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ABSTRACT
[Abstract here.]

1. THE EXPERIMENT
In order to test the implications of learning using compo-

nents dense with software defects, an experiment was con-
structed using five NASA defect data sets (CM1, KC1, MC1,
PC1, PC3). These data sets were chosen because they have
been studied in the field extensively, and also that they are
widely available to the PROMISE community. Five were
chosen due to the limited number of data sets containing
noteworthy numbers of components.

For each data set, components are extracted by first deter-
mining both defective and non-defective modules contained
in that data set. Once the modules are obtained, those com-
ponents (named after a unique identifier) containing these
modules are selected for further analyses.

After extracting the components and corresponding num-
ber of defects, components were retrieved for further analysis
from each data set if the number of defective modules per
component exceeded the median number of defects across
all components in that data set. For example, in Figure 2
the bottom horizontal line represents the median number of
defects in the KC1 data set. Thus, those components lying
under this line are not used in further stages of the exper-
iment. The components selected (at or above the median
number of defects) are considered dense components. The
pseudocode in Figure 1 illustrates the remaining setup of the
experiment:

Lines 1 and 5 of Figure 1 illustrate the use of the 10X10-
way cross validation used in the experimental process. The
standard 10X10-way cross validation operates by selecting
90% of the data randomly for training, and the remaining
10% for testing. This process is then repeated 10 times for
consistency. The experiment shown in Figure 1, however,
handles this operation in a slightly different manner. Since
the objective is to analyze the performance of training on
modules in components containing a high number of defects
while testing on all other components’ modules, a minute

.

1 For run = 1 to 10
2 For each dense component C in data set D

3 Let Train = C
4 Let Test = All components in D except for C

5 For bin = 1 to 10
6 Train’ = Randomly select 90% modules from Train
7 Test’ = Randomly select 10% modules from Test

8 Naive Bayes (Train’, Test’)
9 end bin
10 end component
11 end run

Figure 1: Training on dense components versus all
components. The experiment performs training on
modules residing in dense components, and testing
on modules contained in all other components in the
data set.

alteration was made to the cross-validation of the experi-
ment. A“pool” of training data was constructed by focusing
on only those instances within a dense component, as in
line 3 of the psuedocode. The available pool of testing in-
stances, thus, are gathered from the remaining components
in the data set. This is employed to prevent training, and
then testing on modules within the same component. Lines
6 and 7 illustrate collecting 90% of the current dense com-
ponent’s instances as the final training set Train′, and 10%
of the modules from the available instances in components
not labeled dense as Test′.

While this represents a slight modification to the standard
pratice of performing a cross-validation, it is within our en-
gineering judgement to apply techniques that best mimick
current methods in an area of experimentation still in its in-
fancy. Thus, the recentness of this specific area of research
invites further techniques to be discovered and implemented.

Line 8 of Figure 1 executes the classifier (in this case,
Naive Bayes) on the previously created training and testing
sets Train′ and Test′. Naive Bayes was used because of its
speed, and also because it has been shown to perform well
on PROMISE defect data against other learners [?].

As the overall goal is to determine if training our clas-
sifiers using fewer, but more densely-packed components is
advantageous to the usual practice of learning on a pool
of all components (and thus all modules), comparisons are
made between each approach, and the results are shown in
the following section.
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Figure 2: Defect distributions of components found
in the KC1 data set. Note that only a small number
of components contain a relatively high number of
defects.

2. RESULTS
The metrics used in the analysis of comparing results from

training on dense components over the traditional method
of using all components in the data set are pd (Probability of
Detection), pf (Probability of False Alarm) and precision.
If A,B,C, and D denote the true negatives, false negatives,
false positives and true positives (respectively) found by a
classifier, then:

pd = Recall =
D

(B + D)
(1)

and

pf =
C

(A + C)
(2)

and

precision =
D

(D + C)
(3)

Therefore, pd and precision values are best if maximized,
while pf results should be minimized.

Figure 4, Figure 5 and Figure 6 show statistical rankings
of each treatment, as well as quartile charts displaying the
median and variance of each metric for the combined data
sets, as a whole, used in the experiment. Note that train-
ing on components containing a higher number of defective
modules maintains higher or tied ranks with the traditional
method, and yields similar medians; while precision and
pd medians lose 3% and 2% respectively, learning on dense
areas provides much better pf medians – almost half.

Perhaps more interestingly are the analyses of data sets
separately. Figure 3 demonstrates the outcome of each treat-
ment for each data set independently. A “+” denotes a win
for a particular treatment against the other, per data set.

Figure 3: Each treatment is assigned a “+” or “-”
if it won over the other treatment, per metric, per
data set. A “+” is assigned to a treatment winning
a statistical ranking (based on a Mann-Whitney test
at 95% confidence), or the best median per metric.

Conversely, a “-” indicates a loss. For example, the fourth
row in the table of Figure 3 (data set PC1), shows that
learning on dense components wins over learning on all for
both pd and prec, but loses when considering pf scores. A
win or a loss is assigned to a treatment by examining its
statistical rank as well as its median value in comparison to
the opposing treatment. If the treatments are statistically
different, the method receiving the highest rank is given a
“+” for that metric. If there is a tie in the ranks, the highest
(or lowest, for pf) is used to determine the winner. The
last row of the table represents the score of each treatment,
given as the sum of “+”s for each treatment using the three
metrics.

The results from this table demonstrate that learning on
only components containing higher numbers of defective mod-
ules is beneficial because

• defect prediction performance is improved significantly
• less data is required during the training phase, mean-

ing faster runtimes and results
• insight is provided for component types; software or-

ganizations can make informed decisions about how to
approach certain problematic components

Categories and Subject Descriptors
i.5 [learning]: machine learning; d.2.8 [software engi-
neering]: product metrics
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pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 31 69 91 w
2 Train on All Components 35 71 93 w

0 50 100

Figure 4: PD values for learning on dense com-
ponents compared to learning on all components
across all data sets, sorted by statistical ranking via
a Mann-Whitney test at 95% confidence.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 0 15 52 w
1 Train on All Components 0 26 65 w

0 50 100

Figure 5: PF values for learning on dense com-
ponents compared to learning on all components
across all data sets, sorted by statistical ranking via
a Mann-Whitney test at 95% confidence.

precision 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on All Components 20 78 95 w
1 Train on Dense Components 12 75 96 w

0 50 100

Figure 6: Precision values for learning on dense com-
ponents compared to learning on all components
across all data sets, sorted by statistical ranking via
a Mann-Whitney test at 95% confidence.


