
Comparing Case-Based Reasoning with Model-Based
Systems for Software Effort Estimation

Adam Brady
Lane Department of CS&EE
West Virginia University, USA

adam.m.brady@gmail.com

Tim Menzies
Lane Department of CS&EE

West Virginia University, USA,

tim@menzies.us

ABSTRACT
Background: Machine learning has been incredibly suc-
cessful. We are drowning in choice as to how we can infer
the cost of building software. Two conflicting choices ask
whether we should construct an abstract model to represent
software projects, or if simply reasoning from historical cases
is enough.
Aim: We aim to show a comparison between two soft-
ware cost estimation methods, one case-based and the other
model-based.
Method: We present W , a case-based, calibrationless, model-
agnostic reasoning algorithm, and compare its software cost
reduction estimations to those of SEESAW, a model-based
method for local AI search within COCOMO.
Results: In 32 different tests W always performs at least as
good as SEESAW. For 9 of those tests W performs better.
Conclusion: W performs just as well if not better than
SEESAW for reducing software cost across multiple goals
such as development effort, project defects, and completion
time.

Keywords
Software Effort Estimation, Cost Models, Case Based Rea-
soning

1. INTRODUCTION
Accurately estimating software cost remains a core aspect
of businesses today. For example, in the case of NASA’s
Check-out Launch Control System [22], the initial estimate
of $200 million was quickly overrun, with the project burning
another $200 million before being cancelled. Not only are
these estimates often wrong [2], they are often wrong by a
factor of four or more [8].

To assist humans in creating these estimates, a torrent of
machine learning research has emerged. A quick search over
major journals and conferences revealed over 600 different
papers on estimating software cost. [18]. Of these papers, the

dominant topic was to introduce new estimation techniques.
What users are left with is an abundance of choice. Without
a single, unifying banner to weave together cost estimation
techniques, no one method has achieved de facto status in
the cost estimate community.

For example, the standard method of software cost estima-
tion involves parametric model construction. A representa-
tion of a software project is generalized into a mathematical
abstraction, then all future projects are estimated according
to the parameters of the model. A benefit of which is that
once a model can show general trends, extrapolate patterns,
and generally reduce complex, human behavior into a mere
formula.

There several reasons for the lack of a standard software
cost model. These includes generality, data islands and in-
stability. Software models may not be general so it can be
inappropriate to apply a software model learned in environ-
ment one to environment two. Also, many companies prefer
to keep cost related data confidential. This data island ef-
fect has also contributed to the fragmentation of the field by
preferring building private models rather than using publicly
available models. This multiplicity of software effort mod-
els has lead to scarcity of the publicly available local data
needed for the model based effort estimation. Without suffi-
cient data to build, audit, and tune models, the predictions
generated by these models may be highly unstable. [15]

However, the locality of software models may not necessarily
be a bad thing. Rather than attempt to generalize all soft-
ware into a standard model, we can instead simply reason
from the data. Case-based reasoning attempts to capitalize
on two tenents of the world: similar problems have similar
solutions, and that problems encountered once are likely to
occur again. [9] As C. Riesbeck explains, ”We don’t think,
we remember.” [16]

Model-based and case-based methods represent two ends of
a wide spectrum of cost estimation techniques. Rather than
attempt to settle an ongoing debate, we simply offer an ex-
periment between the two strategies. This paper introduces
W , a simple, case-based algorithm for software effort esti-
mation and reduction. Competing with W is SEESAW, a
model-based (USC COCOMO [2]) algorithm that extends
from MaxWalkSat. [7] W is a much smaller program with
hundreds of lines of awk, whereas SEESAW exists as thou-
sands of lines of C++/LISP. The relative complexity of these

two algorithms resides not just in their languages; we will
show the intrinsic simplicity of W compared to the Monte
Carlo simulator an AI search of SEESAW.

This paper is structured in the following order: First we
present a deeper look at the technical tradeoffs of model-
based reasoning and case-based reasoning. Second, we pose
three research questions to be answered by the results of
our experiment. Then, we’ll explore the implementations of
SEESAW and W . Finally, we present an experiment that
compares the software cost recommendations from W with
those of SEESAW.

1.1 Research Questions
RQ1: Can the recommendations produced by a case based
reasoning system such as W perfom better than a model-
based approach?

RQ2: Do different datasets effect the relative performance
of one method over another?

RQ3: In which situations should one prefer a particular
method over another?

2. BACKGROUND

2.1 Estimation Techniques
Sheppherd categorizes the current landscape of software cost
estimation methods into three groups. [18]

• Human-centric techniques (a.k.a. expert judgment)

• Algorithmic/parametric models such as COCOMO [2] [3]

• Induced prediction systems such as case-based reason-
ing.

Human centric techniques are the most widely-used estima-
tion method [18], but are problematic. If an estimate is
disputed, it can be difficult to reconcile competing human
intuitions (e.g.) when one estimate is generated by a man-
ager who is senior to the other estimator. Also, Jorgensen
[5] reports that humans are surprisingly poor at reflecting
and improving on their expert judgments. For the purposes
of this paper, we will set aside the comparision to human-
centric techniques as another topic.

2.2 Modeling Techniques
One alternative to expert judgment is a model-based esti-
mate. Models are a reproducible methods for generating
an estimate. This is needed for (e.g.) U.S. government
software contracts that require a model-based estimate at
each project milestone. Such models are used to generate
and audit an estimate, or to double-check a human-centric
estimate. Model based estimates can be generated using
an algorithmic/parametric approach or via induced predic-
tion systems. In the former, an expert proposes a general
model, then domain data is used to tune that model to spe-
cific projects. For example, Boehm’s 1981 COCOMO model
[2] hypothesized that development effort was exponential on
LOC and linear on 15 effort multipliers such as analyst ca-
pability, product complexity, etc. Boehm defined a local

calibration procedure to tune the COCOMO model to local
data. Induced prediction systems are useful if the available
local training data does not conform to the requirements
of a pre-defined algorithmic/parametric model such as CO-
COMO. There are many induction methods including step-
wise regression, linear regression, ruleinduction, neural nets,
model trees, and analogy, just to name a few. All these
methods have underlying assumptions.

2.3 Case Based Reasoning
Case based reasoning is a method of machine learning that
seeks to emulate human recollection and adaptation of past
experiences in order to find solutions to current problems.
That is, as humans we tend to base our decisions not on
complex reductive analysis, but on an instantaneous survey
of past experiences [17]; i.e. we don’t think, we remember.
CBR is purely based on this direct adaptation of previous
cases based on the similarity of those cases with the cur-
rent situation. Having said that, a CBR based system has
no dedicated world model logic, rather that model is ex-
pressedthrough the available past cases in the case cache.
This cache is continuously updated and appended with ad-
ditional cases.

Aamodt & Plaza [1] describe a 4-step general CBR cycle,
which consists of:

1. Retrieve: Find the most similar cases to the target
problem.

2. Reuse: Adapt our actions conducted for the past cases
to solve the new problem.

3. Revise: Revise the proposed solution for the new prob-
lem and verify it against the case base.

4. Retain: Retain the parts of current experience in the
case base for future problem solving.

Having verified the results from our chosen adapted action
on the new case, the new case is added to the available
case base. The last step allows CBR to effectively learn
from new experiences. In this manner, a CBR system is
able to automatically maintain itself. As discussed below,
W supports retreive, reuse, and revise (as well as retain if
the user collecting data so decides).

This 4-stage cyclical CBR process is sometimes referred to
as the R4 model [21]. Shepperd [21] considered the new
problem as a case that comprises two parts. There is a
description part and a solution part forming the basic data
structure of the system. The description part is normally a
vector of features that describe the case state at the point at
which the problem is posed.The solution part describes the
solution for the specific problem (the problem description
part).

The similarity between the target case and each case in the
case base is determined by a similarity measure. Different
methods of measuring similarity have been proposed for dif-
ferent measurement contexts. A similarity measure is mea-
suring the closeness or the distance between two objects in
an n-dimensional Euclidean space, the result is usually pre-
sented in a distance matrix (similarity matrix) identifying
the similarity among all cases in the dataset. Although
there are other different distance metrics available for dif-

Figure 1: figure
A diagram describing the steps of CBR (source:

http://www.peerscience.com/Assets/cbrcycle1.gif).

ferent purposes, the Euclidean distance metric is probably
the most commonly used in CBR for its distance measures.

Irrespective of the similarity measure used, the objective
is to rank similar cases from case-base to the target case
and utilize the known solution of the nearest k-cases. The
value of k in this case has been the subject of debate [6,20]:
Shepperd [20], Mendes [11] argue for k = 3 while Li [10]
propose k = 5.

Once the actual value of the target case is available it can
be reviewed and retained in the case-base for future refer-
ence. Stored cases must be maintained over time to prevent
information irrelevancy and inconsistency. This is a typical
case of incremental learning in an organization utilizing the
techniques of CBR.

Observe that these 4 general CBR application steps (re-
treive, reuse, revise, retain) do not include any explicit model
based calculations; rather we are relying on our past experi-
ence, expressed through the case base, to estimate any model
calculations based on the similarity to the cases being used.
This has two advantages:

1. It allows us to operate independently of the models
being used. For example, our prior report to this con-
ference [4] ran over two data sets. This this study,
based on CBR, uses twice as many data sets.

2. This improves our performance, since data retrieval
can be more efficient than calculation, especially given
that many thousands of iterations of calculation were
needed with our traditional modeling based tool. As
evidence of this, despite the use of a slower language,
W ’s AWK code runs faster than the C++/LISP used
in SEESAW. It takes just minutes to conduct 20 trials
over 13 data sets with W . A similar trial, conducted
with SEESAW, can take hours to run.

3. IMPLEMENTATIONS

3.1 SEESAW
SEESAW searches within the ranges of project attributes
to find constraints that most reduce development effort, de-
velopment time, and defects. Figure 2 shows SEESAW’s
pseudo-code. The code is an adaption of Kautz & Selman’s
MaxWalkSat local search procedure [13]. The main changes
are that each solution is scored via a Monte Carlo proce-
dure (see score in Figure 2) and that SEESAWseeks to
minimize that score (since, for our models it is some combi-
nation of defects, development effort, and development time
in months).

SEESAW first combines the ranges for all project attributes.
These constraints range from Low to High values. If a
project does not mention a feature, then there are no con-
straints on that feature, and the combine function (line 4)
returns the entire range of that feature. Otherwise, com-
bine returns only the values from Low to High. In the case
where a feature is fixed to a single value, then Low = High.
Since there is no choice to be made for this feature, SEE-
SAW ignores it. The algorithm explores only those features
with a range of Options where Low < High (line 5). In each
iteration of the algorithm, it is possible that one acceptable
value for a feature X will be discovered. If so, the range
for X is reduced to that single value, and the feature is not
examined again (line 17). SEESAW prunes the final recom-
mendations (line 21). This function pop off the N selections
added last that do not significantly change the final score
(t-tests, 95% confidence). This culls any final irrelevancies
in the selections. The score function shown at the bottom of
Figure 6 calls COCOMO/COQUALMO models 100 times,
each time selecting random values for each feature Options.
The median value of these 100 simulations is the score for the
current project settings. As SEESAW executes, the ranges
in Options are removed and replaced by single values (lines
16-17), thus constraining the space of possible simulations.

3.2 W
The standard procedure for CBR is to report the median
class value of some local neighborhood. This neighborhood
is typically defined as the Euclidean distance from a defined
project in n-dimensional space with n project features. [20]
W works similarly, but defines a project as a range of values:

• From a range of project values, cases are retrieved
that match a specific amount of overlap with the de-
fined project ranges. A case’s overlap is defined as the
percentage of attributes that fall within the specified
ranges of the defined project.

• From these selected similar cases, the cases are sorted
by a measure of utility. In the case of effort, defect,
and month estimations, this utility is the normalized
euclidean distance from the lowest possible cost for all
three factors.

• From these sorted ranges, a contrast set is learned.
The top 5 ”best”cases (those with the best utility mea-
sure) are placed into a set labelled ”best”. The next 15
ranked cases are placed into a set labelled ”rest”, for a
combined total of 20 cases.

1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out features with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)
10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations
27 return median score from monte carlo simulations
28 }

Figure 2: Pseudocode for SEESAW

• From the contrast set, W selects the features that best
select for the region with the best utility measure-
ments.

3.2.1 Contrast Sets
Once a contrast set learner is available, it is a simple mat-
ter to add W to CBR. W finds contrast sets using a greedy
search, where candidate contrast sets are ranked by the fre-
quency of which they appear in the ”best” set squared di-
vided by how often the candidate appears in both the ”best”
and ”rest” sets. A simple strategy to score more favorably
towards attributes that occur most often in the best case
is to square the number of times. Taking this heuristic one
step further, given an attribute x, we can penalize x’s oc-
curance in the ”rest” by dividing the sum of the frequency
counts in best and rest [13], the ensuring rare attributes are
weighted appropriately:

like =
freq(x|best)2

freq(x|best) + freq(x|rest)
(1)

From this measure we need only sort each attribute by it’s
like score to prioritize our recommendations

3.2.2 The W Algorithm
CBR systems input a query q and a set of cases. They return
the subset of cases C that is relevant to the query. In the
case of W :

• Each case Ci is an historical record of one software
projects, plus the development effort required for that
project. Within the case, the project is described by

@project example
@attribute ?rely 3 4 5
@attribute tool 2
@attribute cplx 4 5 6
@attribute ?time 4 5 6

Figure 3: W ’s syntax for describing the input query
q. Here, all the values run 1 to 6. 4 ≤ cplx ≤ 6 de-
notes projects with above average complexity. Ques-
tion marks denote what can be controlled- in this
case, rely, time (required reliability and development
time)

a set of attributes which we assume have been dis-
cretized into a small number of discrete values (e.g.
analyst capability ∈ {1, 2, 3, 4, 5} denoting very low,
low, nominal, high, very high respectively).

• Each query q is a set of constraints describing the par-
ticulars of a project. For example, if we were interested
in a schedule over-run for a complex, high reliability
projects that have only minimal access to tools, then
those constraints can be expressed in the syntax of
Figure 3.

W seeks q′ (a change to the original query) that finds another
set of cases C′ such that the median effort values in C′ are
less than that of C (the cases found by q). W finds q′ by
first dividing the data into two-thirds training and one-third
testing. Retrieve and reuse are applied to the training set,
then revising is applied to the test set.

1. Retrieve: The initial query q is used to find the N

training cases nearest to q using a Euclidean distance
measure where all the attribute values are normalized
from 0 to 1.

2. Reuse (adapt): The N cases are sorted by effort and
divided into the K1 best cases (with lowest efforts) and
K2 rest cases. For this study, we used K1 = 5,K2 =
15. Then we seek the contrast sets that select for the
K1 best cases with lowest estimates. All the attribute
ranges that the user has marked as “controllable” are
scored and sorted by LOR. This sorted order S de-
fines a set of candidate q′ queries that use the first i-th
entries in S:

q
′

i = q ∪ S1 ∪ S2... ∪ Si

Formally, the goal of W is find the smallest i value such q′i
selects cases with the least median estimates.

According to Figure 1, after retrieving and reusing comes
revising (this is the “verify” step). When revising q′, W

prunes away irrelevant ranges as follows:

1. Set i = 0 and q′i = q

2. Let Foundi be the test cases consistent with q′i (i.e.
that do not contradict any of the attribute ranges in
q′i).

3. Let Efforti be the median efforts seen in Foundi.
4. If Found is too small then terminate (due to over-

fitting). After Shepperd [20], we terminated for |Found| <
3.

5. If i > 1 and Efforti < Efforti−1, then terminate
(due to no improvement).

6. Print q′i and Efforti.
7. Set i = i+ 1 and q′i = qi−1 ∪ Si

8. Go to step 2.

On termination, W recommends changing a project accord-
ing to the set q′ − q. For example, in Figure 3, if q′ − q is
rely = 3 then this treatment recommends that the best way
to reduce the effort this project is to reject rely = 4 or 5.

3.3 Multiple Goals
Optimizing for simply effort in software cost estimation can
be bad. For instance, it may require less effort to produce
software with much lower quality standards, but doing so
may drastically increase defects. Additionally, reducing the
schedule constraints will incur larger development time. To
solve this problem, W bases it’s recommendations on multi-
ple goals.

It does this by ranking on some measure of utility for each
case. If, say, we wish to reduce the effort, defects, and
months requirements, a simple utility measure can be de-
rived from the normalized euclidian distance from the best
possible values for all goals (Effort, Defects, Months):

score =
E − Emin

Emax − Emin

+
D −Dmin

Dmax −Dmin

+
M −Mmin

Mmax −Mmin

4. COMPARING W TO SEESAW
4.1 Methodology
We present an experiment to compare the effort, defects, and
months reduction power of W compared to SEESAW. Each
algorithm will be given a set of 4 real-world projects with
defined COCOMO attribute ranges. The goal of each algo-
rithm will be to choose specific recommendations for these
value ranges that will maximize the reduction the project’s
effort, defects, and months.

Before we can measure the relative effectiveness of one effort
reduction recommendation over another, we need a way to
compare the recommendations from both SEESAW and W
in common terms. This is trivial, as once each tool gener-
ates its recommendations, these recommendations can then
be applied using any model or inference prediction system.
Once applied, regardless of the testing environment we can
compare the relative effectiveness of each algorithm. For the
sake of simplicity we have chosen to test recommendations
using W.

4.2 Dataset and Project Descriptions
In order to test the efficacy of model-based and case-based
estimation techniques, we need a source of case data for W.
Because SEESAW was built around COCOMO and W is a
data-agnostic, we chose the free COCOMO NASA93 dataset
available from http://promisedata.org/data. This dataset
represents 93 different NASA projects collected from the
1980’s and 1990’s represented as feature vectors describing
each project in COCOMO format.

However, the NASA93 data only contains historical infor-
mation for actual project effort. In order to provide a com-
parison in reducing multiple goals, the development time in

ranges values

project feature low high feature setting

prec 1 2 data 3

OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5

space team 2 3 pcap 3

plane pmat 1 4 plex 3

stor 3 5 site 3

ruse 2 4

docu 2 4

acap 2 3

pcon 2 3

apex 2 3

ltex 2 4

tool 2 3

sced 1 3

cplx 5 6

KSLOC 75 125

rely 3 5 tool 2

JPL data 2 3 sced 3

flight cplx 3 6

software time 3 4

stor 3 4

acap 3 5

apex 2 5

pcap 3 5

plex 1 4

ltex 1 4

pmat 2 3

KSLOC 7 418

ranges values

project feature low high feature setting

prec 3 5 flex 3

OSP2 pmat 4 5 resl 4

docu 3 4 team 3

ltex 2 5 time 3

sced 2 4 stor 3

KSLOC 75 125 data 4

pvol 3

ruse 4

rely 5

acap 4

pcap 3

pcon 3

apex 4

plex 4

tool 5

cplx 4

site 6

rely 1 4 tool 2

JPL data 2 3 sced 3

ground cplx 1 4

software time 3 4

stor 3 4

acap 3 5

apex 2 5

pcap 3 5

plex 1 4

ltex 1 4

pmat 2 3

KSLOC 11 392

Figure 4: The four NASA case studies. Numeric
values {1, 2, 3, 4, 5, 6} map to {very low, low, nom-
inal, high, very high, extra high}.

months was computed using the COCOMOmodel. Also, the
COQUALMO [3] model for defect removal was employed to
synthesize defects estimations for each project. Combined,
each historical project case had three attributes that needed
to be minimized.

Next, project definitions are needed to provide grounds on
which to improve. Along with the NASA93 dataset comes
four real-life case studies at NASA, each representing a unique
range of possible COCOMO scale factors and effort multi-
pliers.

• Ground and flight represent typical ranges for most
NASA projects at JPL

• OSP represents the guidance, navigation, and control
aspects of NASA’s 1990 Orbital Space Plane.

• OSP2 represents a second, later version of OSP with
a more limited scope of COCOMO attributes.

Figure 4 shows in detail each project. The low and high
ranges define the space of possible recommendations for that

project. For instance, the reliability of the JPL flight soft-
ware can vary from a ranking of 3 (nominal) to 5 (very high).
SEESAW and W will each attempt to improve the overall
estimation in effort, defects, and months by recommending
changes to these values.

4.3 Testing Procedure
A testing rig was built to inject recommendations generated
within SEESAW into W’s testing phase. Because the test-
ing phase of W only requires the recommendations gained
from the training phase, testing with SEESAW’s recommen-
dations is identical to testing with W’s.

Once in place, recommendations for each of the four case
studies was tested 50 times. Each test reported the reduc-
tion in median effort, defects, months, and the synthesized
”score” attribute.

This measure gives a more general picture of the overall re-
ductions across the entire space rather than each individual
goal.

Also reported is the ”spread”, or the distance between the
third (75%) and first (25%) quartiles. This measure gives a
rough estimate on how much more certain the estimations
have become. A reduction in this ”spread” constitutes a
narrowing of the range of estimations, implying a less varied
outcome. Both the median reduction and the spread reduc-
tion are reported in terms of before and after estimates.

5. RESULTS
The four datasets were split into four separate goals (score,
effort, defects, months) measured as both average reduction
(lower cost) and average ”spread” reduction (narrower rec-
ommendations). The following figures show the results for
“score”[12, 13], effort[6, 7], defects[8, 9], and months[10, 11].

To determine statistical significance for each comparison, A
Mann Whitney U test was performed on the two sets of
reduction distributions from each comparison. Given a 95%
confidence interval, figure 5 shows that overall W performs
better than SEESAW on 9 of the 32 tests, and performs no
worse than SEESAW on the other 21 tests.

On individual datasets, W performs better on reducing es-
timations given projects with more constrained ranges such
as OSP2. On 5 out of the 8 comparisons involving OSP2, W
outperformed SEESAW. Less conclusive results were achieved
regarding the other, more openly-defined projects. Only 3
out of the 24 comparisons resulted in a statistically signifi-
cant improvement using W over SEESAW.

Overall, W performs no worse than SEESAW, and shows
clear improvements in certain circumstances.

6. ANSWERS TO RESEARCH QUESTIONS
With the above results, we can now answer the research
questions proposed at the beginning of the paper.

RQ1: Can the recommendations produced by a case
based reasoning system such as W perfom better
than a model-based approach?

Algorithm Wins Losses Ties
W 9 0 21
SEESAW 0 9 21

Figure 5: Win/Loss/Tie table for statistically sig-
nificant reductions across all goals with the Nasa
Flight, Ground, OSP, and OSP2 projects.

Average Median Effort Reductions
Dataset Algorithm Before After
Ground SEESAW 269 197

W 269 184
Flight SEESAW 258 252

W 258 208
OSP SEESAW 270 195

W 270 210
OSP2 SEESAW 291 269

W 291 227

Figure 6: Average Median Effort Reductions for the
NASA93 Dataset (Wins highlighted)

Average Effort “Spread” Reductions
Dataset Algorithm Before After
Ground SEESAW 526 99

W 526 125
Flight SEESAW 567 204

W 567 165
OSP SEESAW 350 114

W 350 100
OSP2 SEESAW 824 418

W 824 299

Figure 7: Average Median Effort Reductions for the
NASA93 Dataset (Wins highlighted)

Average Median Defect Reductions
Dataset Algorithm Before After
Ground SEESAW 2666 2107

W 2666 2035
Flight SEESAW 2812 3138

W 2812 3017
OSP SEESAW 3180 2688

W 3180 2867
OSP2 SEESAW 2612 7797

W 2612 2271

Figure 8: Average Median Defect Reductions for
the NASA93 Dataset (Wins highlighted)

Average Defect “Spread” Reductions
Dataset Algorithm Before After
Ground SEESAW 5979 1670

W 5979 1784
Flight SEESAW 6292 3457

W 6292 2347
OSP SEESAW 5250 2949

W 5250 2011
OSP2 SEESAW 6527 6216

W 6527 3777

Figure 9: Average Median Defect Reductions for
the NASA93 Dataset (Wins highlighted)

Average Median Month Reductions
Dataset Algorithm Before After
Ground SEESAW 16.7 13.5

W 16.7 13.7
Flight SEESAW 16.0 13.7

W 16.0 14.5
OSP SEESAW 16.2 14.4

W 16.2 14.2
OSP2 SEESAW 16.5 14.6

W 16.5 14.2

Figure 10: Average Median Month Reductions for
the NASA93 Dataset (Wins highlighted)

Average Month “Spread” Reductions
Dataset Algorithm Before After
Ground SEESAW 10.5 7.3

W 10.5 4.1
Flight SEESAW 10.3 9.4

W 10.3 7.0
OSP SEESAW 10.1 6.8

W 10.1 5.9
OSP2 SEESAW 11.8 7.2

W 11.8 6.8

Figure 11: Average Median Month Reductions for
the NASA93 Dataset (Wins highlighted)

Average Median “Score” Reductions
Dataset Algorithm Before After
Ground SEESAW 0.186 0.129

W 0.186 0.130
Flight SEESAW 0.171 0.139

W 0.171 0.146
OSP SEESAW 0.166 0.125

W 0.166 0.131
OSP2 SEESAW 0.165 0.160

W 0.165 0.129

Figure 12: Average Median “Score” Reductions for
the NASA93 Dataset (Wins highlighted)

Average “Score”“Spread” Reductions
Dataset Algorithm Before After
Ground SEESAW 0.282 0.200

W 0.282 0.200
Flight SEESAW 0.287 0.235

W 0.287 0.233
OSP SEESAW 0.272 0.215

W 0.272 0.195
OSP2 SEESAW 0.290 0.264

W 0.290 0.225

Figure 13: Average Median “Score” Reductions for
the NASA93 Dataset (Wins highlighted)

We’ve demonstrated that W can perform just as well if not
better than SEESAW 5. More importantly, similar results
have been achieved while making fewer assumptions, and
without the need for any model calibration.

RQ2: Do different datasets effect the relative per-
formance of one method over another?

The results for the OSP2 dataset[12, 13, 6, 7, 8, 9, 10, 11]
show that there exists a discrepancy between performance
in datasets with few recommendation options.

RQ3: In which situations should one prefer a par-
ticular method over another?

This is left as an open question. One of the ongoing issues
in effort estimation is model vs case based. While we cur-
rently cannot extrapolate enough evidence to make a solid
statement in the general case, we offer the preceeding com-
parison as a nexus point for further research along with a
few considerations.

One consideration is how much local data is available. In
situations where, say, a company has recently formed or is
breaking new ground in software engineering practices, the
lack of relevant historical cases prevents the use of CBR.
As Martin Shepphard says, ”the use of accurate, systematic,
historical data for building useful effort prediction systems
is extremely important, yet in practice, such data is seldom
available.” [19] However, previous work has shown that one
may not need much data in order to successfully perform
CBR tasks [12]. After all, ”history repeats itself, but not
exactly” [18].

Another consideration is how satisfying a justification is
from concrete, documented cases compared to abstract math-
ematical extrapolations? In our experience, users, especially
business users, have found more solace in being able to use
their own intuition to justify a recommendation. The core
algorithms inside W such as contrast sets are fast and easy
to explain, bearing one accepts the underlying locality as-
sumption.

Finally, one must consider the lack of a single, unifying
model for software effort estimation. Building a model re-
quires assumptions from the underlying statistical distribu-
tions of the data to the calibration parameters needed to
ensure accuracy. While a model benefits from reuse once
created, as you only need to build it once, the potential
range of these parameters [15] can undermine the usefulness
of the tool as a whole.

We haven’t faulted previous work [4] [14] with model-based
approaches, but we have demonstrated that tools like W can
compete and exceed more complex methods. With only a
few extensions to the premise of case based reasoning, W

has shown promise.

6.1 Threats to Validity
Currently, we do not have results for datasets with actual
historical measurements for defects and months. Synthesiz-

ing the defects and months for the NASA93 dataset using
COQUALMO and COCOMO may have removed underlying
patterns in the data. Because these values were generated
from COCOMO scale factors and effort multipliers, a direct
correlation exists between defects and months in regards to
the project features.

Secondly, the comparison between SEESAW and W took
place inside W ’s testing procedure. While this decision al-
lowed a direct comparision between recommendations, the
estimations generated for each were just that, estimations.
We do not have a means to compare how these recommen-
dations might perform in a real-world setting at this time.

7. CONCLUSION
W has shown tangible potential in terms of direct perfor-
mance, but the question of choosing model-based reason-
ing over case-based reasoning remains an ongoing discussion.
Research scientists relish the idea that we can reduce com-
plex, human-centered domains to beautiful, intuitive pat-
terns. However, while the models we produce may be useful,
effort estimation has yet to find a single, unifying abstrac-
tion under which to explain all software projects. As long
as this goal remains unrealized, tradeoffs will exist between
model-based reasoning and case-based.

8. REFERENCES
[1] A. Aamodt and E. Plaza. Case-based reasoning:

Foundational issues, methodological variations, and
system approaches. Artificial Intellegence
Communications, 7:39–59, 1994.

[2] B. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[3] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K.
Clark, B. Steece, A. W. Brown, S. Chulani, and
C. Abts. Software Cost Estimation with Cocomo II.
Prentice Hall, 2000.

[4] P. Green, T. Menzies, S. Williams, and O. El-waras.
Understanding the value of software engineering
technologies. In IEEE ASE’09, 2009. Available from
http://menzies.us/pdf/09value.pdf.

[5] M. Jorgensen and K. Molokken-Ostvold. Reasons for
software effort estimation error: Impact of respondent
error, information collection approach, and data
analysis method. IEEE Transactions on Software
Engineering, 30(12), December 2004.

[6] G. Kadoda, M. Cartwright, L. Chen, and
M. Shepperd. Experiences using casebased reasoning
to predict software project effort, 2000.

[7] H. Kautz, B. Selman, and Y. Jiang. A general
stochastic approach to solving problems with hard and
soft constraints. In D. Gu, J. Du, and P. Pardalos,
editors, The Satisfiability Problem: Theory and
Applications, New York, NY, pages 573–586, 1997.
Available on-line at
http://citeseer.ist.psu.edu/168907.html.

[8] C. Kemerer. An empirical validation of software cost
estimation models. Communications of the ACM,
30(5):416–429, May 1987.

[9] D. Leake. Case-based reasoning: experiences, lessons,
and future directions. AAAI Press, Menlo Park, CA,
USA, 1996.

[10] Y. Li, M. Xie, and T. Goh. A study of project
selection and feature weighting for analogy based
software cost estimation. Journal of Systems and
Software, 82:241–252, 2009.

[11] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and
S. Counsell. A comparative study of cost estimation
models for web hypermedia applications. Empirical
Software Engineering, 8(2):163–196, 2003.

[12] T. Menies, K. Lum, and J. Hihn. The deviance
problem in effort estimation. In PROMISE, 2006,
2006. Available from
http://menzies.us/06deviations.pdf.

[13] T. Menzies, O. El-Rawas, J. Hihn, and B. Boehm.
Can we build software faster and better and cheaper?
In PROMISE’09, 2009. Available from
http://menzies.us/pdf/09bfc.pdf.

[14] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and
K. Lum. On the value of stochastic abduction (if you
fix everything, you lose fixes for everything else). In
International Workshop on Living with Uncertainty
(an ASE’07 co-located event), 2007. Available from
http://menzies.us/pdf/07fix.pdf.

[15] T. Menzies, S. Williams, O. Elrawas, D. Baker,
B. Boehm, J. Hihn, K. Lum, and R. Madachy.
Accurate estimates without local data? Software
Process Improvement and Practice, 14:213–225, July
2009. Available from
http://menzies.us/pdf/09nodata.pdf.

[16] C. Riesbeck. What next? The future of case-Based
Reasoning in Post-Modern AI. AAAI Press, 1996.

[17] R. C. Schank. Dynamic Memory: A Theory of
Reminding and Learning in Computers and People.
Cambridge University Press, New York, NY, USA,
1983.

[18] M. Shepperd. Software project economics: A roadmap.
In International Conference on Software Engineering
2007: Future of Software Engineering, 2007.

[19] M. Shepperd and M. Cartwright. Predicting with
sparse data. IEEE Transactions on Software
Engineering, 27:987–998, 2001.

[20] M. Shepperd and C. Schofield. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering, 23(12), November 1997.
Available from
http://www.utdallas.edu/~rbanker/SE_XII.pdf.

[21] M. J. Shepperd. Case-based reasoning and software
engineering. Technical Report TR02-08, Bournemouth
University, UK, 2002.

[22] Spareref.com. Nasa to shut down checkout & launch
control system, August 26, 2002. http:
//www.spaceref.com/news/viewnews.html?id=475.

