Background Related Work The Goal Ourmine Experiments Using Ourmine Conclusion Future Work

Ourmine: An Open Source Data Mining Toolkit

Adam Nelson

Masters Defense

Committee: Tim Menzies, Ph.D; Tim McGraw, Ph.D; Frances VanScoy, Ph.D West Virginia University, LCSEE

June 13, 2010

Outline

- Background
- 2 Related Work
- The Goal
- 4 Ourmine
- **5** Experiments Using Ourmine
- 6 Conclusion
- Future Work

Data Sharing

Since 2006, the PROMISE [1] community has addressed data sharing. This is important because

- researchers can use standardized data
- the data is freely available
- experimentation is encouraged

Experiment Sharing

But in 2009, Gay et al. [2] explored a step beyond this. After *data* sharing comes *experiment* sharing.

Experiment sharing

- allows researchers to confirm prior results
- lets authors publish entire experiments alongside results
- increases understandability of experiments
- gives way to modifications of experiments

How?

Repeatable experiments in publications require a textual environment capable of not only running data mining algorithms, but also performing analyses and report generation.

To demonstrate Ourmine for this use:

- Background
- Related Work
- The Goal
- 4 Ourmine
- Experiments Using Ourmine
- 6 Conclusion
- 7 Future Work

Outline

- Background
- 2 Related Work
- The Goal
- 4 Ourmine
- **5** Experiments Using Ourmine
- Conclusion
- Future Work

KNIME

The KNIME [3](Konstanz Information Miner) is a visual-based modular data exploration environment. It incorporates

- over 100 processing nodes for various tasks (data preprocessing, mining and analysis)
- personalized workflows via the workflow editor
- editable nodes within each workflow

RapidMiner

RapidMiner [4] is a popular data mining system available worldwide.

- Provides a graphical interface as well as a custom scripting environment
- Uses workflows to build streams of execution
- Allows data to be imported from databases

Important!

Only commercially available editions allow integration into closed-source software

Weka

Weka [5](the Waikato Environment for Knowledge Analysis) is an extremely popular, open source toolset.

- Written in Java. Any modifications to source requires knowledge of Java and rebuilding.
- Offers:
 - Knowledge Flow: construction of experiments through interconnected nodes
 - Explorer: allows quick exection of data mining algorithms, data visualization, etc.
 - Experimenter: builds experiments using a standard GUI (drop-down boxes, text fields, etc.)
 - *CLI*: Weka's command-line interface. Gives standard interaction but through text commands.

Others

Other important open source toolkits include:

- Orange [6] data mining through visual programming, or Python scripting
- ADaM [7](Algorithm Development and Mining System) hundreds of components included as executables and Python modules
- Gnome Data Mining Tools [8] requires Gnome and Python.
 Operates using command-driven GUIs.
- Rattle [9] (the R Analytical Tool To Learn Easily) attempts to teach "R" through the use of its data mining GUIs

Textual vs. Visual Appraoches

According to Menzies [10], typical VPLs seen in many standard toolkits are

- adequate for beginning operations
- ...but discourage further experimentation because
 - developers spend too much time supporting the environment i.e., never actually data mining

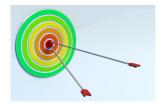
Rithoff et al. [11] found that

- Real-world applications are more intricate than running one algorithm
- These applications require intricate combinations of data miners, preprocessors, report generators
- Widely used tools (e.g. WEKA) do not support rapid generations of these combinations

Outline

- Background
- 2 Related Work
- The Goal
- Ourmine
- 5 Experiments Using Ourmine
- Conclusion
- Future Work

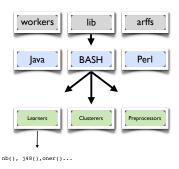
The Goal



To develop a data mining toolkit that promotes experiment sharing in addition to

- modularity
- self-containment
- brevity of code
- availability at no cost

Modularity



A modular environment makes extending and modifying code easy.

Self-containment

Required modules should be included with the environment upon download:

- data sets
- learners
- experiment utilities (e.g., cross-validation, evaluation)

Brevity of Code

Publishable code should be short and sweet; large Java or C++ files are much more difficult to inspect and learn from.

Example

```
1 clean(){
2   local docdir=$1
3   local out=$2

4   for file in $docdir/*; do
5     cat $file | tokes | caps | stops $Lists/stops.txt > tmp
6     stems tmp >> $out
7     rm tmp
8   done
9 }
```

Availability at No Cost

Open source environments

- advocate modification to the source code for customization/improvements
- reduces "risk factor" of trying the new software unlike other tools (e.g. Matlab)
- beneficial changes can be shared among all users of the environment

Outline

- Background
- 2 Related Work
- The Goal
- Ourmine
- **5** Experiments Using Ourmine
- 6 Conclusion
- Future Work

What is Ourmine?

Ourmine is a data mining scripting environment developed at WVU.

- Designed to assist graduate data mining students
- In 2009 was mostly rebuilt to be modular
- Has tools written in BASH, GAWK, JAVA, PERL
- Uses shell scripting as the "glue" between command-line APIs
- Comes with standard data sets, machine learning algorithms, evaluation functions, etc.
- Available for free from a publicly available repository

Why a Scripting Environment?

Shell scripting has many advantages:

- allows publishable experiments to be constructed
- requires limited resources
- executes on any UNIX-based OS

Note

Tool-specific operations can be limiting.

Important Functions

- MakeTrainAndTest builds training and testing sets separately
- abcd evaluates classification performance (accuracy,pd,pf,precision,balance)
- winLossTie allows statisical rankings of measures
- quartile provides ASCII/numeric representations of quartile charts
- show prints function code
- funs lists available functions
- gotwant extracts predicted and actual classes

Installing and Running Ourmine

Ourmine is an open source toolkit licensed under GPL 3.0. It can be downloaded and installed from http://code.google.com/p/ourmine.

Once there, follow the instructions to get started using Ourmine.

Outline

- Background
- 2 Related Work
- The Goal
- Qurmine
- **5** Experiments Using Ourmine
- 6 Conclusion
- Future Work

Experiments Using Ourmine

To prove Ourmine as a tool usable in both industry and research, experiments were conducted using it:

- Commissioning a Learner
- Cross-Company Defect Prediction using Relevancy Filtering
- Component vs. Whole-based Defect Prediction
- Analyzing the Scalability of Clustering Text Documents

Commissioning a Learner

In a recent journal paper under review [12], reviewers requested proof of Ourmine's use in industry.

Problem

Many factors can lead to better results in software defect prediction:

- Learners?
- Discretize the data?
- Data size?

Commissioning a Learner

Problem

Choosing these is important

- Some treatments perform better on certain data sets
- As software is released in stages, it's important to know how early learners can be applied

Purpose

To demonstrate, for practicioners, how learners/discretized data/data sizes can be selected for use at a local site.

Commissioning a Learner
Cross-Company Defect Prediction using Relevancy Filtering
Component vs. Whole-based Defect Prediction
Analyzing the Scalability of Clustering Text Documents

Commissioning a Learner

Setup I

Using seven PROMISE defect data sets (CM1, KC1, KC2, KC3, MC2, MW1, PC1), determine the best combinations of learners/discretizers to use.

Evaluate using pd and pf in a 10X10-way cross-validation.

Results 1a

		pd percentiles			2nd quartile median,
Rank	Treatment	25%	50%	75%	3rd quartile
1	J48 + discretization	20	66	99	I ————
1	ADTree + discretization	25	66	97	I ————————————————————————————————————
2	NB + discretization	63	73	82	→
2	$One ext{-}R + discretization$	13	56	99	I
3	J48	29	82	96	- •
3	NB	40	79	91	→
4	ADTree	21	83	97	 •
4	One-R	17	83	97	 •
					0 50 100

Results 1b

		pf percentiles			2nd quartile median,
Rank	Treatment	25%	50%	75%	3rd quartile
1	One-R + discretization	0	10	86	H
1	ADTree + discretization	2	11	75	I -•
1	J48 + discretization	1	11	80	I • I
2	NB	9	19	60	I I
2	J48	4	33	72	I
3	NB + discretization	12	25	33	I -• I I
3	ADTree	3	37	79	I
4	One-R	3	44	83	
					0 50 100

Analyzing the Scalability of Clustering Text Documents

Commissioning a Learner

Setup II

Using the same data sets, find the minimal number of training examples required.

Using the winning method above, incrementally select instances from N = 100, 200 to 1000. Train = 90% * N and Test = 100. both selected at random.

Results 2a

	pd percentiles			les	2nd quartile median,
Rank	Training Size	25%	50%	75%	3rd quartile
1	600	32	88	99	I —
1	700	30	86	98	
1	900	32	86	98	
1	800	31	85	98	ı
1	500	30	84	99	ı
1	1000	30	84	99	
2	300	31	85	98	
2	400	29	84	99	
3	200	29	83	98	
3	100	29	77	96	
					0 50 100

Results 2b

	pf percentiles			2nd quartile median,	
Rank	Training Size	25%	50%	75%	3rd quartile
1	600	1	12	68	⊢
1	700	1	14	70	⊢●
1	900	1	14	68	⊢●
1	1000	1	14	69	⊢●
1	500	1	15	69	├→
1	800	1	15	69	├●
1	300	2	15	69	I -● I
1	400	1	15	71	⊢● ─────────────────────────
2	200	2	17	71	I—•———————————————————————————————————
3	100	4	23	71	I I
					0 50 100

Conclusion

The best method is ADTree + discretization.

 Given by the best Mann-Whitney ranking and medians for pd and pf.

The smallest/best size of data to train on is:

- 600 instances
- However, 300 is nearly as good
 - Loss in pd ranking of 1 and 3% decrease in medians over 600 instances
 - Pf ranking is identical, and medians increased by another 3%.

Cross-Company Defect Prediction using Relevancy Filtering

When companies want to determine the quality of their software, they can use

- Within Company data (WC)
- Cross Company data (CC)

Problem

Adequate local data is expensive to acquire and may be impossible for newer companies. Instead, freely available, public defect data can be used.

Cross-Company Defect Prediction using Relevancy Filtering

In 2008, Turhan et al. [13] determined that by using *relevancy filtering* on cross-company training data, results are highly benefited.

The authors found that

- in a 10-way cross-validation, CC predictions weren't useful because of high false alarm rates
- however, with relevency filtered training data, CC results were nearly as good as those using WC training data.

Cross-Company Defect Prediction using Relevancy Filtering

Purpose

To verify Turhan et al.'s relevancy filtering results. This experiment can also be found in [12].

Setup

Using seven *combined* defect data sets (CM1, KC1, KC2, KC3, MC2, MW1, PC1).

To test relevancy filtering,

- a k-NN filter was used
- duplicate instances were removed, remaining instances became the new training set

Results 1a

		per	pd centi	les		l quartile nedian,	
Rank	Treatment	25%	50%	75%	3rd	quartile	
1	WC (local data) + filter	66	73	80	1	1 -	
2	CC (imported data) + filter	57	71	83	1	1	
2	WC (local data)	59	69	83	1	1	
3	CC (imported data)	49	66	87	1	⊢• ।	
					0	50 10	<u>_</u>

Results 1b

			pf percentiles			2nd quartile median,				
	Rank	Treatment	25% 50	0%	75%	3rd qu	artile			
-	1	WC (local data) + filter	20	27	34	1 + 1	I			
	2	WC (local data)	17	30	41	1 1	1			
	3	CC (imported data) + filter	17	29	43	-●-	1			
	3	CC (imported data)	13	34	51	ı 	1			
						0	50 100			

Conclusion

In this experiment, we find that:

- filtered WC always outperforms CC
- ullet however, CC + relevancy filtering performs nearly as well as WC

Thus,

- When local data is available, that data should be used to build defect predictors
- If needed, imported data can be used to build defect predictors when using relevancy filtering

Component vs. Whole-based Defect Prediction

Problem

Despite efforts to improve software defect predictors through new algorithms (i.e. classifiers), results have reached a ceiling.

Purpose

To develop a new method of treating the *data itself* to improve performance.

What's a Component?

Hongyu Zhang, Tsinghua University, noted that most software defects occur in small numbers of components.

- Components are portions of software that encapsulate certain functionality (e.g. a specific tool in a GUI).
- Components contain 1 or more modules. Modules are functions/methods, depending on the programming language.

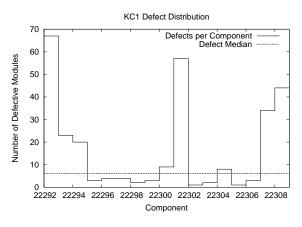
Component vs. Whole-based Defect Prediction

Setup

Using five NASA defect data sets (CM1, KC1, MC1, PC1, PC3), training instances were selected as follows:

- Pick components whose number of defective modules exceeded the median number of defective modules across all components.
- From those components, extract modules for training. This was the *dense* treatment.

Distribution of Defects



Component vs. Whole-based Defect Prediction

Setup cont.

The experiment was conducted as follows:

```
1 For run = 1 to 10
2
    For each dense component C in data set D
3
      Train = C
4
      Test = D - C
5
      For bin = 1 to 10
6
         Test' = 10% of Test (picked at random)
         Train' = 90% of Train (picked at random)
8
         Naive Bayes (Train', Test')
9
      end bin
10
     end component
11 end run
```

Component vs. Whole-based Defect Prediction

Setup cont.

Other methods have been proposed [15] to alter the class distribution of defect training data:

- Under-sampling: randomly minimize the non-target class to equal the size of the target class
- Over-sampling: randomly maximize the target class to equal the size of the non-target class

For rigor, in this experiment, comparisons are made between all four treatments: over/under sampling, all/dense component learning.

Results per Data set

Project	Recall				Prob. False Alarm (Pf)			Precision						
_	0% 50% 100%			0% 50% 100%			0% 50% 100%							
CM1	1	All	- 1	-	 -	1	Dense	•—	1	1	All	1	-	● ─ □
	2	Over	- 1	-		2	Over	I -	1	1	Over	1		•— I
CIVII	2	Under	- 1	-	-	2	Under		1	1	Under	1 -		-
	3	Dense	F		•	2	All		1	1	Dense		•	
	1	Dense	1	+	● - I	1	All	1 •	- 1	1	Dense	1	-	→ 1
KC1	1	Under	1	$+ \bullet -$	— 1	1	Over	I •	1	1	All	1	+	● - 1
KCI	1	All	1	$\rightarrow \bullet$		1	Under	I •		1	Under	1	$+ \bullet -$	
	1	Over	1		— I	1	Dense	I →	I	1	Over	1	+•-	
	1	Over	1	1 —	- ● I	1	Over	10	ı	1	Dense	1 -	-	<u> </u>
MC1	1	Under	1	1 -	 ● I	1	Under	1 ●— 1	1	1	All	+ ●	-	
MCI	2	All	1	-	— I	2	All	I •	1	1	Under	1 -●	-	
	3	Dense	1	\rightarrow	-	3	Dense	I ●─────	I	1	Over	1.	-	-
PC1	1	Dense	1	1 -	→ 1	1	Dense	1 ◆− 1	I	1	Dense	1	I	-• ⊢
	2	Over	1	\rightarrow		2	Over	I •	- 1	2	All	1	$\overline{}$	
	2	All	1		-	2	All	I •	- 1	2	Under	1	-	—— I
	3	Under	1		- I	3	Under	I -	I	3	Over	1		— I
PC3	1	Under	1	⊢	- 1	1	Dense		I	1	Dense	1 .	-	
	1	Over	1	\rightarrow	— 1	2	Over		- 1	1	Under	1		—— I
	2	All	1	$+\bullet$	— ı	2	Under	I →	1	1	All	1 -	•+	—-I
	2	Dense	1	$+ \bullet$	_	3	All	I	I	1	Over	1 -	•	——I

Summary Table

data	performance	all	dense	over	under
set	measure	components	components	sampling	sampling
CM1	precision	0	0	0	0
	recall	+	-	-	-
	pf	=	+	-	-
KC1	precision	0	0	0	0
	recall	0	0	0	0
	pf	0	0	0	0
MC1	precision	0	0	0	0
	recall	-	-	0	0
	pf	-	-	0	0
PC1	precision	-	+	-	-
	recall	-	+	-	-
	pf	-	+	-	-
PC3	precision	0	0	0	0
	recall	-	-	0	0
	pf	-	+	-	-
summary	+	1	5	0	0
ĺ	0	6	6	9	9
	-	8	4	6	6

Conclusion

Focusing on defect dense regions yields

- better predictors when considering recall, pf and precision.
- smaller, more managable data sets.

Future Work

Applying training on defect-dense components in a cross-company experiment. Example:

- combine all training data's (CC) components
- extract modules as per the previously discussed filter
- train predictors using these modules

Document clustering is widely used for document organization, topic extraction, search result categorization, etc.

Problem

Rigorous clustering is slow.

• K-means: Uses K * I * D document comparisons *plus* centroid update computations.

Purpose

To analyze the scalability and, thus, usability of faster heuristic methods to cluster and reduce the dimensions (terms) of the data.

Setup

Data sets used in this experiment:

- EXPRESS schemas: AP-203, AP-214
- Text mining datasets: BBC, Reuters, The Guardian (multi-view text datasets), 20 Newsgroup subsets: sb-3-2, sb-8-2, ss-3-2, sl-8-2

Setup cont.

Clustering: K-means vs. Genlc [16] and Canopy Clustering [17]

GenIc

- 1 Select original candidate centers randomly
- 2 For each point p in the stream of points
- 3 Find the nearest candidate centroid to p
- 4 Move the nearest centroid toward p
- 5 Increment its weight
- 6 When n, 2n, 3n, ... instances have been seen
- 7 Compute the centroid's probability of survival
- 8 If low, kill it and replace it. Set its weight to 1.
- 9 If high, keep it and go to the next generation.
- 10 Candidate centers can be used in final clusters.

Setup cont.

- Canopy clustering
 - 1 Each "canopy" has two distance thresholds, T1/T2
 - 2 Randomly select a point from the data
 - 3 Use a cheap distance measure create a canopy with that point as a centroid. Canopy members are within T2
 - 4 Expensive distance measures are only used within the same canopies
 - 5 Points inside of T1 are excluded from becoming other canopy members

Setup cont.

- Dimensionality Reduction
 - TF*Idf (Term Frequency * Inverse Document Frequency) For each term t in document D_j

$$Tf * df(t, D_j) = \frac{tf(t_i, D_j)}{|D_j|} log(\frac{|D|}{df(t_i)})$$
 (1)

- PCA (Principal Component Analysis) Find axes of the data such that variation is maximized (i.e. lack of variation in an axis suggests this is a less important dimension)
 - Find eigenvalues and eigenvectors of the covariance matrix

Setup cont.

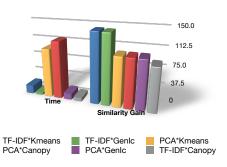
Evaluation of the clustering/reduction methods was done through

- Runtime of clustering/reducing the data
- Gain = intra-similarity inter-similarity
- Cluster intra-similarity
 - For each document d in cluster C, find the similarity between d and all documents belonging to C [maximized]
- Cluster inter-similarity
 - For each document d in cluster C, find the similarity between d and all documents belonging to all other clusters. [minimized]

Commissioning a Learner Cross-Company Defect Prediction using Relevancy Filtering Component vs. Whole-based Defect Prediction Analyzing the Scalability of Clustering Text Documents

Results

Execution Times & Similarity Gain



Conclusion

By examining runtimes and similarity gain, it was shown that

- Faster clustering algorithms are competitive because of their scalability (Genlc vs. K-means)
- Faster dimensionality reduction methods sometimes outperform more rigorous ones on text mining data sets (Tf-IDF vs. PCA).

In summary, faster heuristics can lead to adequate results on some text mining data sets.

Outline

- Background
- 2 Related Work
- The Goal
- Ourmine
- 5 Experiments Using Ourmine
- **6** Conclusion
- Future Work

Conclusion

Ourmine lends itself to being a competitive toolkit for data mining because

- it's freely available
- it remains optimal for publishing experiments through printable scripts representing experiments
- it supports any language/libraries with a command-line API
- its use builds multi-functional knowledge
- the environment is functional as a teaching tool
 - novices can learn data mining concepts through simple scripts
- it's capable of complex experiments

Conclusion

Most existing, free environments suffer from

- lack of experiment sharing abilities (must publish *instructions* to build an experiment, <u>not</u> the experiment itself!)
- conformity to standards (custom scripting languages)
- complexity
- language restriction (Java, C++, Python, etc.)

Outline

- Background
- 2 Related Work
- The Goal
- Ourmine
- Experiments Using Ourmine
- 6 Conclusion
- Future Work

Future Work

Note

Ourmine is far from complete!

Possible future work could include:

- Regulated contributions from the open source community
- Rapid syntax for less complex experiments.
 - Example:

```
data="weather mushroom iris"
learners="nb j48"
_crossval=10x10
$data->$learners
```

Automated plotting/visualization of results

Background Related Work The Goal Ourmine Experiments Using Ourmine Conclusion Future Work

Questions/Comments?

"The promise (predictor models in software engineering) repository." accessible via http://promisedata.org.

G. Gay, T. Menzies, and B. Cukic, "How to build repeatable experiments," in *PROMISE '09: Proceedings* of the 5th International Conference on Predictor Models in Software Engineering. New York, NY, USA: ACM, 2009, pp. 1–9.

"Knime: Konstanz information miner." available from http://www.knime.org/.

"Rapidminer." available from http://rapid-i.com/content/view/181/190/lang,en/.

"Weka: Waikato environment for knowledge analysis." available from http://www.cs.waikato.ac.nz/ml/weka/.

"Orange." available from http://www.ailab.si/orange/.

"Adam: Algorithm development and mining system." available from http://datamining.itsc.uah.edu/adam/index.html.

"The gnome data mine." available from http://www.togaware.com/datamining/gdatamine/.

"Rattle: the r analytical tool to learn easily." available from http://rattle.togaware.com/.

T. Menzies, "Evaluation issues for visual programming languages," 2002, available from http://menzies.us/pdf/00vp.pdf.

O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske, "Yale: Yet another learning environment," in *LLWA 01 - Tagungsband der Gl-Workshop-Woche, Dortmund, Germany*, October 2001, pp. 84–92, available from http://ls2-www.cs.uni-dortmund.de/~fischer/publications/YaleLLWA01.pdf.

B. Turhan, T. Menzies, A. B. Bener, and J. D. Stefano, "On the relative value of cross-company and within-company data for defect prediction," *Empirical Software Engineering*, 2009, available from http://menzies.us/pdf/08ccwc.pdf.

M. Druzdzel and C. Glymour, "What Do College Ranking Data Tell Us About Student Retention: Causal Discovery In Action."

T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, "Implications of ceiling effects in defect predictors," in *PROMISE '08: Proceedings of the 4th international workshop on Predictor models in software engineering.* New York, NY, USA: ACM, 2008, pp. 47–54.

C. Gupta and R. Grossman, "Genic: A single pass generalized incremental algorithm for clustering," in *In SIAM Int. Conf. on Data Mining.* SIAM, 2004.

A. McCallum, K. Nigam, and L. H. Ungar, "Efficient clustering of high-dimensional data sets with application to reference matching," in KDD '00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, USA: ACM, 2000, pp. 169–178.

Background Related Work The Goal Ourmine Experiments Using Ourmine Conclusion Future Work

Images sources:

Slide 7: http://www.knime.org/documentation/gettingstarted Slide 13: http://www.freedigitalphotos.net/images/view_ photog.php?photogid=987