GAWK will already be installed
with up-to-date Linux versions. However, OSX users will need to install
this.

To install and run OURMINE, navigate to http://code.google.com/p/

ourmine and follow the instructions.

Locating OURMINE Code

OURMINE code can be located from the install url given above, or by down-
loading the toolkit.

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

M
ed

ia
ns

 o
f W

ei
gh

te
d

P
ur

ity
 S

um
s

Number Of Clusters

Overall Purity (K-means, GenIc, Canopy) - BBC

K-means
GenIc

Canopy

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

M
ed

ia
ns

 o
f W

ei
gh

te
d

P
ur

ity
 S

um
s

Number Of Clusters

Overall Purity (K-means, GenIc, Canopy) - BBCSport

K-means
GenIc

Canopy

Figure 12: Normalized weighted purity sums of clusters, separated by data
set. Note that using data set BBCSport, K-means’ clusters clearly contain
a higher weighted purity. However, for BBC data, GenIc follows K-means
closely, while Canopy remains relatively low, but steady, as a result of doc-
uments being shared by neighboring canopies.

22

Reducer and Clusterer Time InterSim IntraSim Gain
TF-IDF*K-means 17.52 -0.085 141.73 141.82
TF-IDF*GenIc 3.75 -0.14 141.22 141.36
PCA*K-means 100.0 0.0 100.0 100.0
PCA*Canopy 117.49 0.00 99.87 99.87
PCA*GenIc 11.71 -0.07 99.74 99.81

TF-IDF*Canopy 6.58 5.02 93.42 88.4

Figure 13: Similarity values normalized according to the combination of most
rigorous reducer and clusterer.

pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 WC kNN/nb 66 73 80 .0.8.8.0 w
2 CC kNN/nb 57 71 83 .9.8.7.9 w
2 WC nb 59 69 83 .5.8.0.5 w
3 CC nb 49 66 87 .5.5.8.5 w

0 50 100

Figure 14: Probability of Detection (PD) results, sorted by median values.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 CC kNN/nb 17 29 43 .3.8.1.3 w
1 CC nb 13 34 51 .1.8.4.1 w
2 WC nb 17 30 41 .9.8.2.9 w
3 WC kNN/nb 20 27 34 .2.5.0.2 w

0 50 100

Figure 15: Probability of False Alarm (PF) results, sorted by median values.

23

