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SUMMARY

When researchers want to repeat, improve or refute prior conclusions, it is useful to
have a complete and operational description of prior experiments. If those descriptions
are overly long or complex, then sharing their details may not be informative.

OURMINE is a scripting environment for the development and deployment of data
mining experiments. Using OURMINE, data mining novices can specify and execute
intricate experiments, while researchers can publish their complete experimental rig
alongside their conclusions. This is achievable because of OURMINE’s succinctness. For
example, this paper presents two experiments documented in the OURMINE syntax.
Thus, the brevity and simplicity of OURMINE recommends it as a better tool for
documenting, executing, and sharing data mining experiments.

1. Introduction

Since 2004, the authors have been involved in an open source data mining experiment.
Researchers submitting to the PROMISE conference on predictive models in software
engineering are encouraged to offer not just conclusions, but also the data they used to generate
those conclusions. The result is nearly 100 data sets, all on-line, freely available for download †.

The premise of this paper is that after data sharing comes experiment sharing; i.e.
repositories should grow to include not just data, but the code required to run experiments
over that data. This simplifies the goal of letting other researchers repeat, or even extend,
data mining experiments of others. Repeating experiments is not only essential in confirming
previous results, but also in providing an insightful understanding of the fundamentals
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2 A. NELSON ET AL.

Figure 1. The WEKA toolkit running the J48 decision tree learner.

involving those experiments. Thus, it is important to have a prepared set of clearly defined
and operational experiments that can be utilized in order to achieve similar prior results.

Consequently, we have been assessing data mining toolkits such as the WEKA‡ tool of
Figure 1, “R”§, the ORANGE¶ tool of Figure 2, RAPID-I‖, MLC++ ∗∗, and MATLAB††. We
find that they are are not suitable for publishing experiments. Our complaint with these tools
is same as that offered by Ritthoff et al. [22]:

• Proprietary tools such as MATLAB are not freely available.
• Real-world experiments are more complex than running one algorithm.

‡http://www.cs.waikato.ac.nz/ml/weka/
§http://www.r-project.org/
¶http://magix.fri.uni-lj.si/orange/
‖http://rapid-i.com/
∗∗http://www.sgi.com/tech/mlc/
††http://www.mathworks.com
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 3

Figure 2. Orange’s visual programming environment.

• Rather, such experiments or applications require intricate combinations of a large number
of tools that include data miners, data pre-processors and report regenerators.

However, the need to “wire up” data miners within a multitude of other tools has been
addressed in many ways. In WEKA’s visual knowledge flow programming environment, for
example, nodes represent different pre-processors/ data miners/ etc while arcs represent how
data flows between them. A similar visual environment is offered by many other tools including
ORANGE (see Figure 2). The YALE tool (now RAPID-I) built by Ritthoff et al. formalizes
these visual environments by generating them from XML schemas describing operator trees
like Figure 3.

Ritthoff et al. argues (and we agree) that the standard interface of (say) WEKA does not
support the rapid generation of these intricate combinations. In our experience these visual
environments are either overly elaborate, discouraging or distracting:

• These standard data mining toolkits may be overly elaborate. As shown throughout
this paper, very simple UNIX scripting tools suffice for the specification, execution, and
communication of experiments.

• Some data mining novices are discouraged by the tool complexity. These novices shy
away from extensive modification and experimentation.
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4 A. NELSON ET AL.

Figure 3. Rapid-I’s operator trees. [18]. Internally, this tree is a nested XML expression that is traversed
top-down to complete an experiment.

• Other developers may become so enamored with the impressive software engineering
inside these tools that they waste much time building environments to support data
mining, but never get around to the data mining itself.

• According to Menzies [13], while visual systems provide motivation for beginners, they
fail in providing a good explanation device for many software engineering and knowledge
engineering problems, as many of these problems are not inherently spatial. For example,
suppose an entity-relationship diagram is drawn on a piece of paper. While inferences
can be made from the diagram, they are not entirely dependent on the physical location
of (e.g.) an entity.

A similar experience is reported by our colleagues in WVU Department of Statistics. In order
to support teaching, they hide these data mining tools inside high-level scripting environments.
Their scripting environments shield the user from the complexities of “R” by defining high-
level LISP code that, internally, calls “R”. While a powerful language, we find that LISP can
be arcane to many audiences.
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 5

OURMINE is a data mining scripting environment. The current kit has tools written in
BASH/ GAWK/ JAVA/ PERL/ and there is no technical block to adding other tools written
in other languages. Other toolkits impose strict limitations of the usable languages:

• MLC++ requires C++
• Extensions to WEKA must be written in JAVA.

Our preference for BASH [20]/GAWK [1] over, say, LISP is partially a matter of taste but
we defend that selection as follows. Once a student learns, for example, RAPID-I’s XML
configuration tricks, then those learned skills are highly specific to that toolkit. On the other
hand, once a student learns BASH/GAWK methods for data pre-processing and reporting,
they can apply those scripting tricks to any number of future UNIX-based applications.

This paper introduces OURMINE as follows:
• First, we describe the base tool and offer some samples of coding in OURMINE;
• Next, we demonstrate OURMINE’s ability to succinctly document even complex

experiments.

– OURMINE is a tool for both practitioners and researchers. Our first demonstration
experiment is practitioner-focused and shows how OURMINE can be used in an
industrial setting. Following experiments demonstrate OURMINE as an adequate
tool for current research.

This paper is an extension of a prior publication [6]:
• This paper details functionality added since that last paper was published;
• This paper adds two new experiments to the description of OURMINE (see §3.1 and

§3.3).

2. OURMINE

OURMINE was developed to help graduate students at West Virginia University document
and execute their data mining experiments. The toolkit uses UNIX shell scripting. As a result,
any tool that can be executed from a command prompt can be seamlessly combined with other
tools.

For example, Figure 4 shows a simple bash function used in OURMINE to clean text
data before conducting any experiments using it. Line 5 passes text from a file, performing
tokenization, removing capitals and unimportant words found in a stop list, and then in the
next line performing Porter’s stemming algorithm on the result.

OURMINE allows connectivity between tools written in various languages as long as there
is always a command-line API available for each tool. For example, the modules of Figure 4
are written using BASH, Awk and Perl.

The following sections describe OURMINE’s functions and applications.

2.1. Built-in Data and Functions

In order to encourage more experimentation, the default OURMINE installation comes with
numerous data sets:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
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6 A. NELSON ET AL.

1 clean(){

2 local docdir=$1

3 local out=$2

4 for file in $docdir/*; do

5 cat $file | tokes | caps | stops $Lists/stops.txt > tmp

6 stems tmp >> $out

7 rm tmp

8 done

9 }

Figure 4. An OURMINE function to clean text documents and collect the results. Tokes is a tokenizer;
caps sends all words to lower case; stops removes the stop works listed in ”$Lists/stops.txt”; and stems

performs Porter’s stemming algorithm (removes confusing suffixes).

• Text mining data sets: including STEP data sets (numeric): ap203, ap214, bbc, bbcsport,
law, 20 Newsgroup subsets [sb-3-2, sb-8-2, ss-3-2, sl-8-2]‡‡

• Discrete UCI Machine Learning Repository datasets: anneal, colic, hepatitis, kr-vs-kp,
mushroom, sick, waveform-5000, audiology, credit-a, glass, hypothyroid, labor, pcolic,
sonar, vehicle, weather, autos, credit-g, heart-c, ionosphere, letter, primary-tumor,
soybean, vote, weather.nominal,breast-cancer, diabetes, heart-h, iris, lymph, segment,
splice, vowel;

• Numeric UCI Machine Learning Repository datasets: auto93, baskball, cholesterol,
detroit, fruitfly, longley, pbc, quake, sleep, autoHorse, bodyfat, cleveland, echoMonths,
gascons, lowbwt, pharynx, schlvote, strike, autoMpg, bolts, cloud, elusage, housing,
mbagrade, pollution, sensory, veteran, autoPrice, breastTumor, cpu, fishcatch,
hungarian, meta, pwLinear, servo, vineyard.

• The defect prediction data sets from the PROMISE repository: CM1, KC1, KC2, KC3,
MC2, MW1, PC1

OURMINE also comes with a variety of built-in functions to perform data mining and text
mining tasks. For a complete list, see the appendix.

2.2. Learning and Teaching with OURMINE

Data mining concepts become complex when implemented in a complex manner. For this
reason, OURMINE utilizes simple scripting tools (written mostly in BASH or GAWK) to
better convey the inner-workings of these concepts. For instance, Figure 5 shows a GAWK
implementation used by OURMINE to determine the TF-IDF [21] (Term Frequency * Inverse
Document Frequency, described below) values of each term in a document. This script is simple
and concise, while a C++ or Java implementation would be large and overly complex. An

‡‡http://mlg.ucd.ie/datasets
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 7

function train() { #update counters for all words in the record

Docs++;

for(I=1;I<NF;I++) {

if( ++In[$I,Docs]==1)

Doc[$I]++

Word[$I]++

Words++ }

}

function tfidf(i) { #compute tfidf for one word

return Word[i]/Words*log(Docs/Doc[i])

}

Figure 5. A GAWK implementation of TF-IDF.

additional example demonstrating the brevity of OURMINE script can be seen in Figure 6,
which is a complete experiment whose form can easily be taught and duplicated in future
experiments.

Another reason to prefer scripting in OURMINE over the complexity of RAPID-I, WEKA,
“R”, etc, is that it reveals the inherent simplicity of many of our data mining methods. For
example, Figure 7 shows a GAWK implementation of a Naive Bayes classifier for discrete data
where the last column stores the class symbol. This tiny script is no mere toy- it successfully
executes on very large data sets such as those seen in the 2001 KDD cup and in [19]. WEKA
cannot process these large data sets since it always loads its data into RAM. Figure 7, on the
other hand, only requires memory enough to store one instance as well as the frequency counts
in the hash table “F”.

More importantly, in terms of teaching, Figure 7 is easily customizable. Figure 8 shows
four warm-up exercises for novice data miners that (a) introduce them to basic data mining
concepts and (b) show them how easy it is to script their own data miner: Each of these tasks
requires changes to less than 10 lines from Figure 7. The simplicity of these customizations
fosters a spirit of “this is easy” for novice data miners. This in turn empowers them to design
their own extensive and elaborate experiments.

Also from the teaching perspective, demonstrating on-the-fly a particular data mining
concept helps not only to solidify this concept, but also gets the student accustomed to using
OURMINE as a tool in a data mining course. As an example, if a Naive Bayes classifier is
introduced as a topic in the class, an instructor can show the workings of the classifier by
hand, and then immediately afterwards complement this by running Naive Bayes on a small
data set in OURMINE. Also, since most of OURMINE does not use pre-compiled code, an
instructor can make live changes to the scripts and quickly show the results.

We are not alone in favoring GAWK for teaching purposes. Ronald Loui uses GAWK to
teaching artificial intelligence at Washington University in St. Louis. He writes:

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
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1 demo004(){

2 local out=$Save/demo004-results.csv

3 [ -f $out ] && echo "Caution: File exists!" || demo004worker $out

4 }

5 # run learners and perform analysis

6 demo004worker(){

7 local learners="nb j48"

8 local data="$Data/discrete/iris.arff"

9 local bins=10

10 local runs=5

11 local out=$1

12 cd $Tmp

13 (echo "#data,run,bin,learner,goal,a,b,c,d,acc,pd,pf,prec,bal"

14 for((run=1;run<=$runs;run++)); do

15 for dat in $data; do

16 blab "data=‘basename $dat‘,run=$run"

17 for((bin=1;bin<=$bins;bin++)); do

18 rm -rf test.lisp test.arff train.lisp train.arff

19 makeTrainAndTest $dat $bin $bin

20 goals=‘cat $dat | getClasses --brief‘

21 for learner in $learners; do

22 $learner train.arff test.arff | gotwant > produced.dat

23 for goal in $goals; do

24 cat produced.dat |

25 abcd --prefix "‘basename $dat‘,$run,$bin,$learner,$goal" \

26 --goal "$goal" \

27 --decimals 1

28 done

29 done

30 done

31 blabln

32 done

33 done | sort -t, -r -n -k 11,11) | malign > $out

34 winLossTie --input $out --test w --fields 14 --key 4 --perform 11

35 }

Figure 6. A demo OURMINE experiment. This worker function begins by being called by the top level
function demo004 on lines 1-4. Noteworthy sections of the demo code are at: line 19, where training
sets and test sets are built from 90% and 10% of the data respectively, lines 25-27 in which values
such as pd,pf and balance are computed via the abcd function that computes values from the confusion
matrix, and line 34 in which a Wilcoxon test is performed on each learner in the experiment using pd

as the performance measure.
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 9

#naive bayes classifier in gawk

#usage: gawk -F, -f nbc.awk Pass=1 train.csv Pass=2 test.csv

Pass==1 {train()}

Pass==2 {print $NF "|" classify()}

function train( i,h) {

Total++;

h=$NF; # the hypotheis is in the last column

H[h]++; # remember how often we have seen "h"

for(i=1;i<=NF;i++) {

if ($i=="?")

continue; # skip unknown values

Freq[h,i,$i]++

if (++Seen[i,$i]==1)

Attr[i]++} # remember unique values

}

function classify( i,temp,what,like,h) {

like = -100000; # smaller than any log

for(h in H) { # for every hypothesis, do...

temp=log(H[h]/Total); # logs stop numeric errors

for(i=1;i<NF;i++) {

if ( $i=="?" )

continue; # skip unknwon values

temp += log((Freq[h,i,$i]+1)/(H[h]+Attr[NF])) }

if ( temp >= like ) { # better hypothesis

like = temp

what=h}

}

return what;

}

Figure 7. A Naive Bayes classifier for a CSV file, where the class label is found in the last column.

There is no issue of user-interface. This forces the programmer to return to the
question of what the program does, not how it looks. There is no time spent
programming a binsort when the data can be shipped to /bin/sort in no time. [10]

Function documentation provides a way for newcomers to OURMINE to not only get to
know the workings of each function, but also add to and modify the current documentation.
Instead of asking the user to implement a more complicated “man page”, OURMINE uses a
very simple system consisting of keywords such as name, args and eg to represent a function
name, its arguments and an example of how to use it. Using this documentation is simple.
Entering funs at the OURMINE prompt provides a sorted list of all available functions in
ourmine. Then, by typing help X, where X is the name of the function, information about that
function is printed to the screen. See Figure 9 for an example of viewing the help document
for the function j4810. Documentation for a function is added by supplying a text file to the
helpdocs directory in OURMINE named after the function.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
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10 A. NELSON ET AL.

1. Modify Figure 7 so that there is no train/test data. Instead, make it an incremental learning.
Hint: 1) call the functions train, then classify on every line of input. 2) The order is important:
always train before classifying so the the results are always on unseen data.

2. Convert Figure 7 into HYPERPIPES [3]. Hint: 1) add globals Max[h, i] and Min[h, i] to keep
the max/min values seen in every column “i”and every hypothesis class “h”. 2) Test instance
belongs to the class that most overlaps the attributes in the test instance. So, for all attributes
in the test set, sum the returned values from contains1:
function contains1(h,i,val,numerip) {

if(numericp)

return Max[h,i] >= val && Min[h,i] <= val

else return (h,i,value) in Seen

}

3. Use Figure 7 to implement an anomaly detector. Hint: 1) make all training examples get the
same class; 2) an anomalous test instance has a likelihood 1

α
of the mean likelihood seen during

training (alpha needs tuning but alpha = 50 is often useful).
4. Using your solution to #1, create an incremental version of HYPERPIPES and an anomaly

detector.

Figure 8. Four Introductory OURMINE programming exercises.

Function: j4810

Arguments: <data (arff)>

Example(s): j4810 weather.arff

Description: Uses a j48 decision tree learner on the input data

Function Code:

==============

j4810 () {

local learner=weka.classifiers.trees.J48

$Weka $learner -C 0.25 -M 2 -i -t $1

}

Figure 9. Function help in OURMINE.

3. Using Ourmine for Industrial and Research Purposes

OURMINE is not just a simple demonstration system for novice data miners. It is also a
tool for commercial practitioners and researchers alike. In order to demonstrate OURMINE’s
utility for practitioners, our first demonstration experiment is an example of selecting the right
learner and sample size for a particular domain.

• In part A of this first experiment, we show a very simple example of how practitioners
can “tune” learners to data sets in order to achieve better results. This is shown through
the comparison of learners (Naive Bayes, J48, One-r, etc.) training on raw data, and on
discretized data.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
Prepared using speauth.cls



SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 11

• In part B of this experiment, we demonstrate how early our predictors can be applied.
This is accomplished through incremental, random sampling of the data, to which the
winning method from Part A is applied. The objective here is to report the smallest
number of cases required in order to learn an adequate theory.

As software engineering researchers, we use OURMINE to generate publications in leading
software engineering journals and conferences. For example, in the last three years, we have
used OURMINE in this way to generate [2,6,14,16,17,23]. In order to demonstrate OURMINE’s
application to research, we present here two further experiments. Experiment #2 reproduces
an important recent result by Turhan et al. [23]. Kitchenham et al. report that there is no clear
consensus on the relative value of effort estimation models learned from either local or imported
data [8]. Since this matter has not been previously studied in the defect prediction literature,
Turhan et al. conducted a series of experiments with ten data sets from different companies.
In their within-company (WC) experiments, defect predictors were learned from 90% of the
local data, then tested on the remaining 10%. In the cross-company (CC) experiments, defect
predictors were learned from nine companies then tested on the tenth. Turhan et al. found
that the CC predictions were useless since they suffered from very high false alarm rates.
However, after applying a simple relevancy filter, they found that imported CC learning yielded
predictors that were nearly as good as the local WC learning. That is, using these results, we
can say that organizations can make quality predictions about their source code, even when
they lack local historical logs.

Experiment #3 checks a recent text mining result from an as-yet-unpublished WVU masters
thesis. Matheny [11] benchmarked various lightweight learning methods (TF*IDF, the GENIC
stochastic clusterer) against other, slower, more rigorous learning methods (PCA, K-means).
As expected, the rigorous learning methods ran much slower than the stochastic methods.
But, unexpectedly, Matheny found that the lightweight methods perform nearly as well as the
rigorous methods. That is, using these results, we can say that text mining methods can scale
to much larger data sets.

The rest of this section describes the use of OURMINE to reproduce Experiment #1, #2
and #3.

3.1. Experiment I: Commissioning a Learner

OURMINE’s use is not only important to researchers, but also to practitioners. To demonstrate
this, two very simple experiments were conducted using seven PROMISE data sets (CM1, KC1,
KC2, KC3, MC2, MW1, PC1). The aim of this experiment is to commission a data mining
system for a local site. When selecting the right data miners for a particular source of data,
three issues are:

1. What learners to use?
2. What discretizers to use?
3. How much data is required for adequate learning?

Given software being released in several stages, OURMINE can be used on stage 1 data to
find the right answers to the above questions. These answers can be applied on stages 2,3,4,
etc.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
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12 A. NELSON ET AL.

In Part A of this experiment, four learners (Naive Bayes, J48, ADTree, One-R) are trained
using undiscretized data, and then the same learners are trained on discretized data for a
total of eight combinations. While this represents a highly simplified proof-of-concept, from
it we can illustrate how our learners can be integrated with other techniques to find the best
treatment for the data set(s) of concern. Practitioners can then short-circuit their experiments
by only performing further analyses on methods deemed worthwhile for the current corpus. In
turn, this decreases the amount of time in which results can be obtained.

In Part B of the experiment, the winning treatment from Part A is used with randomly
selected, incremental sizes of training data. In this experiment, it can be shown how early our
quality predictors can be applied based on the smallest number of training examples required
to learn an adequate theory. Predictors were trained using N = 100, N = 200, N = 300...
randomly selected instances up to N = 1000. For each training set size N , 10 experiments were
conducted using |Train| = 90% * N , and |Test| = 100. Both Train and Test were selected
at random for each experiment. Our random selection process is modeled after an experiment
conducted by Menzies et. al. [15]. In that paper, it was found that performance changed little
regardless of whether fewer instances were selected (e.g. 100), or much larger sizes on the order
of several thousand. Additionally, it was determined that larger training sizes were actually a
disadvantage, as variance increased with increasing training set sizes.

3.1.1. Results

Our results for Part A and B of this experiment use pd (probability of detection) values sorted
in decreasing order, and pf (probability of false alarm) values sorted in increasing order.
These values assess the classification performance of a binary detector, and are calculated as
follows. If {a, b, c, d} are the true negatives, false negatives, false positives, and true positives
(respectively) found by the detector then pd = recall = d

b+d and pf = c
a+c . Note that a higher

pd is better, while a lower pf is better.
The last column of each figure shows quartile charts of the methods’ pd and pf values. The

black dot in the center of each plot represents the median value, and the line going from left
to right from this dot show the second and third quartile respectively.

Column one of each figure gives a method its rank based on a Mann-Whitney test at 95%
confidence. A rank is determined by how many times a learner or learner/filter wins compared
to another. The method that wins the most number of times is given the highest rank.

Figure 14 and Figure 15 show the results from Part A of the experiment. As can be seen,
ADTrees (Alternating Decision Trees) [5] trained on discretized data yields the best results:

• Mann-Whitney test ranking (95% confidence): ADTrees + discretization provides the
highest rank for both PD and PF results

• Medians & Variance: ADTrees + discretization results in the highest median/lowest
variance for PD, and the lowest variance for PF, with only a 1% increase over the lowest
median

Results from Part B of the experiment are shown in Figure 16 and Figure 17. Using the
winning method from Part A, or learning using ADTrees on discretized data, results show that
unquestionably a training size of N = 600 instances is the best number to train our defect
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SHARING EXPERIMENTS USING OPEN SOURCE SOFTWARE 13

predictors using the aforementioned experiment setup. This is clear when considering N = 600
maintains the highest Mann-Whitney ranking (again using 95% percent confidence), as well
as the highest PD and lowest PF medians.

More importantly, perhaps, it should be noted that while the most beneficial number of
training instances remains 600, we can still consider a significantly smaller value of, say,
N = 300 without much loss in performance; a training size of just 300 yields a loss in PD
ranking of only one, with a 3% decrease in median, while PF ranking is identical to our
winning size and sporting medians of a mere 3% increase.

3.2. Experiment II: Within vs Cross-Company Data

OURMINE was used to reproduce Turhan et al.’s experiment - with a Naive Bayes classifier
in conjunction with a k-Nearest Neighbor (k-NN) relevancy filter. Relevancy filtering is used
to group similar instances together in order to obtain a learning set that is homogeneous with
the testing set. Thus, by using a training set that shares similar characteristics with the testing
set, it is assumed that a bias in the model will be introduced. The k-NN filter works as follows.
For each instance in the test set:

• the k nearest neighbors in the training set are chosen.
• duplicates are removed
• the remaining instances are used as the new training set.

3.2.1. Building the Experiment

The entire script used to conduct this experiment is shown in Figure 10.

To begin, the data in this study were the same as used by Gay et al. [6]; seven PROMISE
defect data sets (CM1, KC1, KC2, KC3, MC2, MW1, PC1) were used to build seven combined
data sets each containing 6

7 -th of the data. For instance, the file combined PC1.arff contains
all seven data sets except PC1. This is used as the training set for the cross-company (CC)
data. For example, if we wished to learn on all training data except for PC1, this would be a
valid data set representation for a cross-company experiment.

Next, as can be seen in line 15 of Figure 10, a 10-way cross validation was conducted by
calling makeTrainAndTest, which is a built-in OURMINE function that randomly shuffles the
data and constructs both a test set, containing 10% of the data, and a training set containing
90% of the data. This was repeated ten times, and the resulting data was used in proceeding
studies. For instance, in lines 18-24, the original test and training sets are used for the first WC
study. However, in the WC experiment using relevancy filtering (lines 25-31), the same test
set is used, but with the newly created training set. Lines 32-38 show the first CC study. This
study is identical to the WC study except that as we saw before, we use combined X.arff
files, instead of shared X.arff .

We chose to use a Naive Bayes classifier for this study because this is what was chosen in
the original experiment conducted by Turhan et al. in [23], as well as because Naive Bayes
has been shown to be competitive on PROMISE defect data against other learners [9].
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14 A. NELSON ET AL.

1 promiseDefectFilterExp(){

2 local learners="nb"

3 local datanames="CM1 KC1 KC2 KC3 MC2 MW1 PC1"

4 local bins=10

5 local runs=10

6 local out=$Save/defects.csv

7 for((run=1;run<=$runs;run++)); do

8 for dat in $datanames; do

9 combined=$Data/promise/combined_$dat.arff

10 shared=$Data/promise/shared_$dat.arff

11 blabln "data=$dat run=$run"

12 for((bin=1;bin<=$bins;bin++)); do

rm -rf test.lisp test.arff train.lisp train.arff

13 cat $shared |

14 logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff

15 makeTrainAndTest logged.arff $bins $bin

16 goals=‘cat $shared | getClasses --brief‘

17 for learner in $learners; do

18 blabln "WC"

19 $learner train_shared.arff test_shared.arff | gotwant > produced.dat

20 for goal in $goals; do

21 extractGoals goal "$dat,$run,$bin,WC,$learner,$goal" ‘pwd‘/produced.dat

24 done

25 blabln "WCkNN"

26 rm -rf knn.arff

27 $Clusterers -knn 10 test_shared.arff train_shared.arff knn.arff

28 $learner knn.arff test_shared.arff | gotwant > produced.dat

29 for goal in $goals; do

30 extractGoals goal "$dat,$run,$bin,WCkNN,$learner,$goal" ‘pwd‘/produced.dat

31 done

32 blabln "CC"

33 makeTrainCombined $combined > com.arff

34 cat com.arff | logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff

35 $learner logged.arff test_shared.arff | gotwant > produced.dat

36 for goal in $goals; do

37 extractGoals goal "$dat,$run,$bin,CC,$learner,$goal" ‘pwd‘/produced.dat

38 done

39 blabln "CkNN"

40 makeTrainCombined $combined > com.arff

41 cat com.arff |

42 logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff

43 $Clusterers -knn 10 test_shared.arff logged.arff knn.arff

44 $learner knn.arff test_shared.arff | gotwant > produced.dat

45 for goal in $goals; do

46 extractGoals goal "$dat,$run,$bin,CkNN,$learner,$goal" ‘pwd‘/produced.dat

47 done

48 done

49 done

50 done ) | malign | sort -t, -r -n -k 12,12 > $out

Figure 10. The OURMINE script used in conducting the WC vs. CC experiment.
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3.2.2. Results

Our results for this experiment can be found in Figure 18 and Figure 19. The following are
important conclusions derived from these results:

• When CC data is used, relevancy filtering is crucial. According to our results, cross-
company data with no filtering yields the worst pd and pf values.

• When relevancy filtering is performed on this CC data, we obtain better pd and pf
results than using just CC and Naive Bayes.

• When considering only filtered data or only unfiltered data, the highest pd and lowest
pf values are obtained by using WC data as opposed to CC data. This suggests that
WC data gives the best results.

These finds were consistent with Turhan et al.’s results:

• Significantly better defect predictors are produced from using WC data.
• However, CC data leads to defect predictors nearly as effective as WC data when using

relevancy filtering.

Thus, this study also makes the same conclusions as Turhan et al. A company should use
local data to develop defect predictors if that local development data is available. However, if
local data is not available, relevancy-filtered cross-company data provides a feasible means to
build defect predictors.

3.3. Experiment III: Scaling Up Text Miners

As stated above, the purpose of this experiment conducted for this paper is to verify if
lightweight data mining methods perform worse than more thorough and rigorous ones.

The data sets used in this experiment are:

• EXPRESS schemas: AP-203, AP-214
• Text mining datasets: BBC, Reuters, The Guardian (multi-view text datasets), 20

Newsgroup subsets: sb-3-2, sb-8-2, ss-3-2, sl-8-2

3.3.1. Classes of Methods

This experiment compares different row and column reduction methods. Given a table of data
where each row is one example and each columns counts different features, then:

• Row reduction methods cluster related rows into the same group;
• Column reduction methods remove columns with little information.

Reduction methods are essential in text mining. For example:
• A standard text mining corpus may store information in tens of thousands of columns.

For such data sets, column reduction is an essential first step before any other algorithm
can execute

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
Prepared using speauth.cls



16 A. NELSON ET AL.

• The process of clustering data into similar groups can be used in a wide variety of
applications, such as:

– Marketing: finding groups of customers with similar behaviors given a large
database of customer data

– Biology: classification of plants and animals given their features
– WWW: document classification and clustering weblog data to discover groups of

similar access patterns.

3.3.2. The Algorithms

While there are many clustering algorithms used today, this experiment focused on three: a
naive K-Means implementation, GenIc [7], and clustering using canopies [12]:

1. K-means, a special case of a class of EM algorithms, works as follows:

(a) Select initial K centroids at random;
(b) Assign each incoming point to its nearest centroid;
(c) Adjusts each cluster’s centroid to the mean of each cluster;
(d) Repeat steps 2 and 3 until the centroids in all clusters stop moving by a noteworthy

amount

Here we use a naive implementation of K-means, requiring K*N *I comparisons, where
N and I represent the total number of points and maximum iterations respectively.

2. GenIc is a single-pass, stochastic clustering algorithm. It begins by initially selecting K
centroids at random from all instances in the data. At the beginning of each generation,
set the centroid weight to one. When new instances arrive, nudge the nearest centroid to
that instance and increase the score for that centroid. In this process, centroids become
“fatter” and slow down the rate at which they move toward newer examples. When a
generation ends, replace the centroids with less than X percent of the max weight with
N more random centroids. Genic repeats for many generations, then returns the highest
scoring centroids.

3. Canopy clustering, developed by Google, reduces the need for comparing all items in the
data using an expensive distance measure, by first partitioning the data into overlapping
subsets called canopies. Canopies are first built using a cheap, approximate distance
measure. Then, more expensive distance measures are used inside of each canopy to
cluster the data.

As to column reduction, we will focus on two methods:
1. PCA, or Principal Components Analysis, is a reduction method that treats every instance

in a dataset as a point in N-dimensional space. PCA looks for new dimensions that better
fit these points– by mapping data points to these new dimensions where the variance
is found to be maximized. Mathematically, this is conducted by utilizing eigenvalue
decompositions of a data covariance matrix or singular value decomposition of a data

†http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/
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Figure 11. A PCA dimension feature.

matrix. Figure 11 shows an example of PCA. Before, on the left-hand-side, the data
exists in a two-dimensional space, neither of which captures the distribution of the data.
Afterwards, on the right-hand-side, a new dimension has been synthesized that is more
relevant to the data distribution.

2. TF-IDF, or term frequency times inverse document frequency, reduces the number of
terms (dimensions) by describing how important a term is in a document (or collection
of documents) by incrementing its importance according to how many times the term
appears in a document. However, this importance is also offset by the frequency of the
term in the entire corpus. Thus, we are concerned with only terms that occur frequently
in a small set of documents, and very infrequently everywhere else. To calculate the
Tf*IDF value for each term in a document, we use the following equation:

Tf ∗ Idf(t, Dj) =
tf(ti, Dj)

|Dj | log(
|D|

df(ti)
) (1)

where tf(ti, Dj) denotes the frequency of term i in document j, and df(ti) represents
the number of documents containing term i. Here, |D| denotes the number of documents
in the corpus, and |Dj| is the total number of terms in document j. To reduce all terms
(and thus, dimensions), we must find the sum of the above in order to assign values to
terms across all documents

Tf ∗ Idfsum(t) =
∑

DjεD

Tf ∗ Idf(t, Dj) (2)

In theory, TF*IDF and GenIc should perform worse than K-Means, canopy clustering and
PCA:

• Any single-pass algorithm like GenIc can be confused by “order effects”; i.e. if the data
arrives in some confusing order then the single-pass algorithm can perform worse than
other algorithms that are allowed to examine all the data.

• TF*IDF is a heuristic method while PCA is a well-founded mathematical technique
On the other hand, the more rigorous methods are slower to compute:

• Computing the correlation matrix used by PCA requires at least a O(N2) calculation.
• As shown below, K-means is much slower than the other methods studied here.
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3.3.3. Building the Experiment

This experiment was conducted entirely with OURMINE using a collection of BASH scripts,
as well as custom Java code. The framework was built as follows:

1. A command-line API was developed in Java for parsing the data, reducing/clustering
the data, and outputting the data. Java was chosen due to its preferred speed for the
execution of computationally expensive instructions.

2. The data was then iteratively loaded into this Java code via shell scripting. This provides
many freedoms, such as allowing parameters to be altered as desired, as well as outputting
any experimental results in any manner seen fit.

Figure 12 shows the OURMINE code for clustering data using the K-means algorithm.
Shell scripting provides us with much leverage in this example. For instance, by looking at
Lines 2-5, we can see that by passing the function four parameters, we can cluster data in the
range from minK to maxK on all data in dataDir. This was a powerful feature used in this
experiment, because it provides the opportunity to run the clusterer across multiple machines
simultaneously. As a small example, suppose we wish to run K-means across three different
machines with a minimum K of 2 and a maximum K of 256. Since larger values of K generally
yield longer runtimes, we may wish to distribute the execution as follows:

Machine 1: clusterKmeansWorker 256 256 0 dataDir
Machine 2: clusterKmeansWorker 64 128 2 dataDir
Machine 3: clusterKmeansWorker 2 32 2 dataDir

Lines 9-13 of Figure 12 load the data from dataDir for every k, and formats the name of
the output file. Then, lines 15-19 begin the timer, cluster the data, and output statistical
information such as k, the dataset, and runtime of the clusterer on that data set. This file will
then be used later in the analysis of these clusters.

Similarly, the flags in line 16 can be changed to perform a different action, such as clustering
using GenIc or Canopy, by changing -k to -g or -c respectively, as well as finding cluster
similarities (as described below) and purities, by using -sim and -purity as inputs.

Since any number of variables can be set to represent different libraries elsewhere in
OURMINE, the variable

$Reducers

is used for the dimensionality reduction of the raw dataset, as seen in Figure 13, whose overall
structure is very similar to Figure 12.

3.4. Results

To determine the overall benefits of each clustering method, this experiment used both cluster
similarities, as well as the runtimes of each method.
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1 clusterKmeansWorker(){

2 local minK=$1

3 local maxK=$2

4 local incVal=$3

5 local dataDir=$4

6 local stats="clusterer,k,dataset,time(seconds)"

7 local statsfile=$Save/kmeans_runtimes

8 echo $stats >> $statsfile

9 for((k=$minK;k<=$maxK;k*=$incVal)); do

10 for file in $dataDir/*.arff; do

11 filename=‘basename $file‘

12 filename=${filename%.*}

13 out=kmeans_k="$k"_$filename.arff

14 echo $out

15 start=$(date +%s.%N)

16 $Clusterers -k $k $file $Save/$out

17 end=$(date +%s.%N)

18 time=$(echo "$end - $start" | bc)

19 echo "kmeans,$k,$filename,$time" >> $statsfile

20 done

21 done

22 }

Figure 12. An OURMINE worker function to cluster data using the K-means algorithm. Note that
experiments using other clustering methods (such as GenIc and Canopy), could be conducted by

calling line 16 above in much the same way, but with varying flags to represent the clusterer.

3.4.1. Similarities

Cluster similarities tell us how similar points are, either within a cluster (Intra-similarity), or
with members of other clusters (Inter-similarity). The idea here is simple: gauge how well a
clustering algorithm groups similar documents, and how well it separates different documents.
Therefore, intra-cluster similarity values should be maximized, while minimizing inter-cluster
similarities.

Similarities are obtained by using the cosine similarity between two documents. The cosine
similarity measure defines the cosine of the angle between two documents, each containing
vectors of terms. The similarity measure is represented as

sim(Di, Dj) =
Di · Dj

||Di||||Dj || = cos(θ) (3)

where Di and Dj denote two term frequency vectors for documents i and j, and where the
denominator contains magnitudes of these vectors.

Cluster similarities are determined as follows:

• Cluster intra-similarity: For each document d in cluster Ci, find the cosine similarity
between d and all documents belonging to Ci
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1 reduceWorkerTfidf(){

2 local datadir=$1

3 local minN=$2

4 local maxN=$3

5 local incVal=$4

6 local outdir=$5

7 local runtimes=$outdir/tfidf_runtimes

8 for((n=$minN;n<=$maxN;n+=$incVal)); do

9 for file in $datadir/*.arff; do

10 out=‘basename $file‘

11 out=${out%.*}

12 dataset=$out

13 out=tfidf_n="$n"_$out.arff

14 echo $out

15 start=$(date +%s)

16 $Reducers -tfidf $file $n $outdir/$out

17 end=$(date +%s)

18 time=$((end - start))

19 echo "tfidf,$n,$dataset,$time" >> $runtimes

20 done

21 done

22 }

Figure 13. An OURMINE worker function to reduce the data using TF-IDF.

• Cluster inter-similarity: For each document d in cluster Ci, find the cosine similarity
between d and all documents belonging to all other clusters

Thus the resulting sum of these values represents the overall similarities of a clustering
solution. Figure 20 shows the results from the similarity tests conducted in this experiment.
The slowest clustering and reduction methods were set as a baseline, because it was assumed
that these methods would perform the best. With intra-similarity and inter-similarity values
normalized to 100 and 0 respectively, we can see that surprisingly, faster heuristic clustering
and reduction methods perform just as well or better than more rigorous methods. Gain
represents the overall score used in the assessment of each method, and is computed as a
method’s cluster intra-similarity value minus its inter-similarity value. Thus, the conclusions
from this experiment shows that fast heuristic methods are sufficient for large data sets due
to their scalability and performance.

4. Discussion

Productivity of a development environment depends on many factors. In our opinion, among
the most important of these are simplicity, power and motivation provided by the environment.
There exists an intricate balance between simplicity and power. If a tool is too simple, a user’s
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actions are confined to a smaller space, thus decreasing the overall power and intricacy of the
system. Also, exceedingly simple environments can restrict our learning process because we
are not forced to learn or implement new ideas. However, even though a tool yields a great
number of features, the options presented to a user can be overly complex and thus discourage
further experimentation. We find that quick, yet careful experiment building promotes more
motivation and interest to work on and finish the task.

Practitioners and researchers can both benefit from using OURMINE’s syntax based on
widely recognized languages. While practitioners are offered extensive freedom in modifying
and extending the environment to be used as necessary, researchers can duplicate previously
published experiments whose results could change the way we view data mining and software
engineering.

5. Conclusions

The next challenge in the empirical SE community will be to not only share data, but to
share experiments. We look forward to the day when it is routine for conference and journal
submissions to come not just with supporting data but also with a fully executable version of
the experimental rig used in the paper. Ideally, when reviewing papers, program committee
members could run the rig and check if the results recorded by the authors are reproducible.

This paper has reviewed a UNIX scripting tool called OURMINE as a method of
documenting, executing, and sharing data mining experiments. We have used OURMINE
to reproduce and check several important result. In our first experiment, we learned that:

• First, “tune” our predictors to best fit a data set or corpus, and to select the winning
method based on results.

• Secondly, understand how early we can apply these winning methods to our data by
determining the fewest number of examples required in order to learn an adequate theory.

In our second experiment, we concluded that:

• When local data is available, that data should be used to build defect predictors
• If local data is not available, however, imported data can be used to build defect

predictors when using relevancy filtering
• Imported data that uses relevancy filtering performs nearly as well as using local data

to build defect predictors

In our third experiment, we learned:

• When examining cluster inter/intra similarities resulting from each clustering/reduction
solution, we found that faster heuristic methods can outperform more rigorous ones when
observing decreases in runtimes.

• This means that faster solutions are suitable on large datasets due to scalability, as well
as performance.

We prefer OURMINE to other tools. Four features are worthy of mention:
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1. OURMINE is very succinct. As seen above, a few lines can describe even complex
experiments.

2. OURMINE’s experimental descriptions are complete. There is nothing hidden in
Figure 10; it is not the pseudocode of an experiment, it is the experiment.

3. OURMINE code like in Figure 10, Figure 12 and Figure 13 is executable and can be
executed by other researchers directly.

4. Lastly, the execution environment of OURMINE is readily available. Unlike RAPID-I,
WEKA, “R”, etc, there is nothing to debug or install. Many machines already have the
support tools required for OURMINE. For example, we have run OURMINE on Linux,
Mac, and Windows machines (with Cygwin installed).

Like Ritthol et al., we doubt that the standard interfaces of tools like WEKA, etc, are
adequate for representing the space of possible experiments. Impressive visual programming
environments are not the answer: their sophistication can either distract or discourage
novice data miners from extensive modification and experimentation. Also, we find that the
functionality of the visual environments can be achieved with a few BASH and GAWK scripts,
with a fraction of the development effort and a greatly increased chance that novices will modify
the environment.

OURMINE is hence a candidate format for sharing descriptions of experiments. The data
mining community might find this format unacceptable but discussions about the drawbacks
(or strengths) of OURMINE would help evolve not just OURMINE, but also the discussion
on how to represent data mining experiments for software engineering.
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Reply to Reviewers

Thank you for your careful reviews of this paper. Our replies to your helpful suggestions are
shown below in plain font, and reviewer comments are shown in italic font.

Reviewer #1

Authors present an open source toolkit for sharing data mining experiments in the context
of software research. They describe two recent cases from software research by replicating
their results with ourmine. The main contribution of the manuscript is the presentation and
discussion of the tool rather than providing new results, which is totally ok for me, considering
the importance of replications in empirical software engineering.

Thank you for this comment.

While I find the manuscript interesting, easy to read and clearly described for research
community, I have concerns regarding the way it addresses practitioners. My perception of
the scope of SPE is that it is more focused on practitioners. There are no major problems
whatsoever with the manuscript in a technical sense, however I have concerns whether it
contributes to people dealing with software design and implementation. Therefore I am not
sure if SPE is the right place to publish this work.

We agreed. The previous draft only showed examples of using OURMINE for research
purposes. Clearly, for this venue, such usage is interesting but not the main focus of this
journal. We handle this issue as mentioned after the next comment.

While the new text-mining experiment may be relevant for data mining research, I cannot
see its additional (practical) impacts for software people, different than the prior publication.
Therefore, I would recommend the authors to craft a third case design that specifically addresses
practitioners and shows the usability of their tool in the development environment. I think that
would be a relevant contribution for publication in SPE.

This is a very helpful suggestion; the importance of an environment should extend to not
only researchers, but also the software people. We need to show that this toolkit is useful not
only for leading edge research, but also for practical users.

Prompted by this comment, we have moved the old experiments behind a new experiment.
This new experiment (called Experiment I in this draft) shows how a practitioner can use
OURMINE to commission the right combination of learning tools and data sets for a particular
data source.

It would also be better to see a discussion section, where the relevancy for practitioners
is discussed. I would suggest right before conclusions. In the current flow, there is a sudden
jump from text-mining experiment to conclusions and makes the reader feel that something is
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missing.

We have addresses this comment in two ways:

• As mentioned above, we have added a new experiment describing how to use OURMINE
for a practical real-world data mining task (commissioning the data mining system for
a particular environment);

• A discussion section has been added (see section 4);

Conclusion, last paragraph: You should address a more general audience than the Promise
community.

The text has been altered to address a more general audience, and not just the Promise
community. Please see this on page 22.

Figure2 caption: ”green lines”, edit unless you will publish a color copy.

Reference to color in Figure 2 has been removed.

Section 2.2 what does TF-IDF stand for?

Its meaning (Term Frequency * Inverse Document Frequency) has been added to the text.
See page 6, section 2.2.

Figure 10 is cited in the text between figures 6 and 7.

The figures and their order are better presented now.

Figure 5: I do not think this is necessary, since you already provide a complete list in the
appendix. Also it is more like a table than a figure.

The table is now removed from the text completely. A reference to the appendix is only
mentioned. See page 6, section 2.1.

Section 3: End of first paragraph: ordering of references.

Reference order is now correct. See page 11, section 3.

Page 11: first bullet at the bottom of the page, ”organizations ’can/may(?)’ make”

Wording in this statement is now added to fit the desired meaning. See page 11, section 3.

Section 3.1.1: Gay et al.: A reference is missing

Reference is added. See page 13, section 3.2.1.
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After section 3.1.2 there is a problem with the numbering of figures. Figures cited as 12 and
13 are indeed 15 and 16. Other figure numbers are also wrong after this point.

Figure references are now correct.

Page 14: footnote: already given as a footnote in page 5.

Extra footnote is removed. See page 15.

Description of PCA: ”PCA looks for new dimensions that better fit these points” What is
meant by a dimension fitting points? I would suggest smt like: ”PCA maps the data points to
a new dimension where the variance is maximized.”

Text is changed regarding PCA as per the reviewer’s suggestion. Please see page 17, column
reduction method 1.

Reviewer #2

In this paper, the authors (whose contribution to the empirical software engineering community
I rate very highly) make a case for their data mining scripting environment OURMINE and
discuss its use for teaching and research purposes. In my opinion, the paper is well written
and fits very well into the scope of this journal. Therefore my recommendation is to accept it
after minor revision (as outlined below).

Thank you for this comment.

Page 3, line 51: the term spatial is somewhat vague, perhaps the authors could give an
example of a concept that is hard to express graphically.

A brief example is given to support our usage of the term. See page 4.

Datasets included with OURMINE (bottom of page 5, top of page 6): include reference for
their origin (e.g. UCI machine learning repository).

UCI reference given to each data set. See page 6.

Page 36, lines 35-38, high false alarm rates: true, but they also had somewhat higher
detection rates and pd and pf are dependent on a cut-off. When redoing these experiments
later on, it could have been interesting to look at other ranking-based performance measures,
or alternatively the authors could briefly refer to the existence of other measures and the debate
about which is most appropriate?

It is true that an interesting comparison between a multitude of performance measures could
be empirically analyzed here, and has been done elsewhere [4]. However, in our experience,
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analyzing statistical ranking (e.g. Mann-Whitney U Test), variance, recall (PD) and PF
remains a succinct way of representing experimental results of classifiers.

Page 12, line 29-37: this part of the setup I felt could be explained more clearly.

Supporting text has been included to help clarify this part of the setup. See page 13.

Page 12, line 40: I believe Nave Bayes was not (significantly) better but competitive with
several other learners.

This has been rephrased for clarity. See page 13, section 3.2.1.

Page 14, line 35: data mining -¿ text mining. Also, lightweight data mining methods are
almost by definition quicker (not slower): it is probably only the second question (whether they
perform worse) that needs to be included here.

Only the performance has been included. See page 15, section 3.3.

Page 16, formulas (1) and (2): notation and symbols used are not fully defined; the notation
here needs to be made self-contained.

More clear definitions of notation and symbols found in the formulas have been added. See
their definitions on page 17.

Similarly for page 18, formula (3): make sure you indicate clearly here that the denominator
contains the norms of the term frequency vectors of the documents.

This has been included in the text. See the description on page 19.

Page 19, line 44: it is not because of their scalability that fast heuristic methods are sufficient
but because they are shown to perform well.

Performance is added to valid portions of the text when describing the benefits of the
algorithms used in this experiment. See page 17, section 3.3.2 and page 20 section 3.4.1.

Figure 17: add explanation in the text that gain is percentage improvement in IntraSim
minus InterSim.

This explanation has been added to the text. See page 20, section 3.4.1.

Finally, a general remark that I feel does not have to be addressed in this paper but that
could be perhaps looked at in future work relates to the question of whether scripting or
visual approaches are better in this context. I am not entirely convinced by some of the
authors’ arguments of why a scripting environment is to be preferred to a visual environment,
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particularly for teaching purposes. Data mining is not only taught to computer science students
but possibly also to students with much more limited programming experience (who might find
it more difficult familiarizing themselves with an environment such as OURMINE). Also, an
extensive body of research literature is available that studies visual programming languages: here
perhaps ideas could be found for a more elaborate discussion of advantages and disadvantages
or even for designing an experiment in which one would empirically compare the effectiveness
of scripting vs. visual approaches?

Thank you for this comment concerning possible future work in this area. We also feel that
there are certain advantages of visual programming languages, as stated in the paper. For
instance, we too can consider the benefit of VPLs over a scripting environment for those who
have little to no exposure to programming and who want to have a basic foundation of data
mining experimentation. In this respect, our discussion on this matter was motivated most
toward senior or graduate level computer science courses teaching data mining at a university.
These courses are assumed to have programming.

However, visual representations found in other tools can also be complex, as implied in the
paper. Our argument remains that more advanced experiments require that the user learn
more intricate aspects of a tool (logically) and thus must learn additional material that will
most likely be useless outside of that tool. This is in contrast to general, widely used scripting
languages as those discussed in the text. Knowledge of these languages can be utilized in a
multitude of fields outside of data mining.
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pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 J48 + discretization 20 66 99 �

1 ADTree + discretization 25 66 97 �

2 NB + discretization 63 73 82 �

2 One-R + discretization 13 56 99 �

3 J48 29 82 96 �

3 NB 40 79 91 �

4 ADTree 21 83 97 �

4 One-R 17 83 97 �

0 50 100

Figure 14. Experiment #1 - Part A - (Learner tuning). Probability of Detection (PD) results, sorted
by rank then median values.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 One-R + discretization 0 10 86 �

1 ADTree + discretization 2 11 75 �

1 J48 + discretization 1 11 80 �

2 NB 9 19 60 �

2 J48 4 33 72 �

3 NB + discretization 12 25 33 �

3 ADTree 3 37 79 �

4 One-R 3 44 83 �

0 50 100

Figure 15. Experiment #1 - Part A - (Learner tuning). Probability of False Alarm (PF) results, sorted
by rank then median values.
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pd 2nd quartile
percentiles median,

Rank Training Size 25% 50% 75% 3rd quartile
1 600 32 88 99 �

1 700 30 86 98 �

1 900 32 86 98 �

1 800 31 85 98 �

1 500 30 84 99 �

1 1000 30 84 99 �

2 300 31 85 98 �

2 400 29 84 99 �

3 200 29 83 98 �

3 100 29 77 96 �

0 50 100

Figure 16. Experiment #1 - Part B - (Random Sampling). Probability of Detection (PD) results,
sorted by rank then median values.

pf 2nd quartile
percentiles median,

Rank Training Size 25% 50% 75% 3rd quartile
1 600 1 12 68 �

1 700 1 14 70 �

1 900 1 14 68 �

1 1000 1 14 69 �

1 500 1 15 69 �

1 800 1 15 69 �

1 300 2 15 69 �

1 400 1 15 71 �

2 200 2 17 71 �

3 100 4 23 71 �

0 50 100

Figure 17. Experiment #1 - Part B - (Random Sampling). Probability of False Alarm (PF) results,
sorted by rank then median values.
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pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 WC (local data) + relevancy filter 66 73 80 �

2 CC (imported data) + relevancy filter 57 71 83 �

2 WC (local data) 59 69 83 �

3 CC (imported data) 49 66 87 �

0 50 100

Figure 18. Experiment #2 (WC vs. CC). Probability of Detection (PD) results, sorted by rank then
median values.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 WC (local data) + relevancy filter 20 27 34 �

2 WC (local data) 17 30 41 �

3 CC (imported data) + relevancy filter 17 29 43 �

3 CC (imported data) 13 34 51 �

0 50 100

Figure 19. Experiment #2 (WC vs. CC). Probability of False Alarm (PF) results, sorted by rank then
median values.

Reducer and Clusterer Time InterSim IntraSim Gain
TF-IDF*K-means 17.52 -0.085 141.73 141.82
TF-IDF*GenIc 3.75 -0.14 141.22 141.36
PCA*K-means 100.0 0.0 100.0 100.0
PCA*Canopy 117.49 0.00 99.87 99.87
PCA*GenIc 11.71 -0.07 99.74 99.81

TF-IDF*Canopy 6.58 5.02 93.42 88.4

Figure 20. Experiment #3 (Text mining). Similarity values normalized according to the combination
of most rigorous reducer and clusterer. Note that Gain is a value representing the difference in cluster

intrasimilarity and intersimilarity.
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Installing OURMINE

OURMINE is an open source toolkit licensed under GPL 3.0. It can be downloaded and
installed from http://code.google.com/p/ourmine.

OURMINE is a command-line environment, and as such, system requirements are minimal.
However, in order to use OURMINE three things must be in place:

• A Unix-based environment. This does not include Windows. Any machine with OSX or
Linux installed will do.

• The Java Runtime Environment. This is required in order to use the WEKA, as well as
any other Java code written for OURMINE.

• The GAWK Programming Language. GAWK will already be installed with up-to-date
Linux versions. However, OSX users will need to install this.

To install and run OURMINE, navigate to http://code.google.com/p/ourmine and follow
the instructions.
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Built-in OURMINE Functions

Utility Functions I

Function Name Description Usage
abcd Performs confusion matrix computations on

any classifier output. This includes statistics
such as $pd, $pf, $accuracy, $balance and $f-
measure

— abcd –prefix –goal, where prefix
refers to a string to be inserted
before the result of the abcd
function, and goal is the desired
class of a specific instance.

arffToLisp Converts a single .arff file into an equivalent
.lisp file

arffToLisp $dataset.arff

blab Prints to the screen using a separate
environment. This provides the ability to
print to the screen without the output
interfering with the results of an experiment

blab $message

blabln The same as blab, except this will print a new
line after the given output

blabln $message

docsToSparff Converts a directory of document files into
a sparse .arff file. Prior to building the file,
however, the text is cleaned

docsToSparff $docDirectory $out-
put.sparff

docsToTfidfSparff Builds a sparse .arff file from a directory of
documents, as above, but instead constructs
the file based on TF-IDF values for each term
in the entire corpus.

docsToTfidfSparff $docDirectory
$numberOfAttributes $output.sparff

formatGotWant Formats an association list returned from
any custom LISP classifier containing actual
and predicted class values in order to work
properly with existing OURMINE functions

formatGotWant

funs Prints a sorted list of all available OURMINE
functions

funs

getClasses Obtains a list of all class values from a specific
data set

getClasses

getDataDefun Returns the name of a .arff relation to be used
to construct a LISP function that acts as a
data set

getDataDefun

gotwant Returns a comma separated list of actual and
predicted class values from the output of a
WEKA classifier

gotwant

help When given with an OURMINE function,
prints helpful information about the function,
such as a description of the function, how to
use it, etc.

help $function, where $function is
the name of the function

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 00:1–7
Prepared using speauth.cls



34 A. NELSON ET AL.

Utility Functions II

Function Name Description Usage
makeQuartiles Builds quartile charts using any key and

performance value from the abcd results (see
above)

makeQuartiles $csv $keyField $per-
formanceField, where $keyField can
be a learner/treatment, etc., and
$performanceField can be any value
desired, such as pd, accuract, etc.

makeTrainAndTest Constructs a training set and a test set given
an input data set. The outputs of the function
are train.arff, test.arff and also train.lisp and
test.lisp

makeTrainAndTest $dataset $bins
$bin, where $dataset refers to any
data set in correct .arff format, $bins
refers to the number of bins desired
in the construction of the sets, and
$bin is the bin to select as the test
set. For instance, if 10 is chosen as
the number of bins, and 1 is chosen
as the test set bin, then the resulting
training set would consist of 90%
of the data, and the test set would
consist of 10%.

malign Neatly aligns any comma-separated format
into an easily readable format

malign

medians Computes median values given a list of
numbers

medians

quartile Generates a quartile chart along with
min/max/median values, as well as second
and third quartile values given a specific
column

quartile

show Prints an entire OURMINE function so that
the script can be seen in its entirety

show $functionName

winLossTie Generates win-loss-tie tables given a data set.
Win-loss-tie tables, in this case, depict results
after a statistical analysis test on treatments.
These tests include the Mann-Whitney-U
test, as well as the Ranked Wilcoxon test

winLossTie –input $input.csv –
fields $numOfFields –perform $per-
formanceField –key $keyField –
$confidence, where $input.csv refers
to the saved output from the
abcd function described above, $nu-
mOfFields represents the number
of fields in the input file, $perfor-
manceField is the field on which
to determine performance, such as
pd, pf , acc, $keyField is the field
of the key, which could be a
learner/treatment, etc., and $confi-
dence is the percentage of confidence
when running the test. The default
confidence value is 95%
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Learners
Function Name Description Usage
adtree Calls WEKA’s Alternating Decision Tree adtree $train $test
bnet Calls WEKA’s Bayes Net bnet $train $test
j48 Calls WEKA’s J48 j48 $train $test
nb Calls WEKA’s Naive Bayes nb $train $test
oner Calls WEKA’s One-R oner $train $test
rbfnet Calls WEKA’s RBFNet rbfnet $train $test
ridor Calls WEKA’s RIDOR ridor $train $test
zeror Calls WEKA’s Zero-R zeror $train $test

Preprocessors
Function Name Description Usage
caps Reduces capitalization to lowercase from an

input text
caps

clean Cleans text data by removing capitals, words
in a stop list, special tokens, and performing
Porter’s stemming algorithm

clean

discretize Discretizes the incoming data via WEKA’s
discretizer

discretize $input.darff $output.arff

logArff Logs numeric data in incoming data logArff $minVal $fields, where $min-
Val denotes the minimum value to
be passed to the log function, and
$fields is the specific fields on which
to perform log calculations

stems Performs Porter’s stemming algorithm on
incoming text data

stems $inputFile

stops Removes any terms from incoming text data
that are in a stored stop list

stops

tfidf Computes TF*IDF values for terms in a
document

tfidf $file

tokes Removes unimportant tokens or whitespace
from incoming textual data

tokes

Feature Subset Selectors
Function Name Description Usage
cfs Calls WEKA’s Correlation-based Feature

Selector
cfs $input.arff $numAttributes $out.arff

chisquared Calls WEKA’s Chi-Squared Feature Selector chisquared $input.arff $numAttributes $out.arff
infogain Calls WEKA’s Infogain Feature Selector infogain $input.arff $numAttributes $out.arff
oneR Calls WEKA’s One-R Feature Selector oneR $input.arff $numAttributes $out.arff
pca Calls WEKA’s Principal Components Anal-

ysis Feature Selector
pca $input.arff $numAttributes $out.arff

relief Calls WEKA’s RELIEF Feature Selector relief $input.arff $numAttributes $out.arff
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Clusterers

Function Name Description Usage
K-means Calls custom Java K-means $Clusterers -k $k $input.arff $out.arff, where $k

is the initial number of centroids
Genic Calls custom Java GeNic $Clusterers -g $k $n $input.arff $out.arff, where

$k is the initial number of centroids, and $n is
the size of a generation

Canopy Calls custom Java Canopy Clustering $Clusterers -c $k $p1 $p2 $input.arff $out.arff,
where k is the initial number of centroids, $p1
is a similarity percentage value for the outer
threshold, and $p2 is a similarity percentage
value for the inner threshold. If these percentages
are not desired, a value of 1 should be provided
for both

EM Calls WEKA’s Expectation-Maximization
Clusterer

em $input.arff $k, where $k is the initial number
of centroids
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