
OURMINE: An Open Source Data Mining Toolkit

Adam R. Nelson

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Tim Menzies, Ph.D., Chair
Frances VanScoy, Ph.D.

Tim McGraw, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2010

Keywords: Data Mining, Toolkit, Software Defect Prediction, Bash, Awk, Scripting

c© 2010 Adam R. Nelson

Abstract

OURMINE: An Open Source Data Mining Toolkit

Adam R. Nelson

When researchers want to repeat, improve or refute prior conclusions, it is useful to have a complete
and operational description of prior experiments. If those descriptions are overly long or complex,
then sharing their details may not be informative.

OURMINE is a scripting environment for the development and deployment of data mining ex-
periments. Using OURMINE, data mining novices can specify and execute intricate experiments,
while researchers can publish their complete experimental rig alongside their conclusions.

This is achievable because of OURMINEs succinctness. For example, this thesis presents three
case studies documented in the OURMINE syntax. Thus, the brevity and simplicity of OURMINE
recommends it as a better tool for documenting, executing, and sharing data mining experiments.

Acknowledgments

Among those to thank, I would first like to acknowledge my parents and my sister for their utmost
support in both good times, and bad. Their dedication to my happiness will never be forgotten. I
would also like to thank my advisor, Dr. Menzies, who believed in me and always looked out for
my professional well-being.

Finally, I would like to acknowledge Greg Gay, Tomi Prifti, Andrew Matheny, and everyone
else whose contribution, direct or indirect, was monumental in my research.

i

Contents

1 Introduction 1
1.1 Statement of Thesis . 2
1.2 Contributions of this Thesis . 3
1.3 Papers from this Work . 3
1.4 Structure of this Thesis . 3

2 Related Work 5
2.1 Existing Open Source Data Mining Tools . 5

2.1.1 ADaM . 5
2.1.2 Databionic ESOM Tools . 7
2.1.3 Gnome Data Mining Tools . 7
2.1.4 KNIME . 9
2.1.5 Orange . 10
2.1.6 RapidMiner . 12
2.1.7 Rattle . 14
2.1.8 Weka . 15

2.2 The Benefits of Textual Programming . 21

3 Ourmine 24
3.1 Introduction . 24
3.2 Built-in Data and Functions . 25
3.3 Learning & Teaching with Ourmine . 26
3.4 Using Ourmine . 30

3.4.1 The Environment . 31
3.4.2 Tips, Tricks and Useful Ourmine Functions 37
3.4.3 Building a Simple Experiment . 43
3.4.4 Evaluating Results using Ourmine . 53

4 Case Study 1: Commissioning a Learner through Incremental Random Sampling 56
4.1 Commissioning a Learner through Incremental Random Sampling 56

5 Case Study 2: Cross-Company Defect Prediction using Relevancy Filtering 61
5.1 Cross-Company Defect Prediction using Relevancy Filtering 61

ii

6 Case Study 3: Predicting Student Retention 66
6.1 Predicting Student Retention . 66

6.1.1 Building the Experiment . 66
6.1.2 Number of Attributes . 66
6.1.3 Classifiers . 67
6.1.4 Feature Subset Selectors . 70
6.1.5 Cross-Validation . 71
6.1.6 Analysis of Experimental Results . 72
6.1.7 Evaluation Metrics . 72
6.1.8 Visualizing the Results . 76
6.1.9 Narrowing the Search . 76
6.1.10 Selected FSS and Classifier . 77

7 Case Study 4: Component vs. Whole-based Defect Prediction 78
7.1 Component vs. Whole-based Defect Prediction 78

7.1.1 The Experiment . 78
7.1.2 Results . 80

8 Case Study 5: Analyzing the Scalability of Clustering Text Documents 86
8.1 Analyzing the Scalability of Clustering Text Documents 86

8.1.1 Results . 92

9 Conclusion 94

A Installing and Running Ourmine 97

B Built-in Functions and Data 98

iii

List of Figures

1.1 An OURMINE function to clean text documents and collect the results. Tokes is a
tokenizer; caps sends all words to lower case; stops removes the stop works listed
in ”$Lists/stops.txt”; and stems performs Porter’s stemming algorithm (removes
confusing suffixes). 2

2.1 Selecting Decision Tree options . 7
2.2 Output of the decision tree learned . 8
2.3 Connecting nodes in KNIME . 9
2.4 Configuring a node in KNIME . 10
2.5 KNIME workflow . 11
2.6 Simple Orange schema . 12
2.7 RapidMiner Plotting . 13
2.8 RapidMiner Visualization . 14
2.9 Weka’s Command Line Interface . 17
2.10 Weka’s Experimenter . 18
2.11 Weka’s Explorer . 19
2.12 Weka’s Knowledge Flow Builder . 20
2.13 Ranking Attributes using Weka’s Information Gain 21

3.1 A GAWK implementation of TF-IDF. 26
3.2 A demo OURMINE experiment. This worker function begins by being called by

the top level function demo004 on lines 1-4. Noteworthy sections of the demo
code are at: line 19, where training sets and test sets are built from 90% and 10%
of the data respectively, lines 25-27 in which values such as pd,pf and balance are
computed via the abcd function that computes values from the confusion matrix,
and line 34 in which a Wilcoxon test is performed on each learner in the experiment
using pd as the performance measure. 27

3.3 A Naı̈ve Bayes classifier for a CSV file, where the class label is found in the last
column. 28

3.4 Function help in OURMINE. 30
3.5 The OURMINE homescreen after installation. 32
3.6 The minerc file used in OURMINE for setting up the environment. 33
3.7 A few of the contents of the learn.sh file used in OURMINE for data training and

classification. 35

iv

3.8 Running the J48 algorithm in OURMINE. 36
3.9 Adding Weka’s One-R implementation into OURMINE for further use. 38
3.10 Using show to examine the code (and hence, parameters) of the built-in function

selectRandomInstances. 39
3.11 Using malign to neatly align comma-separate output. 41

4.1 Experiment #1 - Part A - (Learner tuning). Probability of Detection (PD) results,
sorted by rank then median values. 58

4.2 Experiment #1 - Part A - (Learner tuning). Probability of False Alarm (PF) results,
sorted by rank then median values. 59

4.3 Experiment #1 - Part B - (Random Sampling). Probability of Detection (PD) re-
sults, sorted by rank then median values. 59

4.4 Experiment #1 - Part B - (Random Sampling). Probability of False Alarm (PF)
results, sorted by rank then median values. 60

5.1 The OURMINE script used in conducting the WC vs. CC experiment. 63
5.2 Experiment #2 (WC vs. CC). Probability of Detection (PD) results, sorted by rank

then median values. 65
5.3 Experiment #2 (WC vs. CC). Probability of False Alarm (PF) results, sorted by

rank then median values. 65

6.1 A decision tree consists of a root node and descending children nodes who denote
decisions to make in the tree’s strucure. This tree, for example, was constructed in
an attempt to optimize investment portfolios by minimizing budgets and maximiz-
ing payoffs. The top-most branch represents the best selection in this example. . . . 68

6.2 In this simple bayesian network, the variable Sprinkler is dependent upon whether
or not its raining; the sprinkler is generally not turned on when it’s raining. How-
ever, either event is able to cause the grass to become wet - if it’s raining, or if
the sprinkler is caused to turn on. Thus, Bayesian networks excel at investigating
information relating to relationships between variables. 69

6.3 Probability of Detection (PD) and Probability of False Alarm (PF) with variances
for first year retention. 73

6.4 Probability of Detection (PD) and Probability of False Alarm (PF) with variances
for second year retention. 74

6.5 Probability of Detection (PD) and Probability of False Alarm (PF) with variances
for third year retention. 75

6.6 The top ten ranking treatments for third year retention. Ranks represent how many
times a particular treatment wins over all other treatments in the experiment. 77

7.1 Training on Dense Components Vs. All Components 79
7.2 Component defect distribution example . 81
7.3 Dense vs. All vs. Sampling - all metrics per data set. 84
7.4 Dense Component vs. All Component learning - pd - All Data 84
7.5 Dense Component vs. All Component learning - p f - All Data 85

v

7.6 Dense Component vs. All Component learning - precision - All Data 85

8.1 A PCA dimension feature. 89
8.2 An OURMINE worker function to cluster data using the K-means algorithm. Note

that experiments using other clustering methods (such as GenIc and Canopy),
could be conducted by calling line 16 above in much the same way, but with vary-
ing flags to represent the clusterer. 91

8.3 An OURMINE worker function to reduce the data using TF-IDF. 92
8.4 Experiment #3 (Text mining). Similarity values normalized according to the com-

bination of most rigorous reducer and clusterer. Note that Gain is a value repre-
senting the difference in cluster intrasimilarity and intersimilarity. 93

vi

Chapter 1

Introduction

Since 2004, data mining researchers at West Virginia University have been involved in an open

source data mining experiment. Researchers submitting to the PROMISE conference on predictive

models in software engineering are encouraged to offer not just conclusions, but also the data they

used to generate those conclusions. The result is nearly 100 data sets, all on-line, freely available

for download 1.

An important aspect of this thesis is that after data sharing comes experiment sharing; i.e.

repositories should grow to include not just data, but the code required to run experiments over

that data. This simplifies the goal of letting other researchers repeat, or even extend, data mining

experiments of others. Repeating experiments is not only essential in confirming previous results,

but also in providing an insightful understanding of the fundamentals involving those experiments.

Thus, it is important to have a prepared set of clearly defined and operational experiments that can

be utilized in order to achieve similar prior results.

OURMINE was developed to help graduate students at West Virginia University document and

share their data mining experiments. The toolkit uses UNIX shell scripting. As a result, any tool

that can be executed from a command prompt can be seamlessly combined with other tools.

1http://promisedata.org/data

1

1 clean(){
2 local docdir=$1
3 local out=$2

4 for file in $docdir/*; do
5 cat $file | tokes | caps | stops $Lists/stops.txt > tmp
6 stems tmp >> $out
7 rm tmp
8 done
9 }

Figure 1.1: An OURMINE function to clean text documents and collect the results. Tokes is
a tokenizer; caps sends all words to lower case; stops removes the stop works listed in ”$List-
s/stops.txt”; and stems performs Porter’s stemming algorithm (removes confusing suffixes).

For example, Figure 1.1 shows a simple bash function used in OURMINE to clean text data

before conducting any experiments using it. Line 5 passes text from a file, performing tokenization,

removing capitals and unimportant words found in a stop list, and then in the next line performing

Porter’s stemming algorithm on the result.

OURMINE allows connectivity between tools written in various languages as long as there is

always a command-line API available for each tool. For example, the modules of Figure 1.1 are

written using BASH, Awk and Perl.

1.1 Statement of Thesis

OURMINE stands as a satisfactory data mining toolkit for data mining

• researchers due to experiment reproducibility and sharing

• instructors due to the ease at which concepts can be taught through succinct code

• novices due to rapid yet knowledge-enhancing experiment building using widely applicable

scripting languages

2

1.2 Contributions of this Thesis

This thesis contributes to existing work in the analysis of open source data mining environments.

By first examining many already-used toolkits available to the open source community, and then

highlighting general strong points as well as weaknesses of these environments, it is hoped that the

scripting-based approach taken by OURMINE will be accepted for not only academic endeavors,

but practical, industrial applications as well.

1.3 Papers from this Work

• Adam Nelson and Tim Menzies and Greg Gay. Sharing Experiments Using Open Source

Software. In Software: Practice and Experience, 2nd. round review. 2009-2010

• Ashutosh Nandeshwar and Tim Menzies and Adam Nelson. Learning Patterns of University

Student Retention. In Expert Systems with Applications, recently submitted. 2010

1.4 Structure of this Thesis

The remaining chapters of this thesis are structured follows:

• Chapter 2 explores a variety of widely used, open source data mining tools

• Chapter 3 introduces more of the specifics of OURMINE. Here exists a description of the

environment, comparisons of textual versus visual programming, learning and teaching from

within the environment, etc.

• Chapter 4 uses a case study to show how OURMINE can be used by practicioners to ”tune”

a treatment to yield the best results.

3

• Chapter 5 contains a case study in which OURMINE was used to verify current results on

cross-company defect prediction using relevancy filters.

• Chapter 6 details a case study of OURMINE in which the toolkit was used to predict univer-

sity student retention.

• Chapter 7 examines a case study in which OURMINE was used to determine if learning on

highly-dense software components provided any benefits over the standard methods.

• Chapter 8 describes a case study that examines empirical comparisons of clustering methods

used in text mining via OURMINE.

• Chapter 9 concludes this thesis through a summarization of the varying aspects of OUR-

MINE and also potential future work for the toolkit.

4

Chapter 2

Related Work

2.1 Existing Open Source Data Mining Tools

As OURMINE is an open source data mining tool, it is important to explore other freely available

options. In doing so, it is hoped that insight can be gained by finding similarities and likenesses

between these options and the tool discussed herein. It should be noted, however, that while

OURMINE is presented in this thesis as an entirely adequate environment for performing data

ming tasks, it is not intended to replace any existing options. Instead, its purpose is to supply the

software community with yet another powerful alternative. Thus in this chapter other popular tools

will briefly be explored.

2.1.1 ADaM

ADaM [1], or the Algorithm Development and Mining System, was developed at the University

of Alabama. The tool provides over one hundred components including classifiers, clustering al-

gorithms, and feature selectors. Along with standard data mining components, ADaM comes with

tools to process images. These include programs for cropping, rotation, scaling and other image

processing techniques standard in computer vision. Such components are provided as executables

5

and Python modules.

Executables packaged with ADaM are utilized via the command line by issuing the component

name. For example, in order to train a Naı̈ve Bayes [32] classifier using this option, first the

command

ITSC_NaiveBayesTrain

must be issued in order to learn characteristics of the classes of interest by using sample patterns.

Then, the command

ITSC_NaiveBayesApply

is used to read the characteristics provided by the training module to then classify the input data.

Thus, all classifiers in ADaM are structured in this manner – with training and application modules.

Python modules that come with the system are used in typical Python scripts. For example,

below illustrates a Python script from the documentation provided with ADaM that performs a

median filter on an image by computing the median pixel value in a neighborhood of that pixel in

the image.

import sys

sys.path.append(’E:/projects/ADaM/build/’)

import ADaM

inFile = "input.bin"

winSize = 7

outFile = "filtered.bin"

id1 = ADaM.ReadImage(inFile) # return a handle as input for the filter funciton

id2 = ADaM.MedianFilter(id1, winSize)

ADaM.WriteImage(outFile, id2)

ADaM.DeleteImage(id1)

ADaM.DeleteImage(id2)

6

2.1.2 Databionic ESOM Tools

The Databionic ESOM Tool [2] takes a noteworthy approach in performing data mining tasks

by using Emergent Self-Organizing Maps (ESOM) [10]. A self-organizing map utilizes theory

from artificial neural networks to construct a discretized representation of training examples in a

low-dimensional space. This representation is called a map. SOMs, therefore, remain a useful

alternative in visualizing high-dimensional spaces.

2.1.3 Gnome Data Mining Tools

Gnome Data Mining Tools [3] is a collection of freely available tools that are packaged together to

make a single collection of units that can be used for data mining tasks. The package requires that

Python and Gnome be installed on the system used to run it.

Figure 2.1: Selecting Decision Tree options. Obtained from htt p :
//www.togaware.com/datamining/gdatamine/gdmdtree.html.

The application takes an approach that utilizes command-driven GUIs in order to run machine

learning algorithms on input data. For instance, Figure 2.1 shows the operation of a Decision

Tree [25] via a GUI that is executed by typing

7

gdmdtree vote

where vote is the name of the data set. Many features are available to the user through this interface,

such as the ability to select the data set, the option to display the decision tree (as in Figure 2.2)

and perform tree pruning, etc. Using Gnome Data Mining Tools, visualization of the data can also

be obtained through bar charts, and frequency distributions of data can be represented through bin

charts.

Figure 2.2: Output of the decision tree learned. Obtained from htt p :
//www.togaware.com/datamining/gdatamine/gdmdtree.html.

8

2.1.4 KNIME

The Konstanz Information Miner, KNIME [4] is a popular visual-based modular data exploration

environment. It incorporates over 100 processing nodes for tasks such as data preprocessing, mod-

eling, data mining and analysis, and supports integration to many other existing tools. Being based

on the Eclipse platform, KNIME allows extensibility by constructing custom nodes within the

environment that can be used in both production and research settings.

Figure 2.3: Connecting nodes in KNIME. Here, a data set is read through the
FileReader node, which is then colored, clustered, and analyzed. Obtained from htt p :
//www.knime.org/documentation/gettingstarted

KNIME works by allowing the user to build personalized workflows from either preexisting or

custom nodes. For example, Figure 2.3 shows a workflow created in order to parse a data set from

an ASCII file, add color to it, and cluster the data using the K-means algorithm. The outcome is a

scatter plot showing the results of the clustered data. Thus, workflows are created in this manner;

icons are dragged to a Workflow Editor window, and then connected to complete a sequence of

steps to be executed.

After nodes are connected, they must be configured and executed. Configuring nodes is accom-

plished by right-clicking a node, and then selecting desired characteristics for that node. Figure 2.4

shows this configuration by selecting the file (data set) for the File Reader node, which marks the

9

Figure 2.4: Configuring a node in KNIME. Obtained from htt p :
//www.knime.org/documentation/gettingstarted

first step in this workflow. Finally, by executing the Scatter Plot node in Figure 2.3, all predecessor

nodes are automatically executed for the user. The result of the sequential execution of these nodes

in this workflow is shown in Figure 2.5.

2.1.5 Orange

Orange [5] is another popular open source alternative available to both novices and experts that

allows data mining to be conducted through the use of either Python scripting or visual program-

ming. By using only a few lines of Python (assuming Python is correctly installed on the system),

a user can apply data mining modules to data sets, as in the following code:

import orange

data = orange.ExampleTable("voting")

classifier = orange.BayesLearner(data)

for i in range(5):

c = classifier(data[i])

print "original", data[i].getclass(), "classified as", c

Here, data is assigned the data set labeled “voting”. The classifier is set to Naı̈ve Bayes , which

is learned on the first five instances in the training data. The original class is then printed adjacent

10

Figure 2.5: The result of executing all nodes in the workflow. Note the scatter plot of clustered val-
ues. By selecting on each instance from the plot, its corresponding row is shown in the interactive
table. Obtained from htt p : //www.knime.org/documentation/gettingstarted

to the class assigned by the classifier.

Visual programming is conducted in Orange by using the Orange canvas – a space contain-

ing widgets, that when used together, create a schema. Orange makes use of widgets due to their

modularity. Widgets are visual components on the canvas that supply instructions to other widgets

through connected “channels”. These channels provide the means for widgets to communicate

by being the medium through which information is transmitted. The schemas built from these

interconnected widgets can yield very informative visualizations. Figure 2.6 shows a schema con-

sisting of a File widget, which “feeds” the data into a Classification Tree widget, and finally into

both Classification Tree Viewer 2D and Scatterplot widgets. The result is the visualization of the

data itself in the scatter plot, as well as the branching nodes learned from the classification tree.

11

Figure 2.6: A simple schema constructed in Orange. Widgets represent modular parts of the
schema that communicate to one another to form the resulting visualizations. Obtained from htt p :
//www.ailab.si/orange/screenshots.psp

Thus, Orange remains another powerful tool that can be used by both advanced and novice data

miners.

2.1.6 RapidMiner

RapidMiner [7] is both an open source and commercially available data mining system, used world-

wide. It provides not only a graphical user interface for processes, but also a custom scripting

environment for certain desired operations. Workflows are constructed as per previously seen tools

– by combining nodes representing components, and connecting them to build a fully operational

stream of execution. Data stores can be accessed from existing popular spreadsheet packages,

database environments, and other forms such as text files. This data can then be inserted into the

workflow, and following nodes can act on this data to accomplish specific data mining tasks.

12

Figure 2.7: One of the many types of plotting facilities available in RapidMiner. Obtained from
htt p : //www.ailab.si/orange/screenshots.psp

13

Figure 2.8: One of the many types of visualizations available in RapidMiner. Here, a decision tree
is represented as though it was drawn on a piece of paper – from the root node, branching left and
right. Obtained from htt p : //www.ailab.si/orange/screenshots.psp

Another potentially powerful aspect of RapidMiner is its many visualization tools and plotting

facilities. Colorful plots and charts (Figure 2.7), as well as accurate visualization of algorithms’

results (Figure 2.8) provide a good explanation medium for those new to data mining.

2.1.7 Rattle

Rattle (the R Analytical Tool To Learn Easily) [8] is a freely available open source data mining

toolkit. The authors of this toolkit attempt to provide an easy gateway into learning about the com-

plex statistical language, R [6], while performing data mining through graphical user interfaces.

By leading the user through the basics of data mining, it is hoped that he/she will become more

familiar with R once it is illustrated how it is used to perform these basics operations.

Rattle is used as an educational device in various places of the world, such as for the Data

14

Mining Workshop in Canberra, Australia, and also in the Shenzhen Graduate School in China.

Rattle is used professionally by others as well. For instance, Australia’s largest data mining team

in the Australian Taxation Office utilizes Rattle on a daily basis.

2.1.8 Weka

Weka (the Waikato Environment for Knowledge Analysis) [9], developed in New Zealand, is an

extremely popular, open source collection of machine learning algorithms used for various data

mining tasks. The tools are written in Java, and thus have the ability to be executed on any system

with the Java Runtime Environment installed. Standard operations such as data preprocessing,

classification and clustering are available to the user through either a command line environment,

as in Figure 2.9, or from an easily navigable graphical user interface like shown in Figure 2.10,

Figure 2.11, Figure 2.12, and Figure 2.13.

Weka allows access to practical portions of the toolkit through the GUI. These include the

simple command line interface of Figure 2.9, the Experimenter of Figure 2.10, the Explorer in

Figure 2.11 and the KnowledgeFlow from Figure 2.12. The command line interface is a valuable

and powerful portion of Weka. With it, commands can be issued to the system to utilize each

module of the environment. However, its tools are also available through a (e.g. UNIX) terminal.

This allows for operations to be performed from an external setting, which can be called using any

desired language. For instance, in order to call a simple Naı̈ve Bayes classifier using a BASH [30]

function, the following code could be used

nb () {

local learner=weka.classifiers.bayes.NaiveBayes;

$Weka $learner -p 0 -t $1 -T $2

}

15

nb train.arff test.arff

where $Weka represents the path of the Weka compiled Java code.

The Experimenter option of the toolkit allows standard experiments to be run from a graphical

user interface. This provides the means to experiment with various components of data mining.

For instance, using this method, statistical comparisons can be made between different treatments

on a data set.

For possibly more immediately available results, the Explorer option of the GUI gives the user

the ability to execute single algorithms that provide quick insight into the properties of the data.

For instance, suppose one wished to display the most important attributes ranked using Information

Gain (whose results are shown in Figure 2.13 for the popular weather data set) as discussed in [25],

this interface yields rapid loading of data and execution.

Popular workflows seen in many other existing tools can also be constructed using Weka’s

KnowledgeFlow. In Figure 2.12, a fairly dense system of interconnected nodes perform complex

operations. Thus, in short, Weka provides much variety in conducting data mining experimenta-

tion.

16

Figure 2.9: Weka’s command line interface (CLI) available to users of the toolkit.

17

Figure 2.10: Weka’s experimenter interface, allowing standard data mining experiments to be set
up through the graphical user interface.

18

Figure 2.11: Weka’s explorer interface, allowing quick execution of many machine learning algo-
rithms to accompish a variety of data mining tasks.

19

Figure 2.12: Weka’s Knowledge Flow builder provides the opportunity to build a workflow seen in
many existing toolkits, by attaching nodes sequentially to perform complex tasks. Obtained from
htt p : //www.cs.waikato.ac.nz/ mhall/knowledgeFlow.png.

20

Figure 2.13: Ranking attributes using Information Gain (available through the Explorer) on the
popular weather data set.

2.2 The Benefits of Textual Programming

A variety of the more widely-used data mining toolkits have been assessed, and it is found that

they are are not suitable for publishing experiments. My complaint with these tools is same as that

offered by Ritthoff et al. [34]:

• Proprietary tools such as MATLAB are not freely available.

• Real-world experiments are more complex than running one algorithm.

• Rather, such experiments or applications require intricate combinations of a large number of

tools that include data miners, data pre-processors and report regenerators.

21

However, the need to “wire up” data miners within a multitude of other tools has been addressed

in many ways. In WEKA’s visual knowledge flow programming environment, for example, nodes

represent different pre-processors/ data miners/ etc while arcs represent how data flows between

them. A similar visual environment is offered by many other tools including ORANGE (see Fig-

ure 2.6).

Ritthoff et al. argues (and I agree) that the standard interface of (say) WEKA does not support

the rapid generation of these intricate combinations. For many, these visual environments are either

overly elaborate, discouraging or distracting:

• These standard data mining toolkits may be overly elaborate. As shown throughout this

thesis, very simple UNIX scripting tools suffice for the specification, execution, and com-

munication of experiments.

• Some data mining novices are discouraged by the tool complexity. These novices shy away

from extensive modification and experimentation.

• Other developers may become so enamored with the impressive software engineering inside

these tools that they waste much time building environments to support data mining, but

never get around to the data mining itself.

• According to Menzies [23], while visual systems provide motivation for beginners, they

fail in providing a good explanation device for many software engineering and knowledge

engineering problems, as many of these problems are not inherently spatial. For example,

suppose an entity-relationship diagram is drawn on a piece of paper. While inferences can

be made from the diagram, they are not entirely dependent on the physical location of (e.g.)

an entity.

A similar experience is reported by our colleagues in WVU’s Department of Statistics. In order to

support teaching, they hide these data mining tools inside high-level scripting environments. Their

22

scripting environments shield the user from the complexities of “R” by defining high-level LISP

code that, internally, calls “R”. While a powerful language, many find that LISP can be arcane to

many audiences.

OURMINE is a data mining scripting environment. The current kit has tools written in BASH/

GAWK/ JAVA/ PERL/ and there is no technical block to adding other tools written in other lan-

guages. Other toolkits impose strict limitations of the usable languages:

• MLC++ requires C++

• Extensions to WEKA must be written in JAVA.

My preference for BASH [30]/GAWK [11] over, say, LISP is partially a matter of taste but I defend

that selection as follows. Once a student learns, for example, RAPID-I’s XML configuration tricks,

then those learned skills are highly specific to that toolkit. On the other hand, once a student learns

BASH/GAWK methods for data pre-processing and reporting, they can apply those scripting tricks

to any number of future UNIX-based applications.

23

Chapter 3

Ourmine

3.1 Introduction

OURMINE is a scripting environment developed at West Virginia University for the development

and deployment of data mining experiments. Using this toolkit, those new to data mining can spec-

ify and execute complex experiments, while researchers in the field can publish their entire exper-

imental rig alongside their results. Sharing experiments is important for not only the reproduction

of results, but also in understanding those results – by examining the experiment itself, more in-

sight can be gained from theories involved in the experiment’s execution. This is achievable due to

OURMINE’s succinctness. For example, this thesis presents four case studies documented in the

OURMINE syntax. Thus, the brevity and simplicity of OURMINE recommends it as an ideal tool

for not only constructing experiments, but also documenting, executing, and sharing them with the

data mining community.

The toolkit primarily uses UNIX shell scripting and GAWK [11]. As a result, any tool that

can be executed from a command prompt can be easily and seemlessly combined with other tools.

As I will show in this thesis, components written in various languages such as Perl, Java, GAWK,

BASH, etc. can be connected through the environment of OURMINE. Therefore, this strictly

24

scripting approach can be thought to provide the “glue” needed to create an interconnected network

of components required in performing data mining experiments.

Also demonstrated in this thesis are the advantages of using scripting languages for not only re-

search, but also in teaching data mining concepts to university students. In essence, while learning

complex tasks in a visual environment is more than possible, the user is left with only knowledge

of how to use properties specific to that environment. On the other hand, learning to use mod-

ern and popular scripting languages utilized by a toolkit such as OURMINE leaves the user with

knowledge that can be brought to many general applications outside of data mining.

The following sections describe OURMINE’s functions and applications.

3.2 Built-in Data and Functions

In order to encourage more experimentation, the default OURMINE installation comes with nu-

merous data sets:

• Text mining data sets: including STEP data sets (numeric): ap203, ap214, bbc, bbcsport,

law, 20 Newsgroup subsets [sb-3-2, sb-8-2, ss-3-2, sl-8-2]1

• Discrete UCI Machine Learning Repository datasets: anneal, colic, hepatitis, kr-vs-kp,

mushroom, sick, waveform-5000, audiology, credit-a, glass, hypothyroid, labor, pcolic,

sonar, vehicle, weather, autos, credit-g, heart-c, ionosphere, letter, primary-tumor, soybean,

vote, weather.nominal,breast-cancer, diabetes, heart-h, iris, lymph, segment, splice, vowel;

• Numeric UCI Machine Learning Repository datasets: auto93, baskball, cholesterol, detroit,

fruitfly, longley, pbc, quake, sleep, autoHorse, bodyfat, cleveland, echoMonths, gascons,

lowbwt, pharynx, schlvote, strike, autoMpg, bolts, cloud, elusage, housing, mbagrade, pol-

lution, sensory, veteran, autoPrice, breastTumor, cpu, fishcatch, hungarian, meta, pwLinear,

1http://mlg.ucd.ie/datasets

25

function train() { #update counters for all words in the record
Docs++;
for(I=1;I<NF;I++) {
if(++In[$I,Docs]==1)
Doc[$I]++
Word[$I]++
Words++ }

}
function tfidf(i) { #compute tfidf for one word
return Word[i]/Words*log(Docs/Doc[i])

}

Figure 3.1: A GAWK implementation of TF-IDF.

servo, vineyard.

• The defect prediction data sets from the PROMISE repository: CM1, KC1, KC2, KC3, MC2,

MW1, PC1

OURMINE also comes with a variety of built-in functions to perform data mining and text

mining tasks. For a complete list, see the appendix.

3.3 Learning & Teaching with Ourmine

Data mining concepts become complex when implemented in a complex manner. For this reason,

OURMINE utilizes simple scripting tools (written mostly in BASH or GAWK) to better convey the

inner-workings of these concepts. For instance, Figure 3.1 shows a GAWK implementation used

by OURMINE to determine the TF-IDF [31] (Term Frequency * Inverse Document Frequency,

described below) values of each term in a document. This script is simple and concise, while a C++

or Java implementation would be large and overly complex. An additional example demonstrating

the brevity of OURMINE script can be seen in Figure 3.2, which is a complete experiment whose

form can easily be taught and duplicated in future experiments.

26

1 demo004(){
2 local out=$Save/demo004-results.csv
3 [-f $out] && echo "Caution: File exists!" || demo004worker $out
4 }

5 # run learners and perform analysis
6 demo004worker(){

7 local learners="nb j48"
8 local data="$Data/discrete/iris.arff"
9 local bins=10
10 local runs=5
11 local out=$1

12 cd $Tmp
13 (echo "#data,run,bin,learner,goal,a,b,c,d,acc,pd,pf,prec,bal"
14 for((run=1;run<=$runs;run++)); do
15 for dat in $data; do

16 blab "data=‘basename $dat‘,run=$run"
17 for((bin=1;bin<=$bins;bin++)); do

18 rm -rf test.lisp test.arff train.lisp train.arff
19 makeTrainAndTest $dat $bin $bin
20 goals=‘cat $dat | getClasses --brief‘

21 for learner in $learners; do

22 $learner train.arff test.arff | gotwant > produced.dat
23 for goal in $goals; do

24 cat produced.dat |
25 abcd --prefix "‘basename $dat‘,$run,$bin,$learner,$goal" \
26 --goal "$goal" \
27 --decimals 1
28 done
29 done
30 done
31 blabln
32 done
33 done | sort -t, -r -n -k 11,11) | malign > $out

34 winLossTie --input $out --test w --fields 14 --key 4 --perform 11
35 }

Figure 3.2: A demo OURMINE experiment. This worker function begins by being called by the
top level function demo004 on lines 1-4. Noteworthy sections of the demo code are at: line 19,
where training sets and test sets are built from 90% and 10% of the data respectively, lines 25-27 in
which values such as pd,pf and balance are computed via the abcd function that computes values
from the confusion matrix, and line 34 in which a Wilcoxon test is performed on each learner in
the experiment using pd as the performance measure.

27

#naive bayes classifier in gawk
#usage: gawk -F, -f nbc.awk Pass=1 train.csv Pass=2 test.csv

Pass==1 {train()}
Pass==2 {print $NF "|" classify()}

function train(i,h) {
Total++;
h=$NF; # the hypotheis is in the last column
H[h]++; # remember how often we have seen "h"
for(i=1;i<=NF;i++) {
if ($i=="?")

continue; # skip unknown values
Freq[h,i,$i]++
if (++Seen[i,$i]==1)

Attr[i]++} # remember unique values
}
function classify(i,temp,what,like,h) {

like = -100000; # smaller than any log
for(h in H) { # for every hypothesis, do...
temp=log(H[h]/Total); # logs stop numeric errors
for(i=1;i<NF;i++) {
if ($i=="?")

continue; # skip unknwon values
temp += log((Freq[h,i,$i]+1)/(H[h]+Attr[NF])) }

if (temp >= like) { # better hypothesis
like = temp
what=h}

}
return what;

}

Figure 3.3: A Naı̈ve Bayes classifier for a CSV file, where the class label is found in the last
column.

28

Another reason to prefer scripting in OURMINE over the complexity of RAPID-I, WEKA,

“R”, etc, is that it reveals the inherent simplicity of many of our data mining methods. For example,

Figure 3.3 shows a GAWK implementation of a Naı̈ve Bayes classifier for discrete data where the

last column stores the class symbol. This tiny script is no mere toy- it successfully executes on

very large data sets such as those seen in the 2001 KDD cup and in [27]. WEKA cannot process

these large data sets since it always loads its data into RAM. Figure 3.3, on the other hand, only

requires memory enough to store one instance as well as the frequency counts in the hash table

“F”.

More importantly, in terms of teaching, Figure 3.3 is easily customizable. The simplicity of

this customizations fosters a spirit of “this is easy” for novice data miners. This in turn empowers

them to design their own extensive and elaborate experiments.

Also from the teaching perspective, demonstrating on-the-fly a particular data mining concept

helps not only to solidify this concept, but also gets the student accustomed to using OURMINE as

a tool in a data mining course. As an example, if a Naı̈ve Bayes classifier is introduced as a topic

in the class, an instructor can show the workings of the classifier by hand, and then immediately

afterwards complement this by running Naı̈ve Bayes on a small data set in OURMINE. Also, since

most of OURMINE does not use pre-compiled code, an instructor can make live changes to the

scripts and quickly show the results.

Data mining colleagues at WVU are not alone in favoring GAWK for teaching purposes.

Ronald Loui uses GAWK to teaching artificial intelligence at Washington University in St. Louis.

He writes:

There is no issue of user-interface. This forces the programmer to return to the ques-

tion of what the program does, not how it looks. There is no time spent programming

a binsort when the data can be shipped to /bin/sort in no time. [21]

Function documentation provides a way for newcomers to OURMINE to not only get to know

29

Function: j4810
Arguments: <data (arff)>
Example(s): j4810 weather.arff
Description: Uses a j48 decision tree learner on the input data

Function Code:
==============
j4810 () {

local learner=weka.classifiers.trees.J48
$Weka $learner -C 0.25 -M 2 -i -t $1

}

Figure 3.4: Function help in OURMINE.

the workings of each function, but also add to and modify the current documentation. Instead of

asking the user to implement a more complicated “man page”, OURMINE uses a very simple sys-

tem consisting of keywords such as name, args and eg to represent a function name, its arguments

and an example of how to use it. Using this documentation is simple. Entering funs at the OUR-

MINE prompt provides a sorted list of all available functions in ourmine. Then, by typing help X,

where X is the name of the function, information about that function is printed to the screen. See

Figure 3.4 for an example of viewing the help document for the function j4810. Documentation

for a function is added by supplying a text file to the helpdocs directory in OURMINE named after

the function.

3.4 Using Ourmine

While this section represents important and helpful ”tips and tricks” for immediately getting up and

running with OURMINE, it also serves a purpose as a stand-alone manual to be read by students

taking an introductory data mining course to quickly familiarize themselves with the environment.

Therefore, subsequent sections are broken into the following:

• An understanding of the OURMINE environment

In order to use the environment quickly and effectively, having a basic awareness of its inner-

workings is essential. Thus, I first give a brief but ample overview of how OURMINE works by

30

utilizing neatly distributed code segments. This alone should give way to the ability to add and

modify scripts as desired.

• How to construct a simple experiment in OURMINE using easy scripting

Building experiments in OURMINE is simple. However, there are certain conventions that

must be understood and adhered to before any true experimentation can be conducted using it. This

portion discusses how to, in detail, construct a simple data mining experiment using OURMINE.

The results from this experiment are used in further sections to demonstrate analyses.

• Ranking experimental treatments using statistical tests

Comparing experimental results is as important as building the experiment itself. For this

reason, two approaches to analyze experimental results will be discussed here. First, I show how

to rank treatments from an experiment using OURMINE’s built-in statistical ranking tests.

• Examining the variance and median values of experimental results using quartile charts

Second, I show how to analyze the variance and median values after an experiment has exe-

cuted. This is essential, in combination with the statistical ranking, to measure the overall perfor-

mance of a treatment used in any data mining experiment.

3.4.1 The Environment

OURMINE’s environment was constructed with modularity in mind. Each and every different type

of process used in the toolkit is located in its own location and give way to easily customizable

scripts. Here I will begin from the initial execution of the environment to modifying scripts to

provide a better understanding of how the interconnected code of OURMINE works as a whole.

By the time this section is finished, the user should have a working knowledge of where code

31

Figure 3.5: The OURMINE homescreen after installation.

segments are located in OURMINE, and also how to modify and add new segments as desired.

After installing OURMINE (see the Appendix), the default prompt is given, as in Figure 3.5.

This prompt notifies the user that the OURMINE environment is available for use, regardless

of location. Since the data mining environment is loaded into memory in addition to standard shell

commands (this becomes very powerful in later use), normal command line operations can still be

utilized to its full extent while in OURMINE. To exit the environment, type exit at the prompt.

To re-enter OURMINE, navigate to where the toolkit was installed, for example in the default

location $HOME/opt/ourmine/our, and issue the command ./ourmine. By executing the script

ourmine, a variable is set to the current directory (default install), and then this value is passed to

a shell script called minerc.sh, located in $HOME/opt/ourmine/our/lib/sh. While this may sound

complicated, it’s actually very simple. Figure 3.6 shows the contents of the minerc file as it is upon

installation. Note that this can grow to become much more large and complex as code is added to

the environment as desired.

As can be seen in Figure 3.6, the variable Base is set to the default installation path. Us-

ing this variable, we can construct other variables representing locations of important directories

within OURMINE. For example, the variable Data is set to the location of the $HOME/opt/our-

mine/our/arffs directory. This is where all of the data that comes packaged with OURMINE is

stored. On the same note, the variables Sh and Java store the locations of shell code to be exe-

cuted, as well as java code respectively.

These variables set to their respective paths can be used for many applications. For instance,

32

#define and create required directories

Base=$OurMine
Data=$Base/arffs
Docs=$Base/docs
Help=$Base/helpdocs
Tmp=$HOME/tmp
Var=$Tmp/var
Awk=$Base/lib/awk
Sh=$Base/lib/sh
Java=$Base/lib/java
Perl=$Base/lib/perl
Lists=$Base/lib/lists
Save=$Base/save

mkdir -p "$Var $Tmp"
mkdir -p $Tmp

useful globals

Weka="java -Xmx2048M -cp $Java/weka.jar "
Clusterers="java -Xmx1024M -jar $Java/Clusterers.jar "
Reducers="java -Xmx1024M -jar $Java/Reduce.jar "

define and load files

Files="
$Sh/effort.sh
$Sh/util.sh
$Sh/preprocess.sh
$Sh/learn.sh
$Sh/cluster.sh
$Sh/fss.sh
$Sh/analysis.sh
$Base/workers/worker_cluster.sh
$Base/workers/worker_cluster_analysis.sh
$Base/workers/worker_reduce.sh
$Base/workers/worker_defects.sh
$Base/workers/worker_learner_analysis.sh
$Base/demos.sh
$Base/demos1.sh
$Base/demos2.sh
$Base/demos3.sh
$Base/demos4.sh
$Base/demos5.sh
$Base/demos6.sh
$Base/demos7.sh
$Base/demos8.sh
$Base/demos9.sh
$Base/demos10.sh
"

#load all from Files above

for config in $Files; do
[-f "$config"] && . $config

done

echo "Ourmine - Copyright 2009 by Tim Menzies, Adam Nelson, Gregory Gay"
PS1="OURMINE> "

Figure 3.6: The minerc file used in OURMINE for setting up the environment.

33

we can see in Figure 3.6 that $Java is used to set another variable, $Weka, which allows us to

now access all of the data mining properties of the Weka toolkit. Afterwards, every file declared

in the string $Files is used to import all BASH functions from their respective files. Let’s examine

further one of these files, such as $Sh/learn.sh.

learn.sh is one of many shell scripting files located in $HOME/opt/ourmine/our/lib/sh, and

each are named according to use; util.sh contains code for standard utility functions used in build-

ing experiments in OURMINE, fss.sh utilizes code crucial for Feature Subset Selection (FSS),

cluster.sh has scripts responsible for calling code used to cluster data, etc. Since our main concern

is with learn.sh at the moment, I will spend a bit of time discussing how this works, and how its

scripts can easily be modified and extended for further use.

Figure 3.7 shows a subset of the available functions in learn.sh that can be accessed from

the OURMINE prompt. Here, we can see the function nb() that is used to call Weka’s Naı̈ve

Bayes using as input a training set, followed by a testing set. Likewise, j48() executes the J48

decision tree on the training set. Notice those functions ending in 10, such as nb10 and j4810. This

is an arbitrary convention that has been used since the earlier days of OURMINE’s construction,

and simply means that there is no testing data provided, and thus all testing is conducted on the

training set.

Running a learner on input data is simple, and is detailed in Figure 3.8. At the top of the screen

shot, we can see the command j4810 $Data/discrete/weather.arff being issued to OURMINE.

Internally, this calls Weka’s J48 decision tree classifier on the extremely popular weather data set

found in the $Data directory under discrete (for discrete data). Further information about the

results of running the learner is also printed to the screen, such as the decision tree itself (and

corresponding information pertaining to it), the execution time, classification accuracy, and per-

class statistics obtained from the confusion matrix, such as precision and recall.

Configuring shell functions in OURMINE for any desired task is simple. For example, sup-

pose a user wished to import the OneR rule learner to be used in future experiments. This operation

34

nb() {
local learner=weka.classifiers.bayes.NaiveBayes
$Weka $learner -p 0 -t $1 -T $2

}
nb10() {

local learner=weka.classifiers.bayes.NaiveBayes
$Weka $learner -i -t $1

}
j48() {

local learner=weka.classifiers.trees.J48
$Weka $learner -p 0 -C 0.25 -M 2 -t $1 -T $2

}
j4810() {

local learner=weka.classifiers.trees.J48
$Weka $learner -C 0.25 -M 2 -i -t $1

}
zeror() {

local learner=weka.classifiers.rules.ZeroR
$Weka $learner -p 0 -t $1 -T $2

}
zeror10() {

local learner=weka.classifiers.rules.ZeroR
$Weka $learner -i -t $1

}

Figure 3.7: A few of the contents of the learn.sh file used in OURMINE for data training and
classification.

35

Figure 3.8: Running the J48 algorithm in OURMINE.

36

requires the addition of one BASH function. The example in Figure 3.9 shows that the environ-

ment does not recognize the command oner10 at first using the input training data. However, by

simply editing learn.sh to include the function code for the learner, and then supplying the com-

mand reload (discussed in Section 3.4.2), the environment is reloaded and now contains working

function code. Figure 3.9 shows the rules learned from running the newly created function.

Thus, in summary, OURMINE’s structure operates by taking advantage of BASH functions

located in clearly defined files. These functions, however, call any number of other functions and

libraries written in almost any other programming language. The result is an extremely powerful

”sandbox” in which massive amounts of modification and experimentation can take place.

3.4.2 Tips, Tricks and Useful Ourmine Functions

This section highlights the more helpful and abundantly used functions in OURMINE that, when

used effectively, drastically increase the speed and ease at which the environment can be used for

data preparation, experimentation, analysis and more.

The first, and perhaps most helpful, function to examine is funs. funs is a function requiring no

parameters that returns a sorted list of the available functions in OURMINE. This is a useful utility

ready for use from the command line that enables a user to identify a function by its use through

searching for keywords. For example, suppose the user knew that a function existed that could be

used to align data, but cannot recall its name. Instead of flipping through a lengthy manual, the

command line itself can be used extremely quickly. By entering funs from the OURMINE prompt,

a large list of functions can be seen. Since an alignment function is in question, he/she can provide

the BASH utility grep with the output from the funs command, as in

OURMINE> funs | grep align

malign

OURMINE>

37

Figure 3.9: Adding Weka’s One-R implementation into OURMINE for further use.

38

Figure 3.10: Using show to examine the code (and hence, parameters) of the built-in function
selectRandomInstances.

From this it is immediately obvious that malign is the function desired.

Another very important utility function within OURMINE is show. show provides the user

with the contents of the function in question. This drastically assists in the identification of the

number, order and types of parameters to pass to the function. For instance, Figure 3.10 shows the

code and parameters for the function selectRandomInstances, which simply selects instances at

random up to a number that is user-specified. There we can see that in order to successfully call

the function, the path of the input file (in arff format), and the number of instances to select. The

result is printed to the terminal where further actions can be performed on the output.

Modifying or adding new shell scripts to OURMINE is done easily with the use of the reload

command. reload simply reloads the scripts of all supplied OURMINE functions into working

39

memory (see Section Figure 3.6). This way, as in Figure 3.9, custom scripts can be added to or

modified within the environment without having to tirelessly load the environment. For example,

two terminals can be used simultaneously for editing and reloading/execution. This encourages

rapid modification and experimentation to the existing code-base of OURMINE.

Printing to the screen to provide updates during an experiment’s execution can be essential;

particular segments of the experiment can be identified as problematic if they yield a large runtime.

In most cases, the standard echo command issued through the terminal is not sufficient for this

purpose. To illustrate, the demo ourmine experiment of Figure 3.2 encapsulates the output of the

experiment through the use of echo on lines 13 and 33. This is very useful, as this output data

can be neatly filtered and aligned as desired by the experimenter. Line 16 prints to the screen the

current data set of the experiment, as well as the run number. Using echo for this would not have

a desirable effect, however, as it would incorporate this text into the output file. Consequently, the

results from the experiment would contain extraneous, unwanted information, as well as making

the experiment progress of Line 16 not visible during execution. Thus, OURMINE uses the blab

and blabln commands, which print to the screen without or with (respectively) a newline character,

using forked processes. This allows the periodic output of experiments to be shown without being

combined with the results of the experiment.

Missing values in training data can yield problems for many classifiers, and thus replacing

them may be used as a preprocessing step to prepare data for learning. For this reason, OURMINE

uses the replaceMissingValues function. This function calls Weka’s Java code in order to replace

missing values, labeled as ”?”, by the mode for nominal attributes, and the mean for numeric

attributes. The function is used by supplying the name (replaceMissingValues), with the location

of the training arff as a parameter.

Raw results from experiments can not only be harsh on the eye, but can also complicate the

analysis of them if not properly aligned. To combat this, OURMINE uses the malign function.

When output, in a comma separated form, is passed to malign, columns are neatly spaced to allow

40

Figure 3.11: Using malign to neatly align comma-separate output.

for easier reading. Figure 3.11 shows this command in action. A sample of the output from the

experiment in Figure 3.2 is shown in the upper portion of the terminal without using malign (the

use of this function was removed from line 33 of Figure 3.2 for this example). The bottom half

of the terminal demonstrates the function being used by reading the file first using cat, and then

piping the output to the function. The result is a much neater and easily readable format.

Learners are assessed by how well they perform on unseen data. This is important for real

world applications, as the classifiers are always used to make predictions about the future – data

that has not yet been obtained. To test this performance, the standard method is to break up the

original data set into a training set and a testing set. The training set is used by the classifier to learn

intrinsic characteristics about the data, and the testing set is used to make predictions (hopefully

41

correct) based on these learned characteristics.

Breaking up the data set is simple in OURMINE, and is conducted by calling the function

makeTrainAndTest. makeTrainAndTest requires the user to specify 1.) the original data set, 2.)

the total number of bins to use and 3.) the bin to select as the testing set. For a typical 10-way cross

validation, the total number of bins to select will be 10, while the bin to choose for the random

testing set is chosen by the user. Using the function is as follows

OURMINE> makeTrainAndTest $Data/discrete/weather.arff 10 2

places train.arff, test.arff as well as train.lisp and test.lisp in the current directory. For instance,

if the above was executed in the $HOME directory, the resulting files would be placed in that

directory. From this point, a classifier, such as Naı̈ve Bayes , can be trained on train.arff and tested

using test.arff by calling

OURMINE> nb train.arff test.arff

Quartile charts provide a succinct representation of experimental results, and therefore provide

the ability to quickly assess the performance of treatments. This is due to the ability of the quartile

chart to represent minimum, maximum and medians pertaining to any combinations of methods

used in the experiment. OURMINE provides the ability to create ASCII quartile charts by calling

quartile. quartile operates on columns of data supplied to it through any filtering means desired

by the user. For example, assume an output CSV file (the construction of which is explained in

Section 3.4.3) from an experiment contains statistics about the performance of training a Naı̈ve

Bayes classifier, among others. Further assume that the metric in question is, say, probability of

detection (pd) and is located in column number 12 (from left to right). Quartiles can be obtained

from this file by extracting the column first, and supplying the output to the quartile function. For

example, the following would provide statistics about the pd for every classifier or treatment used

in the experiment.

42

OURMINE> cat results.csv | cut -f12 -d, | quartile

10.0, 31.0, 54.0, 77.0,100.0,[----------- | ++++++++++++]

The quartile chart shown works as follows. The minimum and maximum values (in this case

for pd) are the floating point numbers found at the very left and just before where the ASCII chart

begins, or 10.0 and 100.0 respectively. The median value is shown in the center, as 54.0, and the

25% and 75% quartiles are shown as 31.0 and 77.0 respectively. The ASCII representation provides

a quick visualization of the distributions between quartile values. For instance, the dashes, starting

at 10.0 and moving to 31.0 display the variance between the minimum value and the first quartile.

The space between the dashes and the upright ”pipe”, —, represent the variance between the first

quartile and the median. The median, therefore, is depicted by the pipe. The same holds true for

the markings above the median; the space between the pipe and the first ”+” represents the the

variance between the median and the third quartile.

It should be noted, however, that the above does not concentrate on one particular classifier, in

this example. To obtain quartiles, for, say, only Naı̈ve Bayes , we can extract quartiles that meet a

particular filter, such as ”nb” (short for Naı̈ve Bayes).

OURMINE> cat results.csv | grep nb | cut -f12 -d, | quartile

42.0, 55.0, 70.0, 85.0,100.0,[------- | ++++++++]

Here we can intuitively see a smaller variance in the statistics, as indicated by the decreased

length in the horizontal dashed and ”+” lines, as well as the existence of fewer spaces between

each line and the median.

3.4.3 Building a Simple Experiment

The ability to build an experiment using OURMINE is quite possibly the most important skill

required when using the toolkit to its full potential. For example, the experiments in Chapters 6 to

7 detail results obtained from experiments constructed in OURMINE.

43

As this is such a crucial skill when working within the environment, I have written here a

tutorial on how simple experiments are constructed using the shell scripting of OURMINE. While

the following is a smaller scale experiment, the exercises used here can easily be extended to a

much larger and more advanced experiment once the user knows both shell scripting and also the

details of how the toolkit functions. It is hoped that this section will be a satisfactory introduction

to building experiments so that the user of OURMINE can utilize the skills learned here and apply

them to his/her own unique data mining experiments.

For this section I am going to start from scratch to build a complete experiment. Then, in

Section 3.4.4, I show how the results obtained from the work in this section can be analyzed. Thus,

the end result will be a fully operational experiment whose results could be included in a variety of

research papers. But, before building the experiment, we must first determine what it will do. For

this tutorial, I have chosen to apply various classifiers on discretized data sets to determine which

combination of methods performs the best using varying criteria (explained in Section 3.4.4).

We must first choose an executable file that contains our shell code used in the experiment. For

now, this can be named my- f irst-experiment.sh, located anywhere seen fit. Once the file is created

and can be executed, the required scripting code can then be added to it.

First, let’s construct the function that will be the main experiment. For this, I have named the

experiment as exp1, and the structure should resemble the following:

exp1(){

#place experiment code here...

}

This simple structure will contain all of the operations of our experiment. exp1 will, however,

call other already-defined functions within OURMINE (such as the learners, splitting training and

testing sets, etc.).

For the next step, we need to declare local variables used in the experiment. These variables

will make it easy to change certain parameters of the experiment later on, such as the number of

44

runs and bins, the learners or data sets used, and others. So now we will declare the required

variables for the experiment. These are runs, bins, datas, and learners. runs will tell us how many

times we wish to perform a cross-validation. For instance, a 10 X 10-way cross-validation means

that we wish to perform a 10-way cross-validation ten times. bins tells us how the cross-validation

is performed – using 10 bins means testing on 1
10 -th and training on 9

10 -ths of the data, while using

5 bins means testing on 1
5 -th and training on 4

5 -ths. datas simply lists the data sets that we wish to

use in the experiment. learners lists the learners used in the experiment.

The experiment code is now

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

}

Now that the required variables are set, we will need to construct the ”meat” of the experiment

by first building the data loop, and discretizing each data set before continuing.

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff iris.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

for data in $datas; do

done

}

45

Here I am iterating through each data set in the, located in the same directory as the experiment

file for simplicity. Now I add the ability to execute each learner

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

for data in $datas; do

for learner in $learners; do

done

done

}

Next, we wish to add the functionality of performing a cross-validation. In this experiment, I

am going to use the standard 10X10-way for consistency. First, we must add the run and bin loops

required to perform the cross-validation a certain number of times.

46

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

for data in $datas; do

for learner in $learners; do

for((run=1;run<=$runs;run++)); do

for((bin=1;bin<=$bins;bin++)); do

done

done

done

done

}

Each learner now has to be trained using a training set, and tested using a testing set. These

are built using the aforementioned OURMINE function makeTrainAndTest. makeTrainAndTest

builds a training set and testing set from the original data set using parameters passed to it. Re-

member from Section 3.4.2 that we can tell the function how to construct the training and testing

sets by supplying it with the bin number. Also recall that train.arff and test.arff are placed into the

current working directory.

47

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

for data in $datas; do

for learner in $learners; do

for((run=1;run<=$runs;run++)); do

for((bin=1;bin<=$bins;bin++)); do

makeTrainAndTest $data $bins $bin

goals=‘cat train.arff | getClasses --brief‘

$learner train.arff test.arff | gotwant > result.dat

done

done

done

done

}

There are two parts of this newer expansion of the experiment that have yet to be discussed.

The first is the goals variable. goals is set to the result of the sub-shell giving all of the classes

(using the built-in function getClasses from the newly created training set. These represent all

classes we wish to focus on for the proceeding testing phases.

Running a learner on a training and testing set has been shown before. However, the gotwant

function has not. gotwant outputs results in the form of classes that were predicted by the classifier

for the test instance, as well as the actual classes for that test instance. These values are then used

to build the confusion matrix using the abcd function, like the following:

48

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

for data in $datas; do

for learner in $learners; do

for((run=1;run<=$runs;run++)); do

for((bin=1;bin<=$bins;bin++)); do

makeTrainAndTest $data $bins $bin

goals=‘cat train.arff | getClasses --brief‘

$learner train.arff test.arff | gotwant > result.dat

for goal in $goals; do

cat result.dat |

abcd --prefix "$data,$learner,$bin,$run,$goal" \

--goal "$goal" \

--decimals 1

done

blabln "$data,$learner,$bin,$run,$goal"

done

done

done

done

}

Each goal is passed to the abcd function, along with the output from the classification stage.

The function then builds the confusion matrix from these results. The –prefix passed to the func-

49

tion simply states that the contents of the string will be printed before the statistics from the matrix.

By executing the show abcd command, we can see that the values printed by the function are: a,

b, c, d, accuracy, pd, pf, precision, balance. Thus, a single call to the function as written in the

above experiment code could produce something such as

audiology.arff, nb, 5, 1, cochlear_unknown, 17, 1, 0, 4, 95.5, 80.0, 0.0, 100.0, 85.9

these results will eventually be concatenated into one file for further and easy analysis. blabln

was also added to the experiment to provide the user with a quick update on the current status of

the experiment.

The experiment is nearly complete. However, we still must place all of the experiment’s output

to a properly formatted holding file. This is accomplished by encapsulating the results in memory

until being finally written to the output file. While this gives us a rapid way to store results, it is not

recommended for experiments that require large amounts of time. In the event of a machine crash

or power outage, incrementally saving results to files allows for the ability to restart the experiment

at a desired location without the need for a completely fresh run. For the current example, however,

this is adequate.

50

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

(echo "#dataset,learner,bin,run,goal,a,b,c,d,acc,pd,pf,prec,bal"

for data in $datas; do

for learner in $learners; do

for((run=1;run<=$runs;run++)); do

for((bin=1;bin<=$bins;bin++)); do

makeTrainAndTest $data $bins $bin

goals=‘cat train.arff | getClasses --brief‘

$learner train.arff test.arff | gotwant > result.dat

for goal in $goals; do

cat result.dat |

abcd --prefix "$data,$learner,$bin,$run,$goal" \

--goal "$goal" \

--decimals 1

done

blabln "$data,$learner,$bin,$run,$goal"

done

done

done

done) | malign > exp1-output.csv

}

51

Note the addition of a header that is given to the output file (exp1-output.csv) describing the

meaning of the column values. This is crucial if others are to be looking at the results and attempt-

ing to analyze them. Also see the use of malign to neatly organize the results.

The addition of one extra line is required to run the experiment.

exp1(){

local runs=10

local bins=10

local datas="audiology.arff mushroom.arff vote.arff soybean.arff"

local learners="zeror oner nb j48"

(echo "#dataset,learner,bin,run,goal,a,b,c,d,acc,pd,pf,prec,bal"

for data in $datas; do

for learner in $learners; do

for((run=1;run<=$runs;run++)); do

for((bin=1;bin<=$bins;bin++)); do

makeTrainAndTest $data $bins $bin

goals=‘cat train.arff | getClasses --brief‘

$learner train.arff test.arff | gotwant > result.dat

for goal in $goals; do

cat result.dat |

abcd --prefix "$data,$learner,$bin,$run,$goal" \

--goal "$goal" \

--decimals 1

done

blabln "$data,$learner,$bin,$run,$goal"

52

done

done

done

done) | malign > exp1-output.csv

}

exp1

The experiment is now finished. To run the experiment from within the OURMINE environ-

ment, navigate to the directory containing my- f irst-experiment.sh, and enter

OURMINE> . first-experiment.sh

This concludes the building of the experiment. Please note that many more complex tasks can

be accomplished in much the same way in OURMINE by using both custom and built-in functions.

In the Section 3.4.4, I analyze the results from this experiment using statistical analyses tools (also

built into OURMINE).

3.4.4 Evaluating Results using Ourmine

There are two main ways discussed in this thesis to analyze classification results. The first way,

which I’ve already demonstrated, is through the use of quartile charts. As previously discussed,

quartile charts are used to represent minimum, maximum, median and variance of certain evalua-

tion measures. However, in order to determine if these values are statistically different, a statistical

test is required. In this section, I will discuss (briefly) the statistical tests used in OURMINE to

rank treatments, and then give examples as to how these tests are conducted using OURMINE on

the results from the previous section.

The Mann-Whitney test (also referred to as the Mann-Whitney U test) is a rank sum, statistical

test used to determine if values in two unpaired samples of observations are equally large. For

53

an evaluation measure that is to be maximized, such as pd, this is essential because it gives us

information regarding the size of values making up the entire distribution.

Running the Mann-Whitney test is simple in OURMINE, but there are a few parameters that

must be passed to the function in order for it to work properly. An example of how this can be

conducted on the output of the experiment in Section 3.4.3.

OURMINE> winLossTie --input exp1-output.csv --test mw --fields 14 --perform 11 --key 2

The parameters are as follows:

• –input: simply gives the file containing the results from the experiment in a comma-separated

form

• –test: provides the script with the test to be used. These can either be mw for the Mann-

Whitney test, or w for the Wilcoxon test (described below)

• –fields: the total number of fields in the output file

• –perform: provides the function with the column number in which to perform the statistical

test, from left to right. In this case, field 11 points to the column giving pd values.

• –key: provides the function with the column number of the key to be used during the statis-

tical test. In this experiment, the key is the learner to be tested. Since the output file prints

the data set and then the learner, the key is then 2

Thus, the results obtained from the above is as follows:

#key, ties, win, loss, win-loss

j48, 1, 2, 0, 2

nb, 3, 0, 0, 0

zeror, 2, 0, 1, -1

oner, 2, 0, 1, -1

54

where the #key is the learner. Ties are labeled in the second column, and detail how many

treatments (in this case, learners), that particular treatment tied with in the comparison of distribu-

tions. For example, j48 tied with only one another treatment. However, the decision tree classifier

won against another two, and lost against none. Therefore, the end result is in the last column

represented by the difference in the number of wins and losses. Here, it can be shown that j48

performed the best, followed by nb. oner and zeror, however, obtained the same value, and so can

be grouped together and considered as having the same rank.

Note that while this ranking works in comparing equally large values, such as those that are to

be maximized, there is no problem. However, when ranking measures that are to be minimized,

such as pf, for instance, the performance column is to be negated. In other words, by doing this,

normally large values (great for pd) are made to be very small, and very small values are made

to be large. Since the Mann-Whitney test looks at the size of the values in these distributions and

ranks based on largeness, previously large values (bad for p f) will not fair as well as previously

small values, which are now large.

Another way to accomplish this for minimized values is by simply negating the values in the

win-loss column. By doing this, rankings are reversed. However, this may not be ideal, as ranking

can be based on whatever the experimenter chooses, such as wins, losses, or wins− losses.

The Wilcoxon test is used to rank paired samples of observations from an experiment’s results.

For example, if in Section 3.4.3, the learners in the experiment would have shared testing sets at

classification time, the Wilcoxon test would be performed on the results.

To run the Wilcoxn test in OURMINE is as easy as it is to run the Mann-Whitney test. An

example of this would be as follows – almost identical to the previous test, but with an adjustment

in the test parameter.

OURMINE> winLossTie --input exp1-output.csv --test w --fields 14 --perform 11 --key 2

Note the slight change from –test mw to –test w.

55

Chapter 4

Case Study 1: Commissioning a Learner

through Incremental Random Sampling

4.1 Commissioning a Learner through Incremental Random

Sampling

OURMINE’s use is not only important to researchers, but also to practitioners. To demonstrate

this, two very simple experiments were conducted using seven PROMISE data sets (CM1, KC1,

KC2, KC3, MC2, MW1, PC1). The aim of this experiment is to commission a data mining system

for a local site. When selecting the right data miners for a particular source of data, three issues

are:

1. What learners to use?

2. What discretizers to use?

3. How much data is required for adequate learning?

Given software being released in several stages, OURMINE can be used on stage 1 data to find the

right answers to the above questions. These answers can be applied on stages 2,3,4, etc.

56

In Part A of this experiment, four learners (Naive Bayes, J48, ADTree, One-R) are trained

using undiscretized data, and then the same learners are trained on discretized data for a total of

eight combinations. While this represents a highly simplified proof-of-concept, from it we can

illustrate how our learners can be integrated with other techniques to find the best treatment for the

data set(s) of concern. Practitioners can then short-circuit their experiments by only performing

further analyses on methods deemed worthwhile for the current corpus. In turn, this decreases the

amount of time in which results can be obtained.

In Part B of the experiment, the winning treatment from Part A is used with randomly selected,

incremental sizes of training data. In this experiment, it can be shown how early our quality

predictors can be applied based on the smallest number of training examples required to learn an

adequate theory. Predictors were trained using N = 100, N = 200, N = 300... randomly selected

instances up to N = 1000. For each training set size N, 10 experiments were conducted using

|Train| = 90% * N, and |Test| = 100. Both Train and Test were selected at random for each

experiment. Our random selection process is modeled after an experiment conducted by Menzies

et. al. [24]. In that paper, it was found that performance changed little regardless of whether

fewer instances were selected (e.g. 100), or much larger sizes on the order of several thousand.

Additionally, it was determined that larger training sizes were actually a disadvantage, as variance

increased with increasing training set sizes.

Results

Figure 4.1 and Figure 4.2 show the results from Part A of the experiment. As can be seen, ADTrees

(Alternating Decision Trees) [14] trained on discretized data yields the best results:

• Mann-Whitney test ranking (95% confidence): ADTrees + discretization provides the high-

est rank for both PD and PF results

57

• Medians & Variance: ADTrees + discretization results in the highest median/lowest variance

for PD, and the lowest variance for PF, with only a 1% increase over the lowest median

Results from Part B of the experiment are shown in Figure 4.3 and Figure 4.4. Using the

winning method from Part A, or learning using ADTrees on discretized data, results show that

unquestionably a training size of N = 600 instances is the best number to train our defect predictors

using the aforementioned experiment setup. This is clear when considering N = 600 maintains the

highest Mann-Whitney ranking (again using 95% percent confidence), as well as the highest PD

and lowest PF medians.

More importantly, perhaps, it should be noted that while the most beneficial number of training

instances remains 600, we can still consider a significantly smaller value of, say, N = 300 without

much loss in performance; a training size of just 300 yields a loss in PD ranking of only one, with

a 3% decrease in median, while PF ranking is identical to our winning size and sporting medians

of a mere 3% increase.

pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 J48 + discretization 20 66 99 w
1 ADTree + discretization 25 66 97 w
2 NB + discretization 63 73 82 w
2 One-R + discretization 13 56 99 w
3 J48 29 82 96 w
3 NB 40 79 91 w
4 ADTree 21 83 97 w
4 One-R 17 83 97 w

0 50 100

Figure 4.1: Experiment #1 - Part A - (Learner tuning). Probability of Detection (PD) results, sorted
by rank then median values.

58

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 One-R + discretization 0 10 86 w
1 ADTree + discretization 2 11 75 w
1 J48 + discretization 1 11 80 w
2 NB 9 19 60 w
2 J48 4 33 72 w
3 NB + discretization 12 25 33 w
3 ADTree 3 37 79 w
4 One-R 3 44 83 w

0 50 100

Figure 4.2: Experiment #1 - Part A - (Learner tuning). Probability of False Alarm (PF) results,
sorted by rank then median values.

pd 2nd quartile
percentiles median,

Rank Training Size 25% 50% 75% 3rd quartile
1 600 32 88 99 w
1 700 30 86 98 w
1 900 32 86 98 w
1 800 31 85 98 w
1 500 30 84 99 w
1 1000 30 84 99 w
2 300 31 85 98 w
2 400 29 84 99 w
3 200 29 83 98 w
3 100 29 77 96 w

0 50 100

Figure 4.3: Experiment #1 - Part B - (Random Sampling). Probability of Detection (PD) results,
sorted by rank then median values.

59

pf 2nd quartile
percentiles median,

Rank Training Size 25% 50% 75% 3rd quartile
1 600 1 12 68 w
1 700 1 14 70 w
1 900 1 14 68 w
1 1000 1 14 69 w
1 500 1 15 69 w
1 800 1 15 69 w
1 300 2 15 69 w
1 400 1 15 71 w
2 200 2 17 71 w
3 100 4 23 71 w

0 50 100

Figure 4.4: Experiment #1 - Part B - (Random Sampling). Probability of False Alarm (PF) results,
sorted by rank then median values.

60

Chapter 5

Case Study 2: Cross-Company Defect

Prediction using Relevancy Filtering

5.1 Cross-Company Defect Prediction using Relevancy Filter-

ing

OURMINE was used to reproduce Turhan et al.’s experiment - with a Naive Bayes classifier in

conjunction with a k-Nearest Neighbor (k-NN) relevancy filter. Relevancy filtering is used to

group similar instances together in order to obtain a learning set that is homogeneous with the

testing set. Thus, by using a training set that shares similar characteristics with the testing set, it is

assumed that a bias in the model will be introduced. The k-NN filter works as follows. For each

instance in the test set:

• the k nearest neighbors in the training set are chosen.

• duplicates are removed

• the remaining instances are used as the new training set.

61

Building the Experiment

The entire script used to conduct this experiment is shown in Figure 5.1.

To begin, the data in this study were the same as used by Gay et al. [15]; seven PROMISE

defect data sets (CM1, KC1, KC2, KC3, MC2, MW1, PC1) were used to build seven combined

data sets each containing 6
7 -th of the data. For instance, the file combined PC1.arff contains all

seven data sets except PC1. This is used as the training set for the cross-company (CC) data. For

example, if we wished to learn on all training data except for PC1, this would be a valid data set

representation for a cross-company experiment.

Next, as can be seen in line 15 of Figure 5.1, a 10-way cross validation was conducted by

calling makeTrainAndTest, which is a built-in OURMINE function that randomly shuffles the

data and constructs both a test set, containing 10% of the data, and a training set containing 90%

of the data. This was repeated ten times, and the resulting data was used in proceeding studies. For

instance, in lines 18-24, the original test and training sets are used for the first WC study. However,

in the WC experiment using relevancy filtering (lines 25-31), the same test set is used, but with the

newly created training set. Lines 32-38 show the first CC study. This study is identical to the WC

study except that as we saw before, we use combined X .ar f f files, instead of shared X .ar f f .

I chose to use a Naive Bayes classifier for this study because this is what was chosen in the

original experiment conducted by Turhan et al. in [35], as well as because Naive Bayes has been

shown to be competitive on PROMISE defect data against other learners [20].

Results

Our results for this experiment can be found in Figure 5.2 and Figure 5.3. Figure 5.2 shows pd

(probability of detection) values sorted in decreasing order, while Figure 5.3 shows p f (probabil-

ity of false alarm) values sorted in increasing order. These values are calculated as follows. If

{a,b,c,d} are the true negatives, false negatives, false positives, and true positives (respectively)

62

1 promiseDefectFilterExp(){
2 local learners="nb"
3 local datanames="CM1 KC1 KC2 KC3 MC2 MW1 PC1"
4 local bins=10
5 local runs=10
6 local out=$Save/defects.csv
7 for((run=1;run<=$runs;run++)); do
8 for dat in $datanames; do
9 combined=$Data/promise/combined_$dat.arff
10 shared=$Data/promise/shared_$dat.arff
11 blabln "data=$dat run=$run"
12 for((bin=1;bin<=$bins;bin++)); do

rm -rf test.lisp test.arff train.lisp train.arff
13 cat $shared |
14 logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff
15 makeTrainAndTest logged.arff $bins $bin
16 goals=‘cat $shared | getClasses --brief‘

17 for learner in $learners; do
18 blabln "WC"
19 $learner train_shared.arff test_shared.arff | gotwant > produced.dat
20 for goal in $goals; do
21 extractGoals goal "$dat,$run,$bin,WC,$learner,$goal" ‘pwd‘/produced.dat
24 done
25 blabln "WCkNN"
26 rm -rf knn.arff
27 $Clusterers -knn 10 test_shared.arff train_shared.arff knn.arff
28 $learner knn.arff test_shared.arff | gotwant > produced.dat
29 for goal in $goals; do
30 extractGoals goal "$dat,$run,$bin,WCkNN,$learner,$goal" ‘pwd‘/produced.dat
31 done
32 blabln "CC"
33 makeTrainCombined $combined > com.arff
34 cat com.arff | logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff
35 $learner logged.arff test_shared.arff | gotwant > produced.dat
36 for goal in $goals; do
37 extractGoals goal "$dat,$run,$bin,CC,$learner,$goal" ‘pwd‘/produced.dat
38 done
39 blabln "CkNN"
40 makeTrainCombined $combined > com.arff
41 cat com.arff |
42 logArff 0.0001 "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" > logged.arff
43 $Clusterers -knn 10 test_shared.arff logged.arff knn.arff
44 $learner knn.arff test_shared.arff | gotwant > produced.dat
45 for goal in $goals; do
46 extractGoals goal "$dat,$run,$bin,CkNN,$learner,$goal" ‘pwd‘/produced.dat
47 done
48 done
49 done
50 done) | malign | sort -t, -r -n -k 12,12 > $out

Figure 5.1: The OURMINE script used in conducting the WC vs. CC experiment.

63

found by a binary detector then pd = recall = d
b+d and p f = c

a+c . Note that a higher pd is better,

while a lower p f is better.

The last column of each figure shows quartile charts of the methods’ pd and p f values. The

black dot in the center of each plot represents the median value, and the line going from left to

right from this dot show the second and third quartile respectively.

Column one of each figure gives a method its rank based on a Mann-Whitney test at 95%

confidence. A rank is determined by how many times a learner or learner/filter wins compared to

another. The method that wins the most number of times is given the highest rank.

The following are important conclusions derived from these results:

• When CC data is used, relevancy filtering is crucial. According to our results, cross-company

data with no filtering yields the worst pd and p f values.

• When relevancy filtering is performed on this CC data, we obtain better pd and p f results

than using just CC and Naive Bayes.

• When considering only filtered data or only unfiltered data, the highest pd and lowest p f

values are obtained by using WC data as opposed to CC data. This suggests that WC data

gives the best results.

These finds were consistent with Turhan et al.’s results:

• Significantly better defect predictors are produced from using WC data.

• However, CC data leads to defect predictors nearly as effective as WC data when using

relevancy filtering.

Thus, this study also makes the same conclusions as Turhan et al. A company should use local

data to develop defect predictors if that local development data is available. However, if local data

is not available, relevancy-filtered cross-company data provides a feasible means to build defect

predictors.

64

pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 WC (local data) + relevancy filter 66 73 80 w
2 CC (imported data) + relevancy filter 57 71 83 w
2 WC (local data) 59 69 83 w
3 CC (imported data) 49 66 87 w

0 50 100

Figure 5.2: Experiment #2 (WC vs. CC). Probability of Detection (PD) results, sorted by rank then
median values.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 CC (imported data) + relevancy filter 17 29 43 w
1 CC (imported data) 13 34 51 w
2 WC (local data) 17 30 41 w
3 WC (local data) + relevancy filter 20 27 34 w

0 50 100

Figure 5.3: Experiment #2 (WC vs. CC). Probability of False Alarm (PF) results, sorted by rank
then median values.

65

Chapter 6

Case Study 3: Predicting Student Retention

6.1 Predicting Student Retention

6.1.1 Building the Experiment

To construct the experiment, certain aspects were first determined to be pertinent in the final selec-

tion of top, actionable attributes in the data. The following represents brief explanations of each

method used. Results obtained from a combination of which are then analyzed.

6.1.2 Number of Attributes

An attribute in the data could be something such as GPA, or ZIPCODE. The number of attributes

to select is crucial in the analysis of the data, because it allows us to conclude how many of the

attributes selected we should concentrate on. This is central in selecting actionable attributes. For

example, suppose a data set consists of 1000 attributes, but the results from experimentation find

that only 15 of the 1000 are actually important. The bulk of subsequent attention could then be

spent on what actions to take based on the 15 found, as opposed to the rest of the 985.

In this experiment, I chose n to be the number of attributes selected in increments of 5. Thus,

66

with a maximum of 103 attributes in each data set used in the experiment, 20 different intervals of

n were chosen by our feature subset selectors (described below).

6.1.3 Classifiers

Classifiers are used in data mining by employing machine learning techniques in order to learn

patterns in data. Once these patterns are learned, we can then begin to attempt to predict outcomes

in the data by reflecting on data that has already been examined. We can also determine how well

a classifier predicts for the data. This is done by learning on a certain portion of the data, and

reflecting on how well predictions are made by another portion of the data that has not yet been

seen in the learning process. By examining overall performance, we can make a statement about

how much better one classifier predicts on a specific data set than another.

• Naive Bayes - A naive Bayes classifier is a simple and fast probabilistic classifier that uses

Bayes’ theorem to classify training data. Bayes’ theorem, as shown in Equation 6.1, deter-

mines the probability P of an event H occurring given an amount of evidence E. The clas-

sifier also assumes feature independence; the algorithm examines features independently to

contribute to probabilities, as opposed to the assumption that features depend on other fea-

tures. Surprisingly, even though feature independence is an integral part of the classifier, it

often outperforms many other learners [33].

Pr(H|E) =
Pr(E|H)∗Pr(H)

Pr(E)
(6.1)

• C4.5 - C4.5 [29] is a type of classifier known as a decision tree, and is an extension to the

ID3 [28] algorithm. A decision tree [26] (shown in Figure 6.1) is constructed by first deter-

mining the best attribute to make as the root node of the tree. ID3 decides this root attribute

by using one that best classifies training examples based upon the attribute’s information

67

Figure 6.1: A decision tree consists of a root node and descending children nodes who denote
decisions to make in the tree’s strucure. This tree, for example, was constructed in an attempt
to optimize investment portfolios by minimizing budgets and maximizing payoffs. The top-most
branch represents the best selection in this example.

gain (described below). Then, for each value of the attribute representing any node in the

tree, the algorithm recursively builds child nodes based on how well another attribute from

the data describes that specific branch of its parent node. The stopping criteria are either

when the tree perfectly classifies all training examples, or until no attribute remains unused.

C4.5 extends ID3 by making several improvements, such as the ability to operate on both

continuous as well as discrete attributes, training data that contains missing values for a given

attribute(s), and employ pruning techniques on the resulting tree.

• One-R - One-R, described in [19], builds rules from the data by iteratively examining each

value of an attribute and counting the frequency of each class for that attribute-value pair.

An attribute-value is then assigned the most frequently occurring class. Error rates of each

of the rules can then be calculated, and the best rules can be ranked based on the lowest error

rates.

• Zero-R - Often used to evaluate the success of other classification algorithms, Zero-R is an

extremely simple algorithm that gives the majority class from the training data.

68

Figure 6.2: In this simple bayesian network, the variable Sprinkler is dependent upon whether or
not its raining; the sprinkler is generally not turned on when it’s raining. However, either event is
able to cause the grass to become wet - if it’s raining, or if the sprinkler is caused to turn on. Thus,
Bayesian networks excel at investigating information relating to relationships between variables.

• Alternating Decision Trees - ADTrees [14] are decision trees that contain both decision

nodes, as well as prediction nodes. Decision nodes specify a condition, while prediction

nodes contain only a number. Thus, as an example in the data follows paths in the ADTree,

it only traverses branches whose decision nodes are true. The example is then classified

by summing all prediction nodes that are encountered in this traversal. ADTrees, however,

differ from binary classification trees, such as C4.5, in that in those trees an example only

traverses a single path down the tree.

• Bayesian Network - Bayesian networks, illustrated in Figure 6.2, are graphical models that

use a directed acyclic graph (DAG) to represent probabilistic relationships between variables.

As stated in [18] Bayesian networks have four important elements to offer:

1. Incomplete data sets can be handled well by Bayesian networks. Because the networks

encode a correlation between input variables, if an input is not observed, in will not

necessarily produce inaccurate predictions, as would other methods.

69

2. Causal relationships can be learned about via Bayesian networks. For instance, if an

analyst wished to know if a certain action taken would produce a specific result, and

also to what degree.

3. Bayesian networks promote the amalgamation of data and domain knowledge by al-

lowing for a straightforward encoding of causal prior knowledge, as well as the ability

to encode causal relationship strength.

4. Bayesian networks avoid over fitting of data, as ”smoothing” can be used in a way such

that all data that is available can be used for training.

• Radial Basis Function Network - A radial basis function network (RBFN) [12] is a type of

network called an artificial neural network (ANN). However, RBFNs are specialized in that

they utilize a radial basis function as an activation function. An ANN’s activation function is

used in order to offer non-linearity to the network. This is important for multi-layer networks

containing many hidden layers, because their advantages lie in their ability to learn on non-

linearly separable examples.

6.1.4 Feature Subset Selectors

Feature Subset Selection (FSS) methods provide ways to determine how important the attributes

(or features) are in the data set, and how we can keep the best scoring ones, and throw out the

rest. However, we must experiment with varying FSS procedures, because each method can return

strikingly different results. Thus, just by experimenting with attributes selected from a handful of

FSS, we are not left with a sense of how well attributes were selected from a data set compared to

other feature selection tools.

A brief overview of the FSS methods used in this study were as follows:

• CFS - Correlation-Based Feature Selection [17] begins by constructing a matrix of feature

to feature, and feature-to-class correlations. It then uses a best first search by expanding the

70

best subsets until no improvement is made, in which case the search falls to the unexpanded

subset having the next best evaluation until a subset expansion limit is met.

• Information Gain - Information Gain works by using a concept from information theory

known as entropy. Entropy measures the amount of uncertainty, or randomness, that is

associated with a random variable. Thus, high entropy can be seen as a lack of purity in the

data. Information gain, as described in [25] is an expected reduction of the entropy measure

that occurs when splitting examples in the data using a particular attribute. Therefore an

attribute that has a high purity (high information gain) is better at describing the data than

one with a low purity. The resulting attributes are then ranked by sorted their information

gain scores in a descending order.

• Chi-squared - Attributes can also be ranked using the chi-squared statistic. The chi-squared

statistic [13] is used in statistical tests to determine how distributions of variables are dif-

ferent from one another. Note that these variables must be categorical in nature. Thus, the

chi-squared statistic can evaluate an attribute’s worth by calculating the value of this statistic

with respect to a class. Attributes can then be ranked based on this statistic.

• One-R - One-R (as described above), can also be used to deliver top-ranking attributes.

Since each rule contains one attribute and a corresponding value, we can evaluate attributes

by sorting them based on the error rate of the rule associated with that attribute-value pair.

Using this, top attributes are those whose rules result in the lowest error rates.

6.1.5 Cross-Validation

In the process of experimentation, it is crucial to determine a method’s performance. Using perfor-

mance criteria, further analysis can be conducted on experimental results to aid in the search for an

optimal solution. Cross-validation provides the ability to discover how well a classifier performs

on any given data set or a treatment of that data set. This is conducted by randomly partitioning the

71

data into two subsets, called the training set, and the testing set. Specifically for this experiment,

the data prior to partitioning has been reduced given n attributes selected using an FSS method.

In the learning phase, only the training subset is used by the classifier. The testing set is

then used to determine how well the concepts learned from the training phase can be applied to

unseen data. However, to reduce variability, the partitioning of the data and reclassification of

resulting subsets is generally conducted multiple times. In this experiment, for example, a 5 X 5

cross-validation was performed. This means that five times I partitioned the data into a testing set

consisting of 1
5 -th of the data, and a training set of 4

5 -ths of the data. After the five rounds, median

values of the validation results are examined, and are assigned to a particular combination of the

above facets.

6.1.6 Analysis of Experimental Results

6.1.7 Evaluation Metrics

The evaluation metrics used in this experiment are standard in data mining to measuring the per-

formance of a method. These are represented as probability of detection (PD), probability of false

alarm (PF), and variance. PD denotes the probability that the classifier will predict correctly for a

given class, given both its correct and incorrect predictions. Thus, PD values should be maximized.

PF, on the other hand, is the probability that the classifier will predict incorrectly for a given class,

also given its correct and incorrect predictions. For this reason, PF results should be minimized.

Variance was also used in the experiment based on PD and PF values independently as an

extra means of determining performance. Variance in these values provides insight into how much

reliability a classifier supports on the data. For example, if a method’s PD values range from very

low to very high, we can determine that the particular method is not consistent in its probabilities

of detection. Therefore, it is desired to have a very small variance in both PD and PF values.

72

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
ed

ia
n

(5
0t

h
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 1 Retention - PD

20
40
60
80

100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
ed

ia
n

(5
0t

h
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 1 Retention - PF

20
40
60
80

100

Figure 6.3: Probability of Detection (PD) and Probability of False Alarm (PF) with variances for
first year retention.

73

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
ed

ia
n

(5
0t

h
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 2 Retention - PD

20
40
60
80

100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
ed

ia
n

(5
0t

h
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 2 Retention - PF

20
40
60
80

100

Figure 6.4: Probability of Detection (PD) and Probability of False Alarm (PF) with variances for
second year retention.

74

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
ed

ia
n

(5
0t

h
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 3 Retention - PD

20
40
60
80

100

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
ed

ia
n

(5
0t

h
pe

rc
en

til
e)

Variance (75th - 25th percentile)

Year 3 Retention - PF

20
40
60
80

100

Figure 6.5: Probability of Detection (PD) and Probability of False Alarm (PF) with variances for
third year retention.

75

6.1.8 Visualizing the Results

Figures 6.3, 6.4, and 6.5 show the PD and PF median results for first, second and third year re-

tention against the variance of these values. Each point represents a specific combination of the

number of attributes selected, the feature subset selector used to select them, and the classifier used

to train on the resulting data. For example, one point on a graph could be seen as 50/Information

Gain/Naive Bayes, where 50 denotes the number of attributes used. The color of each point shows

the number of attributes used for that particular combination representing that point.

The horizontal line segmenting the PD graphs are given as a baseline reference designated by

the already existing retention rates in the data. Thus, to predict for retention in a given year, it

is desirable to yield results higher than the baseline. As can be seen in the figures, the median

probability of detection of retention values for the first year do not meet the baseline, and therefore

we can assume that first year retention cannot accurately be predicted for using our methods.

Second year retention provides better results than first year retention, but these results are hardly

significant. For example, most of the points lie at or below the baseline. For this reason, second

year retention is also not considered in further analysis. Lastly, third year PD values successfully

exceed the baseline, and so require more thorough examination.

6.1.9 Narrowing the Search

From the visualizations described above, we can narrow our space of possible combinations to

examine for third year retention. The graphs for PD and PF medians show that the range of number

of attributes that maximizes PD and minimizes PF values while maintaining minimal variance is

approximately 20 to 60. This is significant, as it allows filtering of the results so that concentration

can be placed on only treatments whose attribute numbers lie in this range.

76

Rank Number of Attributes FSS Classifier
61 30 oneR bnet
61 50 cfs adtree
57 50 oneR adtree
56 30 oneR adtree
55 30 cfs adtree
52 50 oneR bnet
51 30 infogain adtree
51 30 cfs bnet
48 50 infogain adtree

Figure 6.6: The top ten ranking treatments for third year retention. Ranks represent how many
times a particular treatment wins over all other treatments in the experiment.

Ranking with the Mann-Whitney Test

At the moment of pruning the results based on attribute ranges, we are left with many combinations

to be analyzed. In order to rank each combination, I performed a statistical Mann-Whitney test

at 95% confidence in order to rank a treatment. A rank is determined by how many times a

combination wins compared to another. The method that won the most number of times is then

given the highest rank. The table in Figure 6.6 shows the top ten ranking combinations based on a

PD performance measure. Note that identical ranks are given to those treatments whose win value

is equal in magnitude.

6.1.10 Selected FSS and Classifier

Figure 6.6 shows the top-most ranking combination of FSS and classifier is obtained by either using

30 attributes, or 50. Since, the two numbers of attributes (along with their own FSS and classifier)

result in the same Mann-Whitney rank, we can make the statement that the two are statistically

similar, and thus by focusing on only 30 attributes selected, we can concentrate on approximately

1/3 of the original data. Thus, our analysis of the results show that 30 attributes selected using

One-R as the feature subset selection method are the most critical to third year retention.

77

Chapter 7

Case Study 4: Component vs. Whole-based

Defect Prediction

7.1 Component vs. Whole-based Defect Prediction

7.1.1 The Experiment

In order to test the implications of learning using components dense with software defects, an

experiment was constructed using five NASA defect data sets (CM1, KC1, MC1, PC1, PC3).

These data sets were chosen because they have been studied in the field extensively, and also that

they are widely available to the PROMISE community. Five were chosen due to the limited number

of data sets containing noteworthy numbers of components.

For each data set, components are extracted by first determining both defective and non-

defective modules contained in that data set. Once the modules are obtained, those components

(named after a unique identifier) containing these modules are selected for further analyses.

After extracting the components and corresponding number of defects, components were re-

trieved for further analysis from each data set if the number of defective modules per component

78

1 For run = 1 to 10
2 For each dense component C in data set D

3 Let Train = C
4 Let Test = All components in D except for C

5 For bin = 1 to 10
6 Train’ = Randomly select 90% modules from Train
7 Test’ = Randomly select 10% modules from Test

8 Learn using the Naive Bayes classifier using Train’ and Test’
9 end bin
10 end component
11 end run

Figure 7.1: Training on dense components versus all components. The experiment performs train-
ing on modules residing in dense components, and testing on modules contained in all other com-
ponents in the data set.

exceeded the median number of defects across all components in that data set. For example, in

Figure 7.2 the bottom horizontal line represents the median number of defects in the KC1 data set.

Thus, those components lying under this line are not used in further stages of the experiment. The

components selected (at or above the median number of defects) are considered dense components.

The pseudocode in Figure 7.1 illustrates the remaining setup of the experiment:

Lines 1 and 5 of Figure 7.1 illustrate the use of the 10X10-way cross validation used in the

experimental process. The standard 10X10-way cross validation operates by selecting 90% of

the data randomly for training, and the remaining 10% for testing. This process is then repeated

10 times for consistency. The experiment shown in Figure 7.1, however, handles this operation

in a slightly different manner. Since the objective is to analyze the performance of training on

modules in components containing a high number of defective modules while testing on all other

components’ modules, a minute alteration was made to the cross-validation of the experiment.

A “pool” of training data was constructed by focusing on only those instances within a dense

component, as in line 3 of the psuedocode. The available pool of testing instances, thus, are

79

gathered from the remaining components in the data set. This is employed to prevent training, and

then testing on modules within the same component. Lines 6 and 7 illustrate collecting 90% of the

current dense component’s instances as the final training set Train′, and 10% of the modules from

the available instances in components not labeled dense as Test ′.

While this represents a slight modification to the standard pratice of performing a cross-validation,

it is within our engineering judgement to apply techniques that best mimick current methods in an

area of experimentation still in its infancy. Thus, the recentness of this specific area of research

invites further techniques to be discovered and implemented.

Line 8 of Figure 7.1 executes the classifier (in this case, Naı̈ve Bayes) on the previously

created training and testing sets Train′ and Test ′. Naı̈ve Bayes was used because of its speed, and

also because it has been shown to perform well on PROMISE defect data against other learners

[20].

As the overall goal is to determine if training our classifiers using fewer, but more densely-

packed components is advantageous to the usual practice of learning on a pool of all components

(and thus all modules), comparisons are made between the two approaches, as well as standard

over and under sampling of the data. The results are shown in the following section.

7.1.2 Results

The metrics used in the analysis of comparing results from training on dense components over

the traditional method of using all components in the data set are pd (Probability of Detection),

p f (Probability of False Alarm) and precision. If A,B,C, and D denote the true negatives, false

negatives, false positives and true positives (respectively) found by a classifier, then:

pd = Recall =
D

(B+D)
(7.1)

and

80

 0

 10

 20

 30

 40

 50

 60

 70

 22292 22294 22296 22298 22300 22302 22304 22306 22308

N
um

be
r

of
 D

ef
ec

ts

Component

KC1 Defect Distribution

Defects per Component
Defect Median

Figure 7.2: Defect distributions of components found in the KC1 data set. Note that only a small
number of components contain a relatively high number of defects.

81

p f =
C

(A+C)
(7.2)

and

precision =
D

(D+C)
(7.3)

Therefore, pd and precision values are best if maximized, while p f results should be mini-

mized.

Figure 7.4, Figure 7.5 and Figure 7.6 show statistical rankings of each treatment, as well as

quartile charts displaying the median and variance of each metric for the combined data sets, as a

whole, used in the experiment. Note that training on components containing a higher number of

defective modules maintains higher or tied ranks with the traditional method, and yields similar

medians; while precision and pd medians lose 3% and 2% respectively, learning on dense areas

provides much better p f medians – almost half.

Perhaps more interestingly are the analyses of data sets separately. Table 7.1 demonstrates the

outcome of each treatment for each data set independently. A summary table of these results is

shown in Figure 7.3, where“+” denotes a win for a particular treatment against the other, per data

set. Conversely, a “-” indicates a loss, and “0” represents a tie. For example, the fifth row in

Table 7.1 (data set PC3), shows that learning on dense components wins over all other methods

for p f , but loses in recall and ties in precision. A win, loss or tie is assigned to a treatment by

examining its statistical rank value (according to the Mann-Whitney test) in comparison to the

opposing treatments.

The results from this table demonstrate that learning on only components containing higher

numbers of defective modules is beneficial because

• defect prediction performance is improved significantly

82

Project Recall Prob. False Alarm (Pf) Precision
0% 50% 100% 0% 50% 100% 0% 50% 100%

CM1

1 All w
2 Over w
2 Under w
3 Dense w

1 Dense w
2 Over w
2 Under w
2 All w

1 All w
1 Over w
1 Under w
1 Dense w

KC1

1 Dense w
1 Under w
1 All w
1 Over w

1 All w
1 Over w
1 Under w
1 Dense w

1 Dense w
1 All w
1 Under w
1 Over w

MC1

1 Over w
1 Under w
2 All w
3 Dense w

1 Over w
1 Under w
2 All w
3 Dense w

1 Dense w
1 All w
1 Under w
1 Over w

PC1

1 Dense w
2 Over w
2 All w
3 Under w

1 Dense w
2 Over w
2 All w
3 Under w

1 Dense w
2 All w
2 Under w
3 Over w

PC3

1 Under w
1 Over w
2 All w
2 Dense w

1 Dense w
2 Over w
2 Under w
3 All w

1 Dense w
1 Under w
1 All w
1 Over w

Table 7.1: Result statistics per data set. The numeric value next to each treatment represents its
Mann-Whitney rank, to the right of each treatment lies the quartile chart for each. Each metric is
either sorted by ranking, or in the case of a tie, descending pd and prec or ascending p f .

• less data is required during the training phase, meaning faster runtimes and results

• insight is provided for component types; software organizations can make informed deci-

sions about how to approach certain problematic components

83

data performance all dense over under
set measure components components sampling sampling

CM1 precision 0 0 0 0
recall + - - -

pf - + - -
KC1 precision 0 0 0 0

recall 0 0 0 0
pf 0 0 0 0

MC1 precision 0 0 0 0
recall - - 0 0

pf - - 0 0
PC1 precision - + - -

recall - + - -
pf - + - -

PC3 precision 0 0 0 0
recall - - 0 0

pf - + - -
summary + 1 5 0 0

0 6 6 9 9
- 8 4 6 6

Figure 7.3: Each treatment is assigned one of {+,0,−} depending on if it won, tied, lost in the
statistical rankings of Table 1 (based on a Mann-Whitney test at 95% confidence). Note that
dense won five times more often than all, and lost the least amount of times compared to all other
treatments (4/15 vs. 8/15 and 6/15).

pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 31 69 91 w
2 Train on All Components 35 71 93 w

0 50 100

Figure 7.4: PD values for learning on dense components compared to learning on all components
across all data sets, sorted by statistical ranking via a Mann-Whitney test at 95% confidence.

84

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 0 15 52 w
1 Train on All Components 0 26 65 w

0 50 100

Figure 7.5: PF values for learning on dense components compared to learning on all components
across all data sets, sorted by statistical ranking via a Mann-Whitney test at 95% confidence.

precision 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on All Components 20 78 95 w
1 Train on Dense Components 12 75 96 w

0 50 100

Figure 7.6: Precision values for learning on dense components compared to learning on all compo-
nents across all data sets, sorted by statistical ranking via a Mann-Whitney test at 95% confidence.

85

Chapter 8

Case Study 5: Analyzing the Scalability of

Clustering Text Documents

8.1 Analyzing the Scalability of Clustering Text Documents

As stated above, the purpose of this experiment conducted for this thesis is to verify if lightweight

data mining methods perform worse than more thorough and rigorous ones.

The data sets used in this experiment are:

• EXPRESS schemas: AP-203, AP-214

• Text mining datasets: BBC, Reuters, The Guardian (multi-view text datasets), 20 Newsgroup

subsets: sb-3-2, sb-8-2, ss-3-2, sl-8-2

Classes of Methods

This experiment compares different row and column reduction methods. Given a table of data

where each row is one example and each columns counts different features, then:

• Row reduction methods cluster related rows into the same group;

86

• Column reduction methods remove columns with little information.

Reduction methods are essential in text mining. For example:

• A standard text mining corpus may store information in tens of thousands of columns. For

such data sets, column reduction is an essential first step before any other algorithm can

execute

• The process of clustering data into similar groups can be used in a wide variety of applica-

tions, such as:

– Marketing: finding groups of customers with similar behaviors given a large database

of customer data

– Biology: classification of plants and animals given their features

– WWW: document classification and clustering weblog data to discover groups of sim-

ilar access patterns.

The Algorithms

While there are many clustering algorithms used today, this experiment focused on three: a naive

K-Means implementation, GenIc [16], and clustering using canopies [22]:

1. K-means, a special case of a class of EM algorithms, works as follows:

(a) Select initial K centroids at random;

(b) Assign each incoming point to its nearest centroid;

(c) Adjusts each cluster’s centroid to the mean of each cluster;

(d) Repeat steps 2 and 3 until the centroids in all clusters stop moving by a noteworthy

amount
2http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/

87

Here we use a naive implementation of K-means, requiring K*N *I comparisons, where N

and I represent the total number of points and maximum iterations respectively.

2. GenIc is a single-pass, stochastic clustering algorithm. It begins by initially selecting K

centroids at random from all instances in the data. At the beginning of each generation, set

the centroid weight to one. When new instances arrive, nudge the nearest centroid to that

instance and increase the score for that centroid. In this process, centroids become “fatter”

and slow down the rate at which they move toward newer examples. When a generation

ends, replace the centroids with less than X percent of the max weight with N more random

centroids. Genic repeats for many generations, then returns the highest scoring centroids.

3. Canopy clustering, developed by Google, reduces the need for comparing all items in the data

using an expensive distance measure, by first partitioning the data into overlapping subsets

called canopies. Canopies are first built using a cheap, approximate distance measure. Then,

more expensive distance measures are used inside of each canopy to cluster the data.

As to column reduction, I will focus on two methods:

1. PCA, or Principal Components Analysis, is a reduction method that treats every instance in a

dataset as a point in N-dimensional space. PCA looks for new dimensions that better fit these

points– by mapping data points to these new dimensions where the variance is found to be

maximized. Mathematically, this is conducted by utilizing eigenvalue decompositions of a

data covariance matrix or singular value decomposition of a data matrix. Figure 8.1 shows an

example of PCA. Before, on the left-hand-side, the data exists in a two-dimensional space,

neither of which captures the distribution of the data. Afterwards, on the right-hand-side, a

new dimension has been synthesized that is more relevant to the data distribution.

2. TF-IDF, or term frequency times inverse document frequency, reduces the number of terms

(dimensions) by describing how important a term is in a document (or collection of docu-

88

Figure 8.1: A PCA dimension feature.

ments) by incrementing its importance according to how many times the term appears in a

document. However, this importance is also offset by the frequency of the term in the entire

corpus. Thus, we are concerned with only terms that occur frequently in a small set of doc-

uments, and very infrequently everywhere else. To calculate the Tf*IDF value for each term

in a document, I use the following equation:

T f ∗d f (t,D j) =
t f (ti,D j)

|D j|
log(

|D|
d f (ti)

) (8.1)

where t f (ti,D j) denotes the frequency of term i in document j, and d f (ti) represents the

number of documents containing term i. Here, |D| denotes the number of documents in the

corpus. To reduce all terms (and thus, dimensions), we must find the sum of the above

T f ∗ I f dsum(t) = ∑
D jεD

T f ∗ Id f (t,D j) (8.2)

In theory, TF*IDF and GenIc should perform worse than K-Means, canopy clustering and

PCA:

• Any single-pass algorithm like GenIc can be confused by “order effects”; i.e. if the data

arrives in some confusing order then the single-pass algorithm can perform worse than other

algorithms that are allowed to examine all the data.

• TF*IDF is a heuristic method while PCA is a well-founded mathematical technique

89

On the other hand, the more rigorous methods are slower to compute:

• Computing the correlation matrix used by PCA requires at least a O(N2) calculation.

• As shown below, K-means is much slower than the other methods studied here.

Building the Experiment

This experiment was conducted entirely with OURMINE using a collection of BASH scripts, as

well as custom Java code. The framework was built as follows:

1. A command-line API was developed in Java for parsing the data, reducing/clustering the

data, and outputting the data. Java was chosen due to its preferred speed for the execution of

computationally expensive instructions.

2. The data was then iteratively loaded into this Java code via shell scripting. This provides

many freedoms, such as allowing parameters to be altered as desired, as well as outputting

any experimental results in any manner seen fit.

Figure 8.2 shows the OURMINE code for clustering data using the K-means algorithm. Shell

scripting provides us with much leverage in this example. For instance, by looking at Lines 2-5, we

can see that by passing the function four parameters, we can cluster data in the range from minK

to maxK on all data in dataDir. This was a powerful feature used in this experiment, because it

provides the opportunity to run the clusterer across multiple machines simultaneously. As a small

example, suppose we wish to run K-means across three different machines with a minimum K of 2

and a maximum K of 256. Since larger values of K generally yield longer runtimes, we may wish

to distribute the execution as follows:

Machine 1: clusterKmeansWorker 256 256 0 dataDir

Machine 2: clusterKmeansWorker 64 128 2 dataDir

Machine 3: clusterKmeansWorker 2 32 2 dataDir

90

1 clusterKmeansWorker(){
2 local minK=$1
3 local maxK=$2
4 local incVal=$3
5 local dataDir=$4
6 local stats="clusterer,k,dataset,time(seconds)"
7 local statsfile=$Save/kmeans_runtimes
8 echo $stats >> $statsfile
9 for((k=$minK;k<=$maxK;k*=$incVal)); do
10 for file in $dataDir/*.arff; do
11 filename=‘basename $file‘
12 filename=${filename%.*}
13 out=kmeans_k="$k"_$filename.arff
14 echo $out
15 start=$(date +%s.%N)
16 $Clusterers -k $k $file $Save/$out
17 end=$(date +%s.%N)
18 time=$(echo "$end - $start" | bc)
19 echo "kmeans,$k,$filename,$time" >> $statsfile
20 done
21 done
22 }

Figure 8.2: An OURMINE worker function to cluster data using the K-means algorithm. Note that
experiments using other clustering methods (such as GenIc and Canopy), could be conducted by
calling line 16 above in much the same way, but with varying flags to represent the clusterer.

Lines 9-13 of Figure 8.2 load the data from dataDir for every k, and formats the name of the

output file. Then, lines 15-19 begin the timer, cluster the data, and output statistical information

such as k, the dataset, and runtime of the clusterer on that data set. This file will then be used later

in the analysis of these clusters.

Similarly, the flags in line 16 can be changed to perform a different action, such as clustering

using GenIc or Canopy, by changing -k to -g or -c respectively, as well as finding cluster similarities

(as described below) and purities, by using -sim and -purity as inputs.

Since any number of variables can be set to represent different libraries elsewhere in OUR-

MINE, the variable

$Reducers

is used for the dimensionality reduction of the raw dataset, as seen in Figure 8.3, whose overall

structure is very similar to Figure 8.2.

91

1 reduceWorkerTfidf(){
2 local datadir=$1
3 local minN=$2
4 local maxN=$3
5 local incVal=$4
6 local outdir=$5
7 local runtimes=$outdir/tfidf_runtimes

8 for((n=$minN;n<=$maxN;n+=$incVal)); do
9 for file in $datadir/*.arff; do
10 out=‘basename $file‘
11 out=${out%.*}
12 dataset=$out
13 out=tfidf_n="$n"_$out.arff
14 echo $out
15 start=$(date +%s)
16 $Reducers -tfidf $file $n $outdir/$out
17 end=$(date +%s)
18 time=$((end - start))
19 echo "tfidf,$n,$dataset,$time" >> $runtimes
20 done
21 done
22 }

Figure 8.3: An OURMINE worker function to reduce the data using TF-IDF.

8.1.1 Results

To determine the overall benefits of each clustering method, this experiment used both cluster

similarities, as well as the runtimes of each method.

Similarities

Cluster similarities tell us how similar points are, either within a cluster (Intra-similarity), or with

members of other clusters (Inter-similarity). The idea here is simple: gauge how well a clustering

algorithm groups similar documents, and how well it separates different documents. Therefore,

intra-cluster similarity values should be maximized, while minimizing inter-cluster similarities.

Similarities are obtained by using the cosine similarity between two documents. The cosine

similarity measure defines the cosine of the angle between two documents, each containing vectors

of terms. The similarity measure is represented as

sim(Di,D j) =
Di ·D j

||Di||||D j||
= cos(θ) (8.3)

92

Reducer and Clusterer Time InterSim IntraSim Gain
TF-IDF*K-means 17.52 -0.085 141.73 141.82

TF-IDF*GenIc 3.75 -0.14 141.22 141.36
PCA*K-means 100.0 0.0 100.0 100.0
PCA*Canopy 117.49 0.00 99.87 99.87
PCA*GenIc 11.71 -0.07 99.74 99.81

TF-IDF*Canopy 6.58 5.02 93.42 88.4

Figure 8.4: Experiment #3 (Text mining). Similarity values normalized according to the combina-
tion of most rigorous reducer and clusterer. Note that Gain is a value representing the difference
in cluster intrasimilarity and intersimilarity.

where Di and D j denote two term frequency vectors for documents i and j, and where the

denominator contains magnitudes of these vectors.

Cluster similarities are determined as follows:

• Cluster intra-similarity: For each document d in cluster Ci, find the cosine similarity between

d and all documents belonging to Ci

• Cluster inter-similarity: For each document d in cluster Ci, find the cosine similarity between

d and all documents belonging to all other clusters

Thus the resulting sum of these values represents the overall similarities of a clustering solution.

Figure 8.4 shows the results from the similarity tests conducted in this experiment. The slowest

clustering and reduction methods were set as a baseline, because it was assumed that these methods

would perform the best. With intra-similarity and inter-similarity values normalized to 100 and 0

respectively, we can see that surprisingly, faster heuristic clustering and reduction methods perform

just as well or better than more rigorous methods. Gain represents the overall score used in the

assessment of each method, and is computed as a method’s cluster intra-similarity value minus

its inter-similarity value. Thus, the conclusions from this experiment shows that fast heuristic

methods are sufficient for large data sets due to their scalability and performance.

93

Chapter 9

Conclusion

In this thesis, I have shown OURMINE to be an adequate tool for use in a variety of ways.

In terms of research, the ability to succinctly represent complex experiments assists in repro-

ducibility and verification. Thus, the next challenge in the empirical SE community will be to not

only share data, but to share experiments. My colleagues and I look forward to the day when it

is routine for conference and journal submissions to come not just with supporting data but also

with a fully executable version of the experimental rig used in the paper. Ideally, when reviewing

papers, program committee members could run the rig and check if the results recorded by the

authors are reproducible.

Thus, I have used OURMINE to reproduce or check several important result. In Chapter 8, I

conducted a massive text mining experiment and showed that:

• When examining cluster inter/intra similarities resulting from each clustering/reduction so-

lution, we found that faster heuristic methods can outperform more rigorous ones when

observing decreases in runtimes.

• This means that faster solutions are suitable on large data sets due to scalability, as well as

performance.

94

In Chapter 5, I reproduced a software defect prediction experiment and concluded that:

• When local data is available, that data should be used to build defect predictors

• If local data is not available, however, imported data can be used to build defect predictors

when using relevancy filtering

• Imported data that uses relevancy filtering performs nearly as well as using local data to

build defect predictors

In Chapter 7, I demonstrated that by learning on highly defective components:

• Defect prediction performance is improved significantly

• Less data is required during the training phase, meaning faster runtimes and results

• Insight is provided for component types; software organizations can make informed deci-

sions about how to approach certain problematic components

OURMINE also provides a way for practitioners to utilize the environment to better suit in-

dustrial needs. This is important because it demonstrates OURMINE’s well-roundedness as a

competitive data mining toolkit. More specifically, it illustrates the usability of the scripting-only

environment for simple as well as complex tasks. To convey its usability in industry, an industrial

type experiment was conducted in Chapter 4 using software defect data. From that experiment it

was shown how practitioners can:

• First, “tune” our predictors to best fit a data set or corpus, and to select the winning method

based on results.

• Secondly, understand how early we can apply these winning methods to our data by deter-

mining the fewest number of examples required in order to learn an adequate theory.

95

My data mining colleagues and I at WVU prefer OURMINE to other tools. Four features are

worthy of mention:

1. OURMINE is very succinct. As seen above, a few lines can describe even complex experi-

ments.

2. OURMINE’s experimental descriptions are complete. There is nothing hidden in Figure 5.1;

it is not the pseudocode of an experiment, it is the experiment.

3. OURMINE code like in Figure 8.2, Figure 8.3 and Figure 5.1 is executable and can be

executed by other researchers directly.

4. Lastly, the execution environment of OURMINE is readily available. Unlike RAPID-I,

WEKA, “R”, etc, there is nothing to debug or install. Many machines already have the sup-

port tools required for OURMINE. For example, we have run OURMINE on Linux, Mac,

and Windows machines (with Cygwin installed).

Like Ritthol et al., I doubt that the standard interfaces of tools like WEKA, etc, are adequate

for representing the space of possible experiments. Impressive visual programming environments

are not the answer: their sophistication can either distract or discourage novice data miners from

extensive modification and experimentation. Also, I find that the functionality of the visual envi-

ronments can be achieved with a few BASH and GAWK scripts, with a fraction of the development

effort and a greatly increased chance that novices will modify the environment.

OURMINE is hence a candidate format for research, education, industry and personal use.

96

Appendix A

Installing and Running Ourmine

OURMINE is an open source toolkit licensed under GPL 3.0. It can be downloaded and installed

from http://code.google.com/p/ourmine.

OURMINE is a command-line environment, and as such, system requirements are minimal.

However, in order to use OURMINE three things must be in place:

• A Unix-based environment. This does not include Windows. Any machine with OSX or

Linux installed will do.

• The Java Runtime Environment. This is required in order to use the WEKA, as well as any

other Java code written for OURMINE.

• The GAWK Programming Language. GAWK will already be installed with up-to-date Linux

versions. However, OSX users will need to install this.

To install and run OURMINE, navigate to http://code.google.com/p/ourmine and follow the

instructions.

97

Appendix B

Built-in Functions and Data

Utility Functions I

Function Name Description Usage

abcd Performs confusion matrix computations

on any classifier output. This includes

statistics such as $pd, $pf, $accuracy,

$balance and $f-measure

— abcd –prefix –goal, where

pre f ix refers to a string to be

inserted before the result of the

abcd function, and goal is the de-

sired class of a specific instance.

arffToLisp Converts a single .arff file into an equiva-

lent .lisp file

arffToLisp $dataset.arff

blab Prints to the screen using a separate envi-

ronment. This provides the ability to print

to the screen without the output interfer-

ing with the results of an experiment

blab $message

blabln The same as blab, except this will print a

new line after the given output

blabln $message

98

docsToSparff Converts a directory of document files

into a sparse .arff file. Prior to building

the file, however, the text is cleaned

docsToSparff $docDirectory

$output.sparff

docsToTfidfSparff Builds a sparse .arff file from a directory

of documents, as above, but instead con-

structs the file based on TF-IDF values

for each term in the entire corpus.

docsToTfidfSparff $docDi-

rectory $numberOfAttributes

$output.sparff

formatGotWant Formats an association list returned from

any custom LISP classifier containing ac-

tual and predicted class values in order to

work properly with existing OURMINE

functions

formatGotWant

funs Prints a sorted list of all available OUR-

MINE functions

funs

getClasses Obtains a list of all class values from a

specific data set

getClasses

getDataDefun Returns the name of a .arff relation to be

used to construct a LISP function that acts

as a data set

getDataDefun

gotwant Returns a comma separated list of actual

and predicted class values from the out-

put of a WEKA classifier

gotwant

help When given with an OURMINE function,

prints helpful information about the func-

tion, such as a description of the function,

how to use it, etc.

help $function, where $function

is the name of the function

99

Utility Functions II

Function Name Description Usage

makeQuartiles Builds quartile charts using any key and

performance value from the abcd results

(see above)

makeQuartiles $csv $keyField

$performanceField, where $key-

Field can be a learner/treatment,

etc., and $performanceField can

be any value desired, such as pd,

accuract, etc.

makeTrainAndTestConstructs a training set and a test set

given an input data set. The outputs of the

function are train.arff, test.arff and also

train.lisp and test.lisp

makeTrainAndTest $dataset

$bins $bin, where $dataset

refers to any data set in correct

.arff format, $bins refers to the

number of bins desired in the

constuction of the sets, and $bin

is the bin to select as the test

set. For instance, if 10 is chosen

as the number of bins, and 1 is

chosen as the test set bin, then

the resulting training set would

consist of 90% of the data, and

the test set would consist of 10%.

malign Neatly aligns any comma-separated for-

mat into an easily readable format

malign

medians Computes median values given a list of

numbers

medians

100

quartile Generates a quartile chart along with

min/max/median values, as well as sec-

ond and third quartile values given a spe-

cific column

quartile

show Prints an entire OURMINE function so

that the script can be seen in its entirety

show $functionName

winLossTie Generates win-loss-tie tables given a data

set. Win-loss-tie tables, in this case,

depict results after a statstical analysis

test on treatments. These tests include

the Mann-Whitney-U test, as well as the

Ranked Wilcoxon test

winLossTie –input $input.csv –

fields $numOfFields –perform

$performanceField –key $key-

Field –$confidence, where $in-

put.csv refers to the saved output

from the abcd function described

above, $numOfFields represents

the number of fields in the in-

put file, $performanceField is the

field on which to determine per-

formance, such as pd, p f , acc,

$keyField is the field of the key,

which could be a learner/treat-

ment, etc., and $confidence is the

percentage of confidence when

running the test. The default con-

fidence value is 95%

101

Learners

Function Name Description Usage

adtree Calls WEKA’s Alternating Decision Tree adtree $train $test

bnet Calls WEKA’s Bayes Net bnet $train $test

j48 Calls WEKA’s J48 j48 $train $test

nb Calls WEKA’s Naı̈ve Bayes nb $train $test

oner Calls WEKA’s One-R oner $train $test

rbfnet Calls WEKA’s RBFNet rbfnet $train $test

ridor Calls WEKA’s RIDOR ridor $train $test

zeror Calls WEKA’s Zero-R zeror $train $test

102

Preprocessors

Function Name Description Usage

caps Reduces capitalization to lowercase from

an input text

caps

clean Cleans text data by removing capitals,

words in a stop list, special tokens, and

performing Porter’s stemming algorithm

clean

discretize Discretizes the incoming data via

WEKA’s discretizer

discretize $input.darff $out-

put.arff

logArff Logs numeric data in incoming data logArff $minVal $fields, where

$minVal denotes the minimum

value to be passed to the log

function, and $fields is the

specfic fields on which to per-

form log calculations

stems Performs Porter’s stemming algorithm on

incoming text data

stems $inputFile

stops Removes any terms from incoming text

data that are in a stored stop list

stops

tfidf Computes TF*IDF values for terms in a

document

tfidf $file

tokes Removes unimportant tokens or whites-

pace from incoming textual data

tokes

103

Feature Subset Selectors

Function

Name

Description Usage

cfs Calls WEKA’s Correlation-based Feature

Selector

cfs $input.arff $numAttributes $out.arff

chisquared Calls WEKA’s Chi-Squared Feature Se-

lector

chisquared $input.arff $numAttributes

$out.arff

infogain Calls WEKA’s Infogain Feature Selector infogain $input.arff $numAttributes $out.arff

oneR Calls WEKA’s One-R Feature Selector oneR $input.arff $numAttributes $out.arff

pca Calls WEKA’s Principal Components

Analysis Feature Selector

pca $input.arff $numAttributes $out.arff

relief Calls WEKA’s RELIEF Feature Selector relief $input.arff $numAttributes $out.arff

104

Clusterers

Function

Name

Description Usage

K-means Calls custom Java K-means $Clusterers -k $k $input.arff $out.arff, where

$k is the initial number of centroids

Genic Calls custom Java GeNic $Clusterers -g $k $n $input.arff $out.arff,

where $k is the initial number of centroids,

and $n is the size of a generation

Canopy Calls custom Java Canopy Clustering $Clusterers -c $k $p1 $p2 $input.arff

$out.arff, where k is the initial number of

centroids, $p1 is a similarity percentage

value for the outer threshold, and $p2 is

a similarity percentage value for the inner

threshold. If these percentages are not de-

sired, a value of 1 should be provided for

both

EM Calls WEKA’s Expectation-

Maximization Clusterer

em $input.arff $k, where $k is the initial num-

ber of centroids

105

Bibliography

[1] Adam: Algorithm development and mining system. Available from http://datamining.

itsc.uah.edu/adam/index.html.

[2] Databionic esom tool. Available from http://databionic-esom.sourceforge.net/

index.html.

[3] The gnome data mine. Available from http://www.togaware.com/datamining/

gdatamine/.

[4] Knime: Konstanz information miner. Available from http://www.knime.org/.

[5] Orange. Available from http://www.ailab.si/orange/.

[6] R: A freely available software environment for statistical computing and graphics. Available

from http://www.r-project.org/.

[7] Rapidminer. Available from http://rapid-i.com/content/view/181/190/lang,en/.

[8] Rattle: the r analytical tool to learn easily. Available from http://rattle.togaware.com/.

[9] Weka: Waikato environment for knowledge analysis. Available from http://www.cs.

waikato.ac.nz/ml/weka/.

[10] Fabian Morchen Alfred Ultsch. Esom-maps: tools for clustering, visualization, and classifi-

cation with emergent som.

106

[11] Brian W. Kernighan Alfred V. Aho and Peter J. Weinberger. The AWK Programming Lan-

guage. Addison-Wesley, 1988.

[12] Adrian Bors. Introduction of the Radial Basis Function (RBF) Networks.

[13] William Notz David Moore. Statistics: concepts and controversies. 2006.

[14] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In In Ma-

chine Learning: Proceedings of the Sixteenth International Conference, pages 124–133. Mor-

gan Kaufmann, 1999.

[15] Greg Gay, Tim Menzies, and Bojan Cukic. How to build repeatable experiments. In

PROMISE ’09: Proceedings of the 5th International Conference on Predictor Models in

Software Engineering, pages 1–9, New York, NY, USA, 2009. ACM.

[16] Chetan Gupta and Robert Grossman. Genic: A single pass generalized incremental algorithm

for clustering. In In SIAM Int. Conf. on Data Mining. SIAM, 2004.

[17] Mark A. Hall. Correlation-based feature selection for discrete and numeric class machine

learning. pages 359–366. Morgan Kaufmann, 2000.

[18] David Heckerman. A tutorial on learning with bayesian networks. 1996.

[19] R.C. Holte. Very simple classification rules perform well on most commonly used datasets.

Machine Learning, 11:63, 1993.

[20] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for

software defect prediction: A proposed framework and novel findings. IEEE Transactions on

Software Engineering, May 2008. Available from http://iccle.googlecode.com/svn/

trunk/share/pdf/lessmann08.pdf.

107

[21] R. Loui. Gawk for ai. Class Lecture. Available from http://menzies.us/cs591o/

?lecture=gawk.

[22] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-

dimensional data sets with application to reference matching. In KDD ’00: Proceedings of

the sixth ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 169–178, New York, NY, USA, 2000. ACM.

[23] T. Menzies. Evaluation issues for visual programming languages, 2002. Available from

http://menzies.us/pdf/00vp.pdf.

[24] T. Menzies, B. Turhan, A. Bener, and J. Distefano. Cross- vs within-company defect predic-

tion studies. 2007. Available from http://menzies.us/pdf/07ccwc.pdf.

[25] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[26] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[27] A.S. Orrego. Sawtooth: Learning from huge amounts of data, 2004.

[28] J. Ross Quinlan. Induction of decision trees. 1 edition, 1986.

[29] J. Ross Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Ma-

chine Learning). Morgan Kaufmann, 1 edition, January 1993.

[30] Chet Ramey. Bash, the bourne-again shell. 1994. Available from http://tiswww.case.

edu/php/chet/bash/rose94.pdf.

[31] Juan Ramos. Using tf-idf to determine word relevance in document queries. In Proceedings

of the First Instructional Conference on Machine Learning, 2003. Available from http:

//www.cs.rutgers.edu/˜mlittman/courses/ml03/iCML03/papers/ramos.pd%f.

108

[32] E. Rish. An empirical study of the naive bayes classifier. In IJCAI-01 workshop on Empirical

Methods in AI, 2001. Available from www.intellektik.informatik.tu-darmstadt.de/

˜tom/IJCAI01/Rish.pdf.

[33] Irina Rish. An empirical study of the naive bayes classifier. In IJCAI-01 workshop on ”Em-

pirical Methods in AI”.

[34] O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske. Yale: Yet another learn-

ing environment. In LLWA 01 - Tagungsband der GI-Workshop-Woche, Dortmund, Ger-

many, pages 84–92, October 2001. Available from http://ls2-www.cs.uni-dortmund.

de/˜fischer/publications/YaleLLWA01.pdf.

[35] Burak Turhan, Tim Menzies, Ayse B. Bener, and Justin Di Stefano. On the relative value

of cross-company and within-company data for defect prediction. Empirical Software Engi-

neering, 2009. Available from http://menzies.us/pdf/08ccwc.pdf.

109

