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Abstract

Case-based reasoning (CBR) is an approach to problem solving that emphasizes the role of prior

experience during future problem solving (i.e., new problems are solved by reusing and if

necessary adapting  the solutions to similar problems that were solved in the past). It has enjoyed

considerable success in a wide variety of problem solving tasks and domains. Following a brief

overview of the traditional problem-solving cycle in CBR, we examine the cognitive science

foundations of CBR and its relationship to analogical reasoning. We then review a representative

selection of CBR research in the past few decades on aspects of retrieval, reuse, revision, and

retention.
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1    Introduction

While much of the inspiration for the study of case-based reasoning (CBR) came from cognitive

science research on human memory (e.g., Schank, 1982), the resulting methodology has been

shown to be useful in a wide range of applications (e.g., Watson, 1997; Aha, 1998; Bergmann,

2002). Unlike most problem solving methodologies in artificial intelligence (AI), CBR is

memory based, thus reflecting human use of remembered problems and solutions as a starting

point for new problem solving. An observation on which problem solving is based in CBR,

namely that similar problems have similar solutions (e.g., Leake & Wilson, 1999), has been

shown to hold in expectation for simple scenarios (Faltings, 1997b), and is empirically validated

in many real-world domains.

Solving a problem by CBR involves obtaining a problem description, measuring the similarity

of the current problem to previous problems stored in a case base (or memory) with their known

solutions, retrieving one or more similar cases, and attempting to reuse the solution of one of the

retrieved cases, possibly after adapting it to account for differences in problem descriptions. The

solution proposed by the system is then evaluated (e.g., by being applied to the initial problem or

assessed by a domain expert). Following revision of the proposed solution if required in light of

its evaluation, the problem description and its solution can then be retained as a new case, and

the system has learned to solve a new problem.

 Figure 1 shows Aamodt & Plaza's (1994) classic model of the problem solving cycle in CBR.

The individual tasks in the CBR cycle (i.e., retrieve, reuse, revise, and retain) have come to be

known as the "4 REs". Because of the pivotal role of retrieval in the CBR cycle, a considerable

amount of research has focused on retrieval and similarity assessment. As illustrated in Figure 2,

Leake (1996b) expresses the role of similarity through the concepts of retrieval and adaptation

distances. Also captured in Leake’s diagram is the relationship between problem and solution

spaces in CBR.

Figure 1   The CBR cycle. Adapted from (Aamodt & Plaza, 1994).

PRIOR

CASES

PRIOR

CASES

CASE BASE

Problem

RETRIEVE

Proposed
SolutionREVISE

RETAIN REUSE

Similar

Cases

Updated

Solution



Retrieval, reuse, revision, and retention in case-based reasoning 3

In Figure 2, the retrieval distance R increases as the similarity between the input problem

description and a stored problem description decreases (i.e., lower similarity means greater

distance). A common assumption in CBR is that the retrieval distance R is commensurate with A,

the adaptation distance (or effort). However, several authors have questioned this assumption and

its implication that the most similar case is the easiest to adapt (e.g., Smyth & Keane, 1998). This

is an issue that we will return to in our discussion of retrieval methods in Section 3.

.Figure 2  Relationship between problem and solution spaces in CBR. Adapted from (Leake, 1996b).

As will be clear from the literature review we present in this article, aspects of reuse and

retention, and to a lesser extent revision, have also attracted significant research interest. Several

books examine fundamental aspects of CBR and present case studies of research and applications

(e.g., Riesbeck & Schank, 1989; Kolodner, 1993; Leake, 1996a; Watson, 1997; Lenz et al., 1998;

Bergmann, 2002). However, our aim in this article is to present a concise summary of research

that focuses on the problem-solving cycle in CBR, including some of the most recent advances.

In Section 2, we briefly examine the cognitive science foundations of CBR and the relationship

between CBR and analogical reasoning. In Sections 3, 4, and 5, we review a representative

selection of CBR research on aspects of retrieval, reuse and revision, and retention. Our

conclusions are presented in Section 6.

2    CBR and cognitive science

The study of CBR has been strongly influenced by research in cognitive science. A major current

underlying early CBR research was the study of human story understanding (Schank & Abelson,



4 R.  LÓPEZ DE MÁNTARAS  ET AL.

1977), especially as it led to investigations of the role of memory in understanding (Schank,

1982). Initial work on story understanding examined the knowledge structures underlying

understanding and their role in providing expectations for the events in stories. These knowledge

structures also provide a causal structure that links the states and events in stories and explains

agent behaviors. Dynamic memory theory (Schank, 1982) focused on the interplay of

understanding, learning, and memory. Memory Organization Packets, or MOPs, organize

sequences of events, but individual MOPs may share structure and inherit information from other

MOPs. MOPs organize individual events which can be recalled as remindings. These remindings

can play many roles in interpretation and problem solving. For example, during planning, a

problem may prompt the reminding of a past plan that can be adapted to help solve a new

problem. This forms a basis for CBR. Reminding may sometimes occur across contexts, enabling

lessons from one situation to be applied to a situation that is superficially quite different.

When expectations fail during understanding, remindings of prior explanations may be useful

to help resolve the anomalies present in the input (Schank, 1986; Schank et al., 1994). The

SWALE system (Kass et al., 1986; Schank & Leake, 1989), which models case-based

explanation generation, uses MOP-based expectations to guide understanding until it encounters

an anomaly, and then retrieves prior explanations to adapt to the new situation. The system’s

namesake was a star race horse whose unexpected death with no warning after a major race

shocked and intrigued the racing community. Experts were immediately reminded of similar

cases; one vet’s reaction to the news was “This sounds like an aneurysm. I’ve seen this sort of

thing before.” The death also prompted less routine remindings among students at the Yale AI

lab, such as the death of the rock star Janis Joplin due to an overdose of recreational drugs. While

recreational drug use was unlikely for Swale, adaptation to another type of drug use known to be

associated with racing (i.e., performance-enhancing drugs) led to a more plausible explanation,

though not one that was borne out by later investigation. SWALE modeled the role of CBR in

explanation-building and modeled creativity through methods to perform the flexible retrieval

and reuse processes needed to apply explanations in unusual ways.

 Another major current contributing to the study of CBR stems from examinations of the use

of precedents in legal reasoning. Issues addressed include handling multiple cases and the use of

hypothetical cases in legal arguments (e.g., Rissland et al., 2005). Several other studies have

explored the role of CBR in human reasoning and learning, giving rise, for example, to teaching

systems shaped by lessons from CBR (Schank et al., 1993-1994; Kolodner et al., 2003). A core

part of medical diagnostic reasoning is also shown to follow a type of pattern matching ( Patel &

Groen, 1986), which in essence is a case-based process of reasoning from experiences with

previous patients. This has given rise to a number of medical CBR systems that support this type

of decision making (Holt et al., 2005). See (Kolodner, 1994) and (Leake, 1998) for more

extensive discussions of CBR as a cognitive model.

2.1   CBR and analogical reasoning

CBR is also fundamentally related to research in analogical reasoning, an active area of research

in cognitive science. Analogical reasoning research focuses on basic mechanisms such as

matching and retrieval, and how those mechanisms are used in other cognitive processes,
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including reasoning and learning. Psychological studies have shed light on some basic properties

of human analogical reasoning. For example, there is ample evidence that, for people, retrieval is

heavily influenced by surface properties more than by deep similarities, unlike most CBR

systems. Yet when people are given the analogues, they find the comparisons easy (e.g., Gick &

Holyoak, 1980; Keane, 1988; Gentner et al., 1993). The centrality of relational information in

human similarity judgments is now reasonably well-established (e.g., Gentner et al., 2001;

Markman & Gentner, 2001; Kokinov & French, 2003). This reinforces the practice of using

structured representations that was common in early CBR, but it also suggests that CBR and

machine learning systems that use feature vectors are unlikely to be good models of human

cognition.

Psychological theories of analogical processes have led to computational models that can be

used for building CBR systems. For example, the Structure-Mapping Engine (SME)

(Falkenhainer et al., 1986; Forbus et al., 1994a) is based on Gentner’s (1983) structure-mapping

theory. SME has been used as a cognitive modeling tool to account for some existing

psychological findings, and several predictions made based on SME have been subsequently

confirmed in psychological experiments (Forbus, 2001). SME has also been used in a variety of

performance-oriented systems, ranging from a case-based tutor for engineering thermodynamics

(Forbus, 2001) to sketch understanding systems (Forbus et al., 2003). The Incremental Analogy

Machine (Keane & Brayshaw, 1988; Keane et al., 1994) was first to explore incremental

mapping of analogies, crucial for extended problem solving. Some computational models have

focused on how such computations can be implemented in neural architectures, such as Hummel

& Holyoak’s (1997) LISA model and Larkey & Love’s (2003) CAB model. Other computational

models explore how statistical association models can be combined with structural models (e.g.,

Ramscar & Yarlett, 2003).

One of the major differences in approach between CBR and analogy research is their focus on

generality. In analogy research, processes like matching and retrieval are typically assumed to be

broadly general cognitive processes, operating universally (or nearly so) over people’s mental

representations. In contrast, CBR often focuses on creating a system to perform a specific task

well on existing computing hardware, and generality is often traded off for efficiency or other

performance measures, with an emphasis on content theories that reflect the knowledge required

for particular task domains. Domain-specific matchers, retrieval systems, and even similarity

metrics are fair game. This can lead to controversies between the two communities. This

dissociation between similarity-based reminding and analogical inference was greeted with great

skepticism and shock in the CBR community because it contradicted a common assumption that

human memory retrieval relied on extensive indexing, using abstract principles. Forbus et al.’s

(1994b) MAC/FAC model captures this dissociation by postulating a first stage of retrieval that is

non-structural, a cheap filter that generally lets highly similar items through, followed by a much

more constrained structural match stage using SME. If the MAC/FAC model is correct, then

CBR index-based retrieval schemes would best be viewed as good engineering tools, rather than

as cognitive models. This is still an open question.

 CBR also differs from analogy research in its treatment of adaptation. Case adaptation is a

major issue for CBR, and must often be addressed in CBR applications. Consequently, it is

possible that the experience of CBR in this area will suggest fruitful questions to consider in the
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context of analogy. Studies focusing on integrating adaptability concerns with other CBR

processes include Smyth & Keane's (1998) adaptation-guided retrieval and Leake et al.’s (1997)

use of adaptation cases to reuse prior adaptations and predict adaptability.

2.2   Discussion

How closely should CBR systems mirror what people do? It can be argued that organizing CBR

systems to operate differently from people in some ways might make them more useful. Just as

eyeglasses and cars help us see and move farther than we can unaided, carefully designed CBR

systems could help us retrieve more relevant memories more often, and help us to work through

problems that we could not solve unaided due to working memory limitations. On the other hand,

no CBR system approaches the amount of knowledge and experience that people accumulate, nor

has any CBR system ever operated over the breadth of problems that people can solve. The

processes of human cognition may well hold the key to creating such capabilities.

3    Retrieval in CBR

An important step in the CBR cycle (Figure 1) is the retrieval of previous cases that can be used

to solve the target problem. As will be clear from our discussions in Sections 3.1 and 3.2,

improving retrieval performance through more effective approaches to similarity assessment has

been the focus of a considerable amount of research. However, several authors have questioned

the basic assumption on which similarity-based retrieval is based, namely that the most similar

cases are most useful for solving the target problem. In Section 3.3, we examine alternative

approaches to retrieval that have been motivated by a growing awareness of the limitations of

similarity-based retrieval, particularly in light of new application requirements.

3.1   Similarity assessment

In some applications of CBR, it may be adequate to assess the similarity of the stored cases in

terms of their surface features. The surface features of a case are those that are provided as part

of its description and are typically represented using attribute-value pairs. In other applications, it

may be necessary to use derived features obtained from a case’s description by inference based

on domain knowledge. It is worth noting, though, that whether or not a feature is readily

available has no bearing on whether or not it is predictive of a case’s relevance (Kolodner, 1996).

In yet other applications, cases are represented by complex structures (such as graphs or first-

order terms) and retrieval requires an assessment of their structural similarity. As might be

expected, the computation of derived features or use of structural similarity is computationally

expensive. However, the advantage is that more relevant cases may be retrieved.

One way to help assure that useful cases are retrieved without extensive computation is to

develop carefully crafted indexing vocabularies  to describe cases, so that the explicit description

of a case captures the features that determine its relevance. In fact, the focus of considerable early

CBR work concerned the development of such indexing vocabularies (Schank et al., 1990;
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Domeshek, 1992; Leake, 1992) as a way to avoid the need for computationally expensive

structure mapping and case matching procedures.

3.1.1   Assessment of surface similarity

In approaches to retrieval based on surface features, the similarity of each case to the target

problem, typically represented as a real number in [0, 1], is computed according to a given

similarity measure. Usually the retrieved cases are the k most similar to the target problem, an

approach often referred to as “k nearest neighbor” retrieval or simply k-NN (e.g., Cover & Hart,

1967). Alternatively, the retrieved cases may be those whose similarity to the target problem

exceeds a predefined threshold.

There are many ways of measuring similarity and different approaches are appropriate for

different case representations. For example, it is common practice for each case to be represented

as a simple feature vector (or set of attribute-value pairs). With this representation, a local

similarity measure is usually defined for each attribute and a global similarity measure is

computed as a weighted average of the local similarities. The weights assigned to case attributes

allow them to have varying degrees of importance and may be selected by a domain expert or

user, or as we shall see in Section 3.2, determined by an adaptive learning process.

A CBR system can guarantee that it retrieves the k cases that are maximally similar to the

target problem by computing the similarity of the target problem to every case in memory.

However, sequentially processing all cases in memory has complexity O(n), where n  is the

number of cases. This may not be an acceptable overhead if n is very large. One approach to

reducing retrieval time, as in the pioneering work of Stanfill & Waltz (1986), involves the use of

massively parallel computers. While the requirement for expensive hardware is an obvious

drawback, the approach still guarantees finding the maximally similar cases by performing an

exhaustive memory search. Stanfill & Waltz describe the implementation of a memory-based

reasoning algorithm on a fine-grained SIMD parallel machine. Their Connection Machine

performs a highly parallel search for similar cases and was applied to the problem of

pronouncing English words using a case memory containing thousands of examples of correctly-

pronounced words.

Another approach to reducing retrieval time relies on the organization of cases in memory. For

example, Wess et al. (1993) propose an approach to retrieval in which organization of the case

memory is based on similarities between cases. A binary tree called a k-d tree is used to split the

case memory into groups of cases in such a way that each group contains cases that are similar to

each other according to a given similarity measure. To ensure that the most similar cases are

retrieved, the retrieval algorithm computes similarity bounds to determine which groups of cases

should be considered first.

Smyth & McKenna (1999a; 2001b) propose an alternative model of case retrieval that is

informed by the availability of an explicit model of case-base competence (Smyth & McKenna,

1998; 2001a). The so-called footprint-based retrieval algorithm is a two-stage retrieval approach

that searches two distinct populations of cases. First, it involves the search of a small subset of

so-called footprint cases which have been identified as providing a covering set for the entire

case base (i.e., can solve the same set of problems). They are drawn from the key competence

groups that exist within the case base as made available by the competence model. The first stage
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of retrieval identifies the footprint case that is most similar to the target problem as the reference

case, and the second stage of retrieval searches another small subset of cases that are related to

this reference case. This related set is chosen because its cases either cover (solve) the reference

case or because they can be covered by a reference case. The final case chosen for retrieval is the

related set case that is most similar to the target problem. The approach has produced significant

retrieval efficiency benefits by searching only a small fraction of the cases in the case base, while

at the same time guaranteeing the selection of near optimal cases. Footprint-based retrieval is

related to Shaaf’s (1996) fish and shrink strategy in which cases are linked according to specific

aspect similarities. The latter approach assumes that if a case does not fit a query then this will

reduce the likely usefulness of its neighbors. This allows for the efficient elimination of many

cases during retrieval.

Simoudis & Miller (1990) argue that retrieval based only on surface similarity may not be

sufficiently discriminating when applied to large case memories, and needs to be combined with

other techniques to reduce the number of cases considered for adaptation. They present an

approach called validated retrieval that can dramatically reduce the number of potentially

relevant cases. Retrieval based on surface similarity is combined in the approach with validation

of the retrieved cases to determine if they are applicable to the target problem. Associated with

each case in memory is a validation procedure consisting of a set of domain-specific tests and

their results for that case. To validate a retrieved case, its associated tests are applied to the target

problem. The retrieved case is deemed relevant to the target problem only if all the tests give the

same results for the target problem as they do for the retrieved case.

The validation phase that follows the initial retrieval of cases in validated retrieval resembles

the justification phase in CASEY, a CBR system for medical diagnosis (Koton, 1988). The goal

of CASEY’s justification component is to determine whether the causal explanation of a

retrieved case applies to the target problem. Often this enables CASEY to avoid invoking its

causal model when creating an explanation for the target problem. Other systems that combine

retrieval based on surface similarity with an additional filter to improve retrieval performance

include CHEF (Hammond, 1986), SWALE (Kass et al., 1986), KRITIK (Goel &

Chandrasekaran, 1989), and PROTOS (Porter et al., 1990).

3.1.2   Assessment of structural similarity

Though computationally expensive because it relies on extensive use of domain knowledge,

retrieval based on structural similarity has the advantage that more relevant cases may be

retrieved. As in Forbus et al.’s (1994b) MAC/FAC model (Section 2.1), one way of mitigating

the extra cost is to combine surface and structural similarity in a two-stage retrieval process.

Experiments based on human assessment of similarities and analogies have confirmed that both

surface and structural similarity assessment are necessary for sound retrieval (Forbus et al.,

1994b). Inspired by previous work by Gentner & Forbus (1991), Börner (1993) proposes an

approach to retrieval in which fast retrieval of candidate cases based on their surface similarity to

the target problem is followed by a more expensive assessment of their structural similarity. She

defines structural similarity as the most specific graph structure that the target problem has in

common with a stored case, and a set of transformation rules, given as background knowledge,

needed to determine this common structure.
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Object-oriented case representations generalize simple attribute-value representations. Cases

are represented by sets of objects. Objects belong to classes, which are organized in a class

hierarchy. An object’s class determines the attributes it may have. Attributes may be relational,

which means that their values will themselves be objects. Thus, the class hierarchy must contain

useful similarity knowledge. For example, objects that are close to each other in the hierarchy are

likely to be more similar than objects that are far apart. However, Bergmann & Stahl (1998)

suggest that because there is no clear view about how the similarity between objects of different

classes should be determined, similarity assessment is often restricted to objects of the same

class. To address this issue, they present a framework for computing similarities for object-

oriented case representations that enables objects of different classes to be compared and

accounts for the knowledge implicit in the class hierarchy.

Creek (Aamodt, 1994; 2004) uses an object-oriented, frame-based representation system to

capture both cases and general domain knowledge, which together can be viewed as a multi-

relational semantic network. Similarity assessment is once again a two-step process in which

indices are first used to retrieve a set of potentially similar cases and then a closer examination of

the cases takes place in which general domain knowledge is utilized to generate explanations for

feature-to-feature matches. A method inspired by Cohen’s (1985) work on endorsement theory

and plausible inference constitutes a core part of the inference machinery underlying the

generation and evaluation of explanatory structures.

Spreading activation methods (e.g., Brown, 1994) represent case memory as an interconnected

network of nodes capturing case attribute-value combinations. Activation spreads from target

attribute-value nodes across the network to cause the activation of case nodes representing

similar cases to the target. The approach is efficient and flexible enough to handle incomplete

case descriptions, but can incur a significant knowledge engineering cost in constructing the

activation network. Furthermore, the spreading activation algorithm requires specific knowledge

to guide the spread of activation throughout the network. Related network-based retrieval

methods are proposed by Wolverton & Hayes-Roth (1994) and Lenz (1996).

Another way of representing relations between attributes uses the concept of generalized cases

(Bergmann et al., 1999; Bergmann, 2002; Mougouie & Bergmann, 2002). A generalized case

covers a subspace of the problem-solution space, providing solutions to a set of closely-related

problems, rather than just a single problem. Dependencies between attributes are explicitly

represented to support the extension of similarity measures. For example, Bergmann (2002)

defines the similarity between a query and a generalized case as the similarity between the query

and the most similar case contained in the generalized case. Mougouie & Bergmann (2002)

formulate the similarity assessment problem for generalized cases described by continuous

attributes as a nonlinear programming problem and introduce an optimization-based retrieval

method. Tartakovski et al. (2004) extend the case representation to support mixed, discrete, and

continuous attributes. They also formulate similarity assessment as a special case of a mixed

integer nonlinear optimization problem, and propose an optimization-based retrieval method

operating on a given index structure.

Bunke & Messmer (1993) propose one of several structural similarity measures for domains in

which cases are represented as graph structures. Their measure is based on graph editing

operations (i.e., inserting, deleting, and substituting nodes and edges in the graph). To improve
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the practical efficiency of the approach, they introduce a subgraph matching  algorithm that

works on a compact version of the case memory in which subgraphs that are common to multiple

cases are stored only once. In a similar vein, Champin & Solnon (2003) propose a similarity

measure, based on graph editing operations within a modification of Tversky’s (1977) contrast

model, to compare cases represented by labeled graphs where vertices and edges can have more

than one label. To account for the intractability of this representation, they propose a heuristic

greedy algorithm.

Arcos & López de Mántaras (1997) describe a retrieval mechanism called perspectives for

structured case representations. Cases and degrees of similarity are represented as feature terms,

which are equivalent to first-order terms and can also be viewed as directed acyclic graphs

labeled by features and values (Plaza, 1995). Their knowledge-intensive approach to retrieval

uses a subsumption mechanism between the feature terms to obtain an order relation between

case descriptions on the basis of a set of user-defined relevant aspects of the target problem. The

system is implemented in an object-oriented language (Arcos, 1997) based on feature terms and

has been applied to the problem of synthesizing expressive music (Arcos & López de Mántaras,

2001; López de Mántaras & Arcos, 2002).

Emde & Wettschereck (1996) propose an alternative way of measuring the similarity of first-

order terms. They also present a generalization of a propositional instance-based learner

(distance-weighted k-NN) to first order representations. Issues addressed in the approach, which

the authors refer to as relational instance-based learning (RIBL), include the generation of cases

from the knowledge base, assessment of similarity between arbitrarily complex cases, and

estimation of the relevance of predicates and attributes. Their empirical results suggest that RIBL

can achieve high levels of classification accuracy in a variety of domains.

3.1.3   Similarity frameworks

With so many ways of measuring similarity, it is not surprising that some researchers view

similarity in a general way, independent of any specific algorithm. For example, Richter (1992)

discusses the notion of similarity in the context of a formal mathematical framework. He

describes approaches to modeling similarities with increasing complexity and informativeness.

These range from simple predicates (least informative) to relations and functions (most

informative). He also discusses general forms of distance functions and similarity measures,

including a generalization of Tversky’s (1977) contrast model, which uses a set-theoretic

approach to express the similarity between objects as a linear combination of their numbers of

matching and mismatching features. One limitation of Tversky’s model is that all features are

assumed to be equally important, whereas Richter’s generalization allows different weights to be

assigned to features. However, Richter emphasizes that to allow for changes in the problem-

solving environment, the parameters of a similarity measure should be the result of an adaptive

learning process, an idea we explore further in Section 3.2.

Osborne & Bridge (1996) present another general framework that distinguishes, in particular,

between ordinal and cardinal similarity measures. Ordinal measures use a description of the

target problem to induce a partial ordering over the cases in the case memory. No information

about the degree of similarity is given; the cases are merely ordered, with the implication that

cases higher in the ordering should be retrieved prior to any that are lower in the ordering. On the
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other hand, cardinal measures are functions that score the cases, returning real numbers to denote

degrees of similarity. Osborne & Bridge present a set of operators that allows the flexible and

systematic construction of both ordinal and cardinal similarity measures. In later work (e.g.,

Osborne & Bridge, 1997), the framework is generalized to accommodate similarity measures in

which the degree of similarity is denoted by any value drawn from an ordered set. With this

extension, the framework accounts for similarity measures in which the degree of similarity is

denoted by common subgraphs (Börner, 1993) or feature terms (e.g., Jantke, 1994; Plaza, 1995).

3.2   Improving and evaluating retrieval performance

Several techniques for improving the speed of retrieval were mentioned in our discussion of

similarity assessment in Section 3.1. Another important aspect of retrieval performance is its

impact on solution quality. Measures used to evaluate retrieval performance in terms of solution

quality are likely to depend on the type of problem-solving task (e.g., classification,

recommendation, planning) for which the system is designed. For example, evaluation in terms

of classification accuracy is possible only if the outcome classes to be predicted in the test set are

represented in the training set. This is not the case in domains such as product recommendation

in which each outcome class (a unique product or service) is represented by a single case in the

case base (McSherry, 2001c; 2001d). Evaluation of classification accuracy is similarly

compromised in conversational CBR (Aha et al., 2001), where it is typical for most cases to have

unique solutions. Appropriate measures of retrieval performance for datasets of this type include

precision, recall, and the average length of problem-solving dialogues (Aha et al. 2001;

McSherry, 2001c; 2001d; 2003a; McGinty & Smyth, 2003).

Problems likely to affect  solution quality include the use of inadequate similarity measures,

noise, missing values in cases, unknown values in the description of the target problem, and the

so-called heterogeneity problem that arises when different attributes are used to describe different

cases (Aha, 1998; Aha et al., 2001; McSherry, 2001d; Stahl & Gabel, 2003; Bogaerts & Leake,

2004). Bogaerts & Leake (2004) propose and evaluate a variety of possible strategies for

handling missing information in similarity assessment. Retrieval based on incomplete

information is an important challenge in conversational CBR, where a description of the target

problem is incrementally (and often incompletely) elicited in an interactive dialogue with the

user.  Aha et al. (2001) evaluate an approach to incremental query elicitation that takes account

of the heterogeneity that is typically found in domains such as fault diagnosis. McSherry (2003a)

proposes a conversational CBR approach to product recommendation that includes a mechanism

for ensuring that the dialogue is terminated only when it is certain that a more similar case will

not be retrieved if the dialogue is allowed to continue.

Retrieval performance can often be improved by making the similarity measure the subject of

an adaptive learning process. Focusing on variants of k-NN that automatically learn the weights

assigned to features, Wettschereck & Aha (1995) propose a multi-dimensional framework for the

categorization and comparison of feature weighting methods in CBR. The proposed framework

can be used to categorize new methods, thus facilitating their comparison with existing methods.

However, it cannot be applied to k-NN methods that incorporate domain specific knowledge and

complex representations. Noting that most feature weighting methods are designed to optimize
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classification accuracy, Wilke & Bergmann (1996) argue that decision costs should also be

considered in many applications. Experimental results  support the hypothesis that classification

based on weights learned using cost optimization leads to lower decision costs than classification

based on weights learned by accuracy optimization.

Improving the adaptability of retrieved cases can also be the subject of an adaptive learning

process. In case-based planning, for example, Muñoz-Avila & Hüllen (1996) extend the foot-

printed similarity metric used in Prodigy/Analogy (Veloso, 1994; Veloso & Carbonell, 1994) by

incorporating feature weights in a new metric which counts the weights of relevant features that

match features in the target problem. A feature is considered relevant to a planning goal with

respect to a solution if it contributes to achieving the goal in the solution. The authors also

present an algorithm for analyzing the performance of retrieved cases to identify features whose

weights need to be recomputed. The algorithm provides a bridge between the new similarity

metric and a feature weighting model based on incremental optimizers. Experimental results

show that integrating the proposed  similarity metric and analysis algorithm in the feature

weighting model improves the adaptability of the retrieved cases by converging to best weights

over a period of multiple problem-solving episodes.

Many CBR applications rely on domain knowledge encoded in the similarity measures used

by the system to guide the retrieval of relevant cases. Such a knowledge-intensive approach to

similarity assessment typically relies on knowledge acquired from a domain expert. Stahl &

Gabel (2003) and Gabel & Stahl (2004) investigate the use of machine learning techniques to

reduce the knowledge-acquisition overheads associated with the construction and maintenance of

domain-specific similarity measures. Feedback about the quality of retrieval results provided by a

domain expert is used in the approach to guide the automatic refinement of similarity measures.

3.3   Alternatives to similarity-based retrieval

Much of the research we describe in this section was motivated by a growing awareness of the

limitations of retrieval based purely on similarity. While continuing to play a prominent role in

retrieval, similarity is increasingly being combined with other criteria to guide the retrieval

process, such as how effectively the solution space is covered by the retrieved cases (McSherry,

2003b), how easily their solutions can be adapted to solve the target problem (e.g., Smyth &

Keane, 1998), or how easily the proposed solution can be explained (Doyle et al., 2004).

3.3.1   Adaptation-guided retrieval

While many factors may affect retrieval performance in a CBR system, often what matters most

is whether the retrieved cases can be used to solve the target problem. Thus effective retrieval is

not simply a matter of finding cases that are similar but cases that are usefully similar. This view

is perhaps most formally expressed by Bergmann et al. (2001), who argue that similarity is used

as a proxy for solution utility. However, this raises the question of whether similarity is always an

adequate proxy for solution utility. In situations where it is not, it may be necessary for other

forms of knowledge available to a case-based reasoner to be brought to bear on the retrieval task.

For example, Smyth & Keane (1994; 1995a; 1996; 1998) question the assumption that the

most similar case is the one that is easiest to adapt. They argue that sometimes the most similar
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case may be impossible to adapt, for example if adaptation knowledge is incomplete, as is often

the case in weak-theory domains that are commonly targeted by CBR. To address this issue, they

introduce the notion of adaptation-guided retrieval in which the adaptation requirements of cases

are explicitly assessed during retrieval by means of domain-specific adaptation knowledge. In

contrast to traditional approaches that relied on heuristics to predict the ease with which a given

case could be adapted, adaptation-guided retrieval combines local and global measures of

adaptability to ensure that the most adaptable case is always selected. In this way, it bridges the

gap between retrieval (and similarity knowledge) and reuse (and adaptation knowledge).

Empirical results show that the approach can significantly reduce adaptation failures and

adaptation costs by performing preliminary adaptation work during retrieval. Leake et al. (1997)

propose a case-based approach to this problem, predicting adaptation effort based on prior

adaptation experiences.

3.3.2   Diversity-conscious retrieval

In CBR recommender systems, descriptions of available products are stored in a product case

base and retrieved in response to a query describing the user's requirements. An important

advantage of similarity-based retrieval in this context is that if there is no case that exactly

matches the user's requirements, she can be shown the cases that are most similar to her query.

However, one problem is that the most similar cases are often very similar to each other, with the

result that the user is offered a limited choice (Smyth & McClave, 2001). In other words, the

recommended cases may be lacking in diversity. To address this issue, retrieval algorithms have

recently been introduced that combine measures of similarity and diversity in the retrieval

process to achieve a better balance between these often conflicting characteristics (e.g., Smyth &

McClave, 2001; McSherry, 2002; McGinty & Smyth, 2003). For example, Smyth & McClave

(2001) propose an approach to retrieval that incrementally selects a diverse set of cases from a

larger set of similarity-ordered cases. Experimental results have shown that major gains in

diversity can often be achieved at the expense of relatively small reductions in similarity.

3.3.3   Compromise-driven retrieval

McSherry (2003b; 2004a) proposes a compromise-driven approach to retrieval in recommender

systems inspired by the observation that the cases that are most similar to the user’s query are

often not sufficiently representative of compromises (i.e., unsatisfied requirements) that the user

may be prepared to accept. A basic assumption in similarity-based retrieval is that a given case

(or product) is more acceptable than another if it is more similar to the user’s query.

Compromise-driven retrieval is based on the weaker assumption that a given case is more

acceptable than another if it is more similar to the user’s query and it involves a subset of the

compromises that the other case involves. As well as being less likely to be contradicted by user

behavior, this weaker assumption provides the basis of a more principled approach to deciding

which cases are included in the retrieval set than arbitrarily limiting the number of retrieved cases

as in k-NN. For example, no case is included in the retrieval set if there is a more similar case

that involves a subset of the compromises it involves.

Though not relying on an explicit measure of diversity in the retrieval process, compromise-

driven retrieval shares with other approaches to enhancing diversity (e.g., Smyth & McClave,
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2001; McSherry, 2002) the goal of offering users a better choice of alternatives. Also, it

guarantees that the retrieval set provides full coverage of the available cases; that is, for any case

that is not included in the retrieval set, one of the recommended cases is at least as good in terms

of its similarity to the user’s query and the compromises it involves.

3.3.4   Order-based retrieval

Order-based retrieval is another approach with particular application to recommender systems

(Bridge & Ferguson, 2002a). Rather than scoring the cases, it offers an expressive query

language for defining and combining ordering relations, and the result of query evaluation is to

partially order the cases in the case base. The query language supports queries that naturally

combine preferred values with other preference information such as maximum values, minimum

values, and values that the user would prefer not to consider. As in compromise-driven retrieval

(McSherry, 2003b), there is no need for an explicit measure of recommendation diversity

because the set of retrieved cases is inherently diverse (Bridge & Ferguson, 2002b).

3.3.5   Explanation-oriented retrieval

It is often important for CBR systems to explain their reasoning  and to justify their suggestions

or solutions (e.g., Rissland, et al. 1984; Ashley & Aleven, 1992; Leake, 1996b; McSherry,

2001b; Cunningham et al., 2003; Doyle et al., 2004; McSherry, 2004b; Leake & McSherry,

2005). Explanations serve many different goals, such as teaching the user about the domain or

explaining the relevance of a question the user is asked (Leake, 1991; 1992; Sørmo & Cassens,

2004; Sørmo et al., 2005). For example, McSherry (2003a; 2005) proposes a conversational CBR

approach to product recommendation in which the system can explain why a question is being

asked in terms of its ability to discriminate between competing cases. Explaining retrieval

failures is another potential role of explanation in CBR recommender systems (e.g., McSherry,

2004c). 

More commonly, the goal is to explain how the system reached its conclusions. In

applications such as classification and diagnosis, an attractive feature of CBR is the ability to

explain the predicted outcome by showing the user one or more of the target problem’s nearest

neighbors. As noted by Leake (1996b), “... the results of CBR systems are based on actual prior

cases that can be presented to the user to provide compelling support for the system's

conclusions”. Such explanations are known as precedent-based explanations and have long been

a feature of case-based models of legal argumentation (e.g., Ashley, 1991; Branting, 1991;

Rissland & Skalak, 1991). An empirical study by Cunningham et al. (2003) has shown that they

are often more compelling than alternative forms of explanation. However, several authors have

questioned the effectiveness of precedent-based explanations in which the user is simply shown

the case that is most similar to the target problem.

For example, McSherry (2004b) argues that such explanations are often less informative than

might be expected, and should ideally be supported by an analysis of the pros and cons of the

proposed solution. Case-based legal argumentation (Ashley, 1989, 1991; Ashley & Aleven,

1992; 1997; Aleven, 2003) broadens the notion of case similarity to include other considerations

(e.g., noteworthy distinctions among cases, the existence of counterexamples) with a view to

explaining and distinguishing the strengths and weaknesses of relevant cases, providing examples
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to resolve conflicts, presenting counterexamples to proposed solutions, and posing hypothetical

variations of problems to illustrate their effects on the analysis.

Doyle et al. (2004) argue that the most compelling explanation case may not necessarily be

the one that is most similar to the target problem. In particular, they demonstrate how cases that

lie between the target problem and the decision boundary can often be more useful for

explanation. This has motivated the development of explanation-oriented retrieval. The approach

remains precedent-based, but once a classification or diagnosis has been reached on the basis of

the nearest neighbors, the system performs an additional retrieval step, using an explanation

utility metric, to obtain the explanation case. Doyle et al. (2004) also report the results of an

empirical study that show their explanation cases to be generally more compelling than the

nearest neighbor.

4    Reuse and revision in CBR

The reuse process in the CBR cycle is responsible for proposing a solution for a new problem

from the solutions in the retrieved cases. In the “4 REs” of Aamodt & Plaza’s (1994) classic CBR

cycle (Figure 1), reuse appears second, after retrieve, and is followed by revise and retain.

Reusing a retrieved case can be as easy as returning the retrieved solution, unchanged, as the

proposed solution for the new problem. This is often appropriate for classification tasks, where

each solution (or class) is likely to be represented frequently in the case base, and therefore the

most similar retrieved case, if sufficiently similar, is likely to contain an appropriate solution. But

reuse becomes more difficult if there are significant differences between the new problem and the

retrieved case’s problem. In these circumstances the retrieved solution may need to be adapted to

account for these important differences. Medical decision making is one domain in which

adaptation is commonly required.

Adaptation becomes particularly relevant when CBR is used for constructive problem-solving

tasks such as design, configuration, and planning. For such tasks it is unlikely that each solution

(design, configuration, or plan) will be represented in the case base. Thus the retrieved solution is

simply an initial solution and any differences between the new problem and the retrieved case’s

problem are likely to alter the retrieved solution.

Adaptation methods differ in complexity with respect to two dimensions: what is changed in

the retrieved solution, and how the change is achieved. Substitution adaptation simply

reinstantiates some part(s) of the retrieved solution, whereas transformation adaptation alters the

structure of the solution (Kolodner, 1993). Adaptation is commonly achieved by altering the

retrieved solution directly, but the more complex generative adaptation replays the method of

deriving the retrieved solution on the new problem. These three adaptation methods will be used

to structure this section. The contributions we discuss are different approaches to adaptation for

reuse (i.e., adaptation during solution formulation). Adaptation can also be used when feedback

about a proposed solution indicates that a repair is needed; this is part of the revise stage in the

CBR cycle.

Hammond (1990) describes the reuse of recipes in CHEF, a menu-planning system.

Substitution adaptation is used to substitute ingredients in the retrieved recipe to match the menu

requirements (e.g., when a recipe containing beef and broccoli is retrieved for a meal requiring
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chicken and snow peas, the meat component is replaced by chicken and the vegetable component

is substituted by snow peas). Transformation adaptation may also be needed to amend the

proposed recipe further by adding or removing steps in the recipe that result from any ingredient

substitutions (e.g., for chicken, rather than beef, a new skinning step should be added). Further

transformations may occur at the revise stage where critics analyze the failure of a recipe and

repair strategies are applied to the proposed recipe to add or remove steps in the failed recipe.

CHEF’s learning of critics introduced the topic of case-based planning and many of its themes

(e.g., indexing, use of cases in memory, failure-driven learning).

SWALE (Schank & Leake, 1989) is a case-based explanation system for story understanding

that reuses old explanations by applying substitution adaptation to amend the actor, their role or

the action in the retrieved explanation (Kass, 1989). Transformation adaptation may again be

needed to add or remove components in the current explanation resulting from these

substitutions.

Déjà Vu (Smyth & Keane, 1995a; 1998) is a CBR system for the automated design of plant-

control software. It builds on some of the ideas proposed in CHEF (Hammond, 1990) by utilizing

transformation adaptation knowledge in the form of general adaptation strategies and more

specialized adaptation specialists. An important and novel contribution of Déjà Vu is its

representation of complex plant-control software designs as hierarchies of related cases and its

adoption of a hierarchical model of case retrieval and reuse. For example, complex target

problems lead to the retrieval and adaptation of the solutions to abstract cases, the elements of

which in turn lead to the retrieval and adaptation of more detailed sub-cases. In this way, the

solution transformation is performed by a combination of problem decomposition, sub-case

adaptation, and solution re-integration. A unique feature of Déjà Vu, as discussed in Section 3.3,

concerns its ability to leverage existing adaptation knowledge during retrieval to evaluate the

adaptability of cases. This alleviates some adaptation problems by guaranteeing the retrieval of

cases that can be adapted easily.

Model-based adaptation is a popular approach to transformation adaptation in which causal

reasoning is integrated with CBR. Koton’s (1988) CASEY is an early example of model-based

adaptation, in a medical diagnosis CBR system that utilizes domain independent repair strategies

to adapt the retrieved explanation to account for differences between the symptoms of new and

retrieved patients. KRITIK (Goel & Chandrasekaran, 1989) relies on model-based transformation

adaptation to reuse designs for physical devices. Model-based reasoning creates a causal

explanation for the new design by transforming the explanation of the retrieved one. Faltings’

(1997a) CADRE also applies model-based reasoning in case-based design. Reuse involves the

combination of retrieved design cases and the transformation adaptation of the retrieved design.

This approach was evaluated in two design prototypes: CADRE for architectural design and

FAMING (Faltings & Sun, 1996) for mechanism design.

Evolutionary methods have also been explored for adaptation, in the context of architectural

design (Gómez de Silva Garza & Maher, 2000). The retrieved designs become the initial

population for a genetic algorithm and mutation and crossover operators are used to generate new

designs for the population. Mutation is a substitution adaptation that randomly alters parts of one

design to produce a new design. Crossover is a transformation adaptation that can alter the

structure of the design. It generates two new designs from two parent designs by interchanging
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parts of the design in each parent. The genetic algorithm’s fitness function evaluates the designs

by calculating how well they match the design requirements. The design with the highest match

to the requirements is the new design.

Purvis & Pu (1995) present adaptation as a constraint satisfaction problem. The design cases

are represented as constraint satisfaction problems, where the design requirements are the

constraints and the design is the solution. The retrieved designs are adapted by applying a

minimum conflicts heuristic to guide the repair of the design to match the new design

requirements.

The work discussed so far in this section has been devoted to substitution and transformation

adaptation. Based on studies of several CBR systems that use adaptation, Fuchs & Mille (1999)

propose a knowledge-level task model for substitution and transformation adaptation processes.

Their reuse task is composed of copy and adapt subtasks. The adapt subtask comprises selecting

a problem difference, modifying the solution, and finally verifying the solution. The modify task

can remove or substitute/add part of the solution, and finally the substitute/add task searches for a

suitable replacement by using additional cases, applying a heuristic, or accessing domain

knowledge such as explanations, abstractions or specializations.

Generative adaptation differs from substitution and transformation adaptation in that it does

not adapt the retrieved solution directly, but instead derives the new solution by replaying the

method used to derive the retrieved solution. Generative adaptation may result in a reinstantiation

of parts of the retrieved solution, like substitution, or in a transformation that alters the structure

of the solution. Prodigy/Analogy (Veloso, 1994; Veloso & Carbonell, 1994), a general purpose

planning system, applies derivational replay to recompute a replacement for a faulty element of

the retrieved solution by recalling how the element was computed and replaying the computation

for the new problem. Derivational replay is a variant of derivational analogy (Carbonell, 1986) in

which the complete solution is recomputed. In this work an analogy between the new and

retrieved problems is used to adapt the method of deriving the solution.

Although CBR systems avoid reasoning from first principles by remembering and reusing past

solutions, substitution and transformation adaptation of retrieved solutions is often achieved by

reasoning about how the problem differences should be reflected in the adaptation to the

proposed solution. Therefore the acquisition of adaptation knowledge can require a substantial

knowledge engineering effort. The difficulty of acquiring adaptation knowledge was identified in

early CBR research but, until recently, relatively little effort has been devoted to automating the

acquisition of adaptation knowledge. Leake et al.’s (1995) DIAL system for disaster response

planning builds up its adaptation knowledge as it applies case-based planning. The adaptation

knowledge it learns is a set of adaptation cases that capture the steps in successful manual plan

adaptations. DIAL applies a mixed-initiative adaptation process: if an adaptation case matches

the current adaptation need it is reused by a CBR process, otherwise DIAL attempts to apply a

general rule to revise the plan (e.g., add or remove a step), but as a final option it resorts to

manual adaptation. This last option offers the opportunity to acquire a new adaptation case when

the manual adaptation generates a successful plan.

Several systems exploit the knowledge already captured in the cases as a source of adaptation

knowledge. McSherry (1999) reuses pairs of cases from the case base that contain the same

differences as those found between the new problem and the retrieved case. The solution
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difference from the pair of cases is replayed on the retrieved case. Rather than reusing differences

directly from cases, Hanney & Keane (1997) use the case base as a source of case pairs that are

used as training data to learn rule-based adaptation knowledge that generalizes the adaptations

represented in the case pairs. Wilke et al.’s (1997) knowledge-light learning provides a

framework for such approaches, in which knowledge contained elsewhere in the CBR system,

like the case base, is used to learn or improve the adaptation knowledge.  Jarmulak et al. (2001)

use a set of adaptation cases created from the original case-base as the knowledge source of a

case-based adaptation system. Further work has applied different learning methods to assemble

an ensemble of rule-based adaptation experts learned from these adaptation cases (Wiratunga et

al., 2002).

5    Retention in CBR

In the classic review paper by Aamodt & Plaza (1994), retention is presented as the final step in

the CBR cycle, in which the product of the most recent problem-solving episode is incorporated

into the system’s knowledge. To a great extent this has traditionally translated into a variety of

approaches for recording the product of problem solving as a new case that can be added to the

case base. Of course, there are various issues concerning how best to learn a new case and

different systems record different types of information in their cases. Most, for example, simply

record the target problem specification and the final solution, with the implicit assumption that

the outcome was successful.  For example, when CBR is integrated with a generative problem-

solving system for speed-up learning, the success of the system’s solutions may be guaranteed

(e.g., Veloso, 1994; Veloso & Carbonell, 1994). When outcomes are less reliable or when the

criteria for success are more complex, case representations must include additional information

on the outcome of the solution, which may also include fine-grained information on how well the

solution addressed many dimensions of the system’s goals (e.g., Goel et al., 1991). Another

question is what to store concerning the solution itself. Many systems store only the solution, but

others record a much deeper representation of the problem solving process that brought about the

particular solution. In Veloso & Carbonell’s work, for example, derivational traces are stored in

cases. These rich knowledge structures describe precisely how a given solution was derived,

providing a trace of the decision-making processes that led to a particular solution.

In general, the modern view of retention accommodates a much broader perspective of what it

means for a CBR system to learn from its problem solving experience, a view that is largely a

response to certain critical issues that have arisen during the practical application of CBR

systems in complex problem solving scenarios. In this section we will review this body of work,

highlighting many of the critical issues associated with open-ended case learning policies and

how these issues have been resolved by novel approaches to case-base optimization. Moreover,

we will argue that these issues have served as an important catalyst for research in the area of

case-base maintenance and the maintenance of other aspects of a CBR system, which

accommodates a broader perspective on case learning and retention.
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5.1   The utility problem in CBR

In the past the prevailing view of case learning in CBR was based on the assumption that

learning would occur as a by-product of every problem solving episode. However, as CBR

systems were developed and deployed for real-world application scenarios, the potential pitfalls

of long-term case learning became apparent, especially in relation to the impact of case-base

growth on retrieval costs. This is an example of the utility problem identified in explanation-

based learning research (e.g., Minton, 1990). This problem refers to the performance degradation

experienced by speed-up learners as a result of learning control knowledge. In brief, Minton

demonstrated how rules learned for reducing problem solving time, by directing the search more

carefully, might ultimately degrade overall system performance as the time spent considering the

application of a speed-up rule eventually overtakes the time needed for first principles problem

solving. For example, overly specific rules that are seldom applicable, or rules with a high match

cost, or rules that offer limited speed-up were all found to contribute to a decline in problem

solving efficiency.

At the heart of the utility problem is a natural trade-off between the benefits of speed-up

knowledge and the cost of its application. A similar trade-off also exists in CBR systems (Francis

& Ram, 1995; Smyth & Keane, 1995b; Smyth & Cunningham, 1996). Cases correspond to a

form of speed-up knowledge in the sense that retrieval and reuse of similar cases are expected to

provide more efficient problem solving than first-principles methods, with additional cases

increasing the range of problems that can be solved rapidly. However, this rather naive view of

case knowledge fails to consider retrieval costs. In CBR systems the utility problem is caused by

the conflict between (1) the average savings in adaptation effort due to the availability of a

particular case, which tends to increase efficiency as the case base grows, and (2) the average

retrieval time associated with a given case-base size, which tends to decrease efficiency. Smyth

& Cunningham (1996) demonstrate the inevitability of the utility problem in CBR under

reasonable general assumptions about the retrieval and reuse characteristics of a CBR system.

They show that as a result of case learning, retrieval efficiency (mean retrieval time) tends to

degrade while adaptation efficiency (mean adaptation time) is seen to improve, but at an ever

decreasing rate. Initially, as a case base grows each newly learned case can have a significant

impact on adaptation as it is more likely to improve overall case-base coverage. However, as the

case base grows new cases are more likely to overlap with existing cases and so offer little in the

way of new coverage and minimal adaptation savings. As new cases are added retrieval costs

become progressively greater but adaptation savings progressively less. Eventually the increase

in retrieval time as a result of a new case addition is greater than the adaptation savings offered.

At this critical case-base size, overall problem solving efficiency begins to degrade.

5.2   Harmful cases, competence models, and selective retention

Once the relevance of the utility problem to CBR became clear, researchers began to look to the

machine learning literature as a source of coping strategies. The starting point for this research

effort includes early work by the pattern recognition community on nearest neighbor

classification (Cover & Hart, 1967), focusing on a number of ways to remove harmful training
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examples from a set of instances. For example, Hart's condensed nearest neighbor (CNN)

approach (Hart, 1968) is an early attempt to eliminate redundancy from a collection of instances,

which in turn led to a family of related redundancy detection methods (e.g., Gates, 1972; Tomek,

1976b). Wilson (1972) adopts a complementary stance, focusing on the elimination of noise

rather than redundancy from training data. For example, Wilson's edited nearest-neighbor (ENN),

and Tomek's (1976a)  repeated edited nearest neighbor (RENN) techniques represent the genesis

of a variety of noise reduction techniques that remain as valuable coping strategies even today.

In the 1990's, with the revival of lazy learning techniques and a renewed interest in nearest

neighbor methods, researchers from the machine learning community once again focused their

attention on ways to eliminate harmful data from training sets. Algorithms proposed by Aha et al.

(1991) and Wilson & Martinez (1997) are good examples of a new breed of machine learning

inspired coping strategies that ultimately came to have a significant influence on the CBR

community. Markovitch & Scott (1993) propose a unifying framework for the systematic

discussion of all of the various strategies for coping with harmful knowledge in general, and the

utility problem in particular. Their framework is based on different types of filters for eliminating

harmful knowledge at various stages in the problem solving cycle. One approach that is

especially relevant in CBR is to simply delete harmful cases from the case base so that they

cannot actively contribute to ongoing problem solving costs – deletion policies in CBR

correspond to selective retention filters in the Markovitch & Scott framework. Surprisingly

enough, in many speed-up learners even the apparently naive random deletion of knowledge

items (to maintain the knowledge base to some predefined size) works quite well for optimizing

efficiency. Even though random deletion removes both useful and redundant items it can equal

the success of more sophisticated methods (Markovitch & Scott, 1993). More sophisticated

deletion policies have been developed and are guided by some assessment of the utility of

individual knowledge items. For example, Minton (1990) uses a utility metric that takes into

account the cost of including the item in the set of candidates to consider (match cost) and the

expected savings offered by the item (average savings multiplied by its application frequency) to

deliver even greater protection against the damaging effects of the utility problem.

Unfortunately it soon became clear that the same type of coping strategies would not translate

directly over to case-based reasoners. The problem stems from the fact that many case-based

reasoners are not simply using case knowledge as a form of speed-up knowledge. Instead, cases

are often a primary source of problem solving knowledge. Without cases, certain problems

cannot be solved and thus the act of deleting cases may irrevocably reduce the competence of the

system to solve new problems; CBR systems may not be able to reconstruct deleted cases from

an internal domain model. To address this problem, Smyth & Keane (1995b) proposed the use of

a competence model to evaluate the contributions of individual cases to problem solving

competence. In particular, they developed methods for categorizing cases according to their

competence characteristics with a view to guiding the selection of cases for deletion. These

categories facilitate the preservation of key cases (called pivotal cases) that might otherwise be

deleted, in favor of deleting less critical cases whose loss is expected to least harm system

competence. Competence-guided case deletion provides a safe way to eliminate cases from a

growing case base to stave off the harmful effects of the utility problem while at the same time

protecting against reductions in competence.
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Later work brought the introduction of a more fine-grained model of case competence (Smyth

& McKenna, 1998) as a pre-cursor to a variety of related retention models and other forms of

case-base editing (e.g., McKenna & Smyth, 2000a; 2000b; Smyth & McKenna, 2000). For

example, as an alternative to case deletion, Smyth & McKenna (1999b) use their competence

model to develop a competence-guided case addition algorithm. In related work, Zhu & Yang

(1999) describe a case addition algorithm that has the added advantage of providing a guaranteed

lower bound on resulting competence. Leake & Wilson (2000) highlight the importance of

considering both competence and performance during case-base optimization. They argue the

need for more fine-grained performance metrics with which to guide the maintenance of a case

base and show how one such metric can help to guide case-base editing in a way that gives due

consideration to competing factors such as case-base size, coverage, and adaptation performance.

Over the past few years there has been a broad range of research addressing these key issues

of case deletion, addition, and case-based editing in general. Further discussion is beyond the

scope of this article but the interested reader is referred to work by Surma & Tyburcy (1998), Lei

et al. (1999), Portinale & Torasso (2001), Yang & Zhu (2001), Salamó & Golobardes (2002),

Wiratunga et al. (2003), and Woon et al. (2003).

5.3   Case-base maintenance

As researchers began to recognize that there was more to case retention than simply which cases

to learn, and how they should be encoded, the importance of case-base maintenance quickly

came into focus (Smyth, 1998; Leake et al., 2001; Wilson & Leake, 2001). Maintenance issues

arise when designing and building CBR systems and support tools that monitor system state and

effectiveness to determine whether, when, and how to update CBR system knowledge to better

serve specific performance goals. Understanding the issues that underlie the maintenance

problem and using that understanding to develop good practical maintenance strategies is crucial

to sustaining and improving the efficiency and solution quality of CBR systems as their case

bases grow and as their tasks or environments change over long-term use. And today there is a

general recognition of the value of maintenance to the success of practical CBR systems.

To begin to appreciate the issues involved in developing maintenance strategies, as well as to

understand maintenance practice and identify opportunities for new research, it is useful to

understand the nature of the maintenance process and its relationship to the overall CBR process.

Wilson & Leake (2001) characterize case-base maintenance in terms of the components of

maintenance policies and the dimensions along which alternative maintenance policies may

differ, using this characterization to examine a range of concrete maintenance strategies and

proposals. Their framework categorizes case-base maintenance policies in terms of how they

gather data relevant to maintenance decisions, how they determine when to trigger maintenance

operations, the types of maintenance operations available, and how the selected maintenance

operations are executed. For example, data collection might be restricted to gathering information

on individual cases (e.g., the number of times a case has been used, or has been used and

produced an unsuccessful result) or about the case base as a whole (e.g., its current size, or its

growth trends over time). Maintenance policy triggering may be done periodically (e.g., at every

case addition), conditionally (e.g., when retrieval time increases to a pre-specified threshold), or
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on an ad hoc basis (e.g., by unpredictable intervention by a human maintainer). The available

maintenance operations may target different knowledge containers (e.g., indices, the cases

themselves, or adaptation knowledge) and may be applied at different times or to varying

portions of the case base. They use this framework to characterize existing strategies according to

the framework’s dimensions, providing both a snapshot of the current state of the art in case-base

maintenance and suggestions of unexplored strategies.

Of course, the success of maintenance depends not only on the maintenance policies

themselves, but also on how maintenance is integrated with the overall CBR process. Reinartz et

al. (2001) propose to extend the classic 4-stage CBR cycle shown in Figure 1 to include two new

steps, a review step to monitor the quality of system knowledge, and a restore step which selects

and applies maintenance operations. Their revised model, shown in Figure 3, emphasizes the

important role of maintenance in modern CBR and indeed proposes that the concept of

maintenance encompass the retain, review and restore steps (Iglezakis et al., 2004).

A considerable body of maintenance research has developed directly from earlier work on

how best to control the addition and deletion of cases in a CBR system (Section 5.2), but case

addition/deletion is just one aspect of maintenance, and maintenance policies can be applied to a

variety of other knowledge sources beyond the case base. For instance, Hammond (1990) uses

explanations of case application failures to determine additional indices to assign to a new case to

focus future retrievals. Fox & Leake (1995; 2001) and Cox & Ram (1999) use introspective

learning techniques to examine the issue of index refinement triggered by retrieval failures.

Muñoz-Avila (2001) looks at index revision (and case retention) policies in the context of a

derivational replay framework. Index revision is guided by a policy that is based on an analysis

of whether the results of retrievals can be extended for new problem scenarios without revising

the planning decisions suggested by the retrieved case. Craw et al. (2001) examine the use of a

genetic algorithm for refining indexing features and matching weights; see also (Wettschereck &

Aha, 1995) and (Bonzano et al., 1997). Maintenance can also involve adaptation. Leake &

Wilson (1999) propose adding adaptation rules as a “lazy” strategy for updating the case base as

future cases are retrieved, and Shiu et al. (2001) generate new adaptation rules while

compressing the case base as a means to protect against knowledge loss.

In multi-agent scenarios, a CBR system’s own case retention process may be bolstered by

drawing on the case bases of cooperating agents, raising questions of when to access those cases

and to retain them in the agent’s own case base  This requires strategies for addressing questions

such as when external cases may be useful, how to process them to maximize their value to a

particular agent, and when multiple case bases should be merged into a single case base (Ontañon

& Plaza, 2003; Leake & Sooriamurthi, 2004).

Techniques have been developed for detecting inconsistencies in the case base, either to avoid

storing inconsistent cases during initial case retention (McSherry, 1998) or to enable correction

of inconsistencies when maintaining the case base as a whole (e.g., Shimazu & Takishima, 1996;

Racine & Yang, 1997). More generally, Leake & Wilson (1999) look at the use of CBR in

changing environments where key challenges exist in relation to the predictability of problem-

solution regularity and distribution. They argue that to avoid inconsistent problem-solving

performance a CBR system must be able to examine how well these key regularity assumptions

hold and take corrective maintenance action when they do not. The study of case retention is
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therefore inextricably tied to many related issues for managing the multiple forms of knowledge

within CBR systems and adapting CBR systems to the needs of the environments in which they

function.

Figure 3   An extension of the classical 4-stage CBR model to emphasize the importance of maintenance in

overall system performance, illustrating the setup, initialization, application and maintenance phases of the

SIAM methodology for maintaining CBR systems. Adapted from (Iglezakis et al., 2004).

Maintenance strategies can also be used to assist the case author during the early stages of

case acquisition. For example, Ferrario & Smyth (2001) describe a distributed approach to case

authoring in which a community of authors contribute to the validation of new case knowledge.

McSherry (2000; 2001a) also focuses on the case acquisition task, and presents CaseMaker, a

system that performs background reasoning on behalf of the case author while new cases are

being added, in order to help the user determine the best cases to add in light of their competence

contributions. The system uses its evaluations of the contributions of potential cases to suggest

cases to add to the case library. McKenna & Smyth (2001) propose an approach to providing

authoring support that attempts to identify competence holes within an evolving case base. They

demonstrate how their model of competence (Smyth & McKenna, 1998; 2001a) can be used to

prioritise gaps in case knowledge and, like McSherry (2000; 2001a), propose a technique for

automatically suggesting the type of cases that an author might want to consider to fill these gaps

with a view to maximizing the potential coverage and contributions that are available. To provide

a systematic framework for organizations needing to capture and maintain case-based
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knowledge, Nick et al. (2001) developed systematic practical strategies for guiding the

maintenance of corporate experience repositories.

In this section we summarized research in the area of retention and maintenance in CBR. Due

to space limitations, we could only scratch the surface of this dynamic and rich area of research.

Retention and case-base editing and, more generally, case-base maintenance, continues to be a

rich source of research ideas, and even recent developments could not be discussed here in the

detail they deserve. The interested reader is referred to Wilson & Leake (2001) for a thorough

examination of the dimensions of maintenance strategies and survey of additional maintenance

research in terms of those dimensions. In addition, a recent collection of maintenance articles

addressing numerous facets of maintenance is available in Leake et al. (2001).

6    Conclusions

Our aim in this paper has been to provide a concise overview of the cognitive science

foundations of CBR and of the four main tasks involved in the CBR cycle, namely retrieval,

reuse, revision, and retention. Rather than presenting a comprehensive survey, we have focused

on a representative selection of work from the CBR literature in the past few decades. We have

tried to strike a balance between research that can be seen as laying the foundations of CBR and

more recent contributions. The fact that many of the cited papers were published in the last few

years is also evidence of a significant amount of ongoing research activity.  It should be clear

from our discussion that much of the recent research has been motivated by an increased

awareness of the limitations of traditional approaches to retrieval, reuse, and retention. This is a

trend that seems likely to continue with the emergence of new and more demanding applications

of CBR, and we look forward to the challenges and opportunities that lie ahead.
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