On the Relative Merits of Software Reuse

Andres Orrego!2, Tim Menzies?, and Oussama El-Rawas?

! Global Science & Technology, Inc., Fairmont, WV, USA
2 West Virginia University, Morgantown, WV, USA.
andres.orrego@gst.com, tim@menzies.us, oelrawas@mix.wvu.edu

Abstract. Using process simulation and Al search methods, we compare soft-
ware reuse against other possible changes to a project. such as reducing func-
tionality or improving the skills of the programmer population. In one case, two
generations of reuse were as good or better than any other project change (but
a third and fourth generation of reuse was not useful). In another case, applying
reuse to a project was demonstrable worse than several other possible changes to
a project.

Our conclusion is that the general claims regarding the benefits of software reuse
do not hold for specific projects. We argue that the merits of software reuse need
to be evaluated in a project by project basis. Al search over process models is
useful for such an assessment, particularly when there is not sufficient data for
precisely tuning a simulation model.

Keywords: Software Reuse, COCOMO, COQUALMO, Al search

1 Introduction

We need to better understand software reuse. In theory, reuse can lower development
cost, increase productivity, improve maintainability, boost quality, reduce risk, shorten
life cycle time, lower training costs, and achieve better software interoperability [1, 2].
However, in practice, studies have shown that reuse is not always the best choice: it may
be hard to implement, and the benefits of reuse cannot be reliably quantified [1]. Also,
in some cases, reuse has resulted in economic loses [3] and even personal injury and
loss of life [4].

Process simulations can be used to assess the value of reuse in a particular project.
Traditionally, such simulators are commissioned using using data collected from a par-
ticular organization (e.g. [S]). Often, such local data is hard to collect. Accordingly, we
have been been exploring an Al method called STAR that reduce the need for calibra-
tion from local data. To understand STAR, note that project estimates are some function
of the project options and the internal model calibration variables. Conceptually, we can
write this as:

estimate = project x calibration

The estimate variance is hence a function of variance in the project options and the
space of possible calibrations. Traditional approaches use historical data to reduce the
space of possible calibrations (e.g. using regression). In our approach, we leave the cali-
bration variables unconstrained and instead use an Al search engine to reduce the space
of possibilities in the project options. In numerous studies (including one reported last

Reuse Iteration Description

First reuse Using software from a previous project for the first time.

Second reuse Reusing software from a previous project for the second time

Third reuse Reusing the same software in a new project for the third time.

Fourth reuse Reusing software using a mature reuse approach, tools, and
personnel.

Fig. 1. Process changes imposed by implementing reuse incrementally.

Drastic change Possible undesirable impact
1 Improve personnel Firing and re-hiring personnel leading to wide-spread union
unrest.
2 Improve tools, techniques, or development plat- Changing operating systems, IDEs, coding languages
form

3 Improve precedentness / Changing the goals of the project and the development
development flexibility method.

4 Increase architectural Far more elaborate early life cycle analysis.
analysis / risk resolution

5 Relax schedule Delivering the system later.

6 Improve process maturity May be expensive in the short term.

7 Reduce functionality Delivering less than expected.

8 Improve the team Requires effort on team building.

9 Reduce quality Less user approval, smaller market.

Fig. 2. Nine drastic changes from [9].

year at ICSP’08 and elsewhere [6—8]) we showed that this methods can yield estimates
close to those seem using traditional methods, without requiring a time consuming data
collection exercise.

In this paper, we use STAR to comparatively assess 13 possible changes to a project.
Figure 1 shows four changes to a project based on reuse while Figure 2 defines some
alternatives. These alternatives are drastic changes a project manager could implement
in an effort to reduce effort, schedule and defects in a particular project [9]. Our results
will show that some projects gain the most benefit from applying reuse, while there
are often other changes (such as those listed in Figure 2) that can be more effective.
Hence, we recommend assessing the value of reuse on a project-by-project basis. Pro-
cess simulation tools are useful for making such an assessment and tools like STAR are
especially useful when there is insufficient data for local calibration.

In the remainder of this paper, we present background information about software
reuse and process estimation models. Then we document the simulation approach uti-
lized to evaluate the effects of adopting software reuse compared to alternative strategies
for two NASA case studies.

2 The Models: COCOMO and COQUALMO

For this study we use two USC software process models. The COQUALMO software
defect predictor [10, p254-268] models two processes (defect introduction and defect
removal) for three phases (requirements, design, and coding). Also, the COCOMO soft-
ware effort and development time predictor [10, p29-57] estimates development months
(225 hours) and calendar months and includes all coding, debugging, and management
activities. COCOMO assumes that effort is exponentially proportional to some scale
factors and linearly proportional to some effort multipliers.

[Definition

[Low-end = {1,2}

[Medium ={3,4}

[High-end= {5,6}

Defect removal features

(pr)

tivities

of preparation, informal
assignment of reviewer
roles, minimal follow-up

execution- [all procedures and tools|none basic testing at unit/ inte- |advanced test oracles, as-

based testing |used for testing gration/ systems level; ba- |sertion checking, model-

and tools sic test data management |based testing

(etat)

automated |e.g. code analyzers, con-|syntax checking with|Compiler extensions for|formalized specification

analysis (aa) [sistency and traceability |compiler static code analysis, Ba-|and verification, model

checkers, etc sic requirements and de-|checking, symbolic exe-

sign consistency, trace-|cution, pre/post condition
ability checking. checks

peer reviews |all peer group review ac-|none well-defined sequence|formal roles plus exten-

sive review checklists/
root cause analysis, con-
tinual reviews, statistical
process control, user
involvement integrated
with life cycle

Scale factors:

flex

development flexibility

development process rig-
orously defined

some guidelines, which
can be relaxed

only general goals de-
fined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this|somewhat new thoroughly familiar
kind of software before
resl architecture or risk reso-|few interfaces defined or|most interfaces defined or|all interfaces defined or
lution few risks eliminated most risks eliminated all risks eliminated
team team cohesion very difficult interactions |basically co-operative seamless interactions
Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience |2 months 1 year 6 years
cplx product complexity e.g. simple read/write|e.g. use of simple inter-|e.g. performance-critical
statements face widgets embedded systems
data database size (DB|10 100 1000
bytes/SLOC)
docu documentation many life-cycle phases extensive reporting for
not documented each life-cycle phase
Itex language and tool-set ex-|2 months 1 year 6 years
perience
pcap programmer capability |worst 15% 55% best 10%
pcon personnel continuity 48% 12% 3%
(% turnover per year)
plex platform experience 2 months 1 year 6 years
pvol platform volatility | 1F-menths G months 722“(’132715
(fTequency of major ¢ anges)
frequency of minor clranges
rely required reliability errors are slight inconve- |errors are easily recover- |errors can risk human life
nience able
ruse required reuse none multiple program multiple product lines
sced dictated development deadlines moved to 75% [no change deadlines moved back to
schedule of the original estimate 160% of original estimate
site multi-site development ~ [some contact: phone, mail | some email interactive multi-media
stor required % of available|N/A 50% 95%
RAM
time required % of available|N/A 50% 95%
CPU
tool use of software tools edit,code,debug integrated with life cycle

Fig. 3. Features of the COCOMO and COQUALMO models used in this study.

From our perspective, these models have several useful features. Unlike other mod-
els such as PRICE-S [11], SLIM [12], or SEER-SEM [13], the COCOMO family of
models is fully described in the literature. Also, at least for the effort model, there exist

baseline results [14]. Also, we work extensively with government agencies writing soft-
ware. Amongst those agencies, these models are frequently used to generate and justify
budgets. Further, The space of possible tunings within COCOMO & COQUALMO is
well defined. Hence, it is possible to explore the space of possible tunings.

The process simulation community (e.g., Raffo [15]) studies models far more elab-
orate than COCOMO or COQUALMO. For example, COCOMO & COQUALMO as-
sume linear parametric equations while other researchers explore other forms:

discrete-event models [16];

system dynamics models [17];

state-based models [18];

rule-based programs [19];

standard programming constructs such as those used in Little-JIL [20].

These rich modeling frameworks allow the representation of detailed insights into an
organization. However, the effort required to tune them is non-trivial. For example,
Raffo spent two years tuning and validating one of such models to one particular site [5].
Also, we have found that the estimation variance of COCOMO can be reduced via
intelligent selection of input variables, even allowing for full variance in the tuning
parameters. We would consider switching to other models if it could be shown that the
variance of these other models could be controlled just as easily.

Our models use the features presented in Figure 3. This figure lists a variety of
project features with the range {very low, low, nominal, high, very high, extremely
high} or {vl = 1,1 = 2,n = 3,h = 4,vh = 5,zh = 6}. For specific projects, not all
features are known with certainty. For example, until software is completed, the exact
size of a program may be unknown. Hence, exploring our effort, schedule, and defect
models requires exploring a large trade-space of possible model inputs.

2.1 Effect of Reuse on Model Parameters

The effects of ad-hoc software reuse can be mapped to changes to settings to the CO-
COMO parameters. For instance, programmers capability (pcap) inherently increases
every time a piece of software is reused given that in the process the same programmer
is employed. This is the case with NASA spacecraft software, where reuse can be found
within the same software development company and where the software modules are
signed by the same developers [21]. Similarly, we can assume direct inherent effects
to the analyst capability (acap), the application experience (apex), the analyst capabil-
ity (acap), the precedence of the software (prec), the process maturity (pmat), and the
language and tool experience (Itex). On the other hand, the software platform must re-
main fairly unchanged throughout reuses so software pieces can be reused with ease.
For this reason we assume that platform volatility has to decrease as a piece of software
is reused from project to project.

A final assumption on the size of the software comes from the observation that
the progressive reuse of software components allows the construction of more sizeable
systems. In our simulations we assume that the code base increases from system to
system by 25%.

Incremental Reuse Effects on Projects

1 First Reuse acap = ACAPL, ; apex = APEX, ; pcap = PCAP,; prec = PREC,
pmat = PMAT, ; ltex = LTEX, ; pvol = PVOL g ; kloc = KLOC,

2 Second Reuse acap = ACAPL +1 ; apex = APEX 1 +1 ; pcap = PCAPr,+1 ; prec = PREC +1
pmat = PMAT 1, +1 ; Itex = LTEX 1, +1 ; pvol = PVOL -1 ; kloc = KLOC, *1.25

3 Third Reuse acap = ACAPL+2 ; apex = APEX 1, +2 ; pcap = PCAPL+2 ; prec = PREC +2
pmat = PMAT 1,42 ; Itex = LTEX 1,42 ; pvol = PVOL f7-2 ; kloc = KLOC 1, *1.5625

4 Fourth Reuse acap = ACAPL+3 ; apex = APEX 1, +3 ; pcap = PCAP1,+3 ; prec = PREC 1 +3

pmat = PMAT 1, +3 ; Itex = LTEX 1, +3 ; pvol = PVOL ;7-3 ; kloc = KLOC , ¥1.953125

Fig. 4. Implementing software reuse incrementally.

Figure 4 shows the constraints we claim software reuse imposes on model param-
eters for a given project. In the figure the variable X, represents the lowest value in
the range of the model variable X. Similarly, X iy represents the highest value for the X
variable. In order to impose the constraint of reuse in a particular project we increase
the X and lower the Xy for the particular variable X according to the logic above.
For instance, let’s say that for a particular project P, pcap ranges between 2 and 4, and
pvol ranges between 3 and 5. In this case, PCAP;, = 2, PCAPy = 4, PVOL; = 3,
and PVOLy = 5. if we imposed a “Second Reuse” strategy, pcap would be set to 3
(PCAP;, + 1), and pvol would be set to 4 (PVOLy — 1).

2.2 Defining the Alternatives to Reuse

Similarly to the constraints imposed by the incremental software reuse strategies, Fig-
ure 5 defines the values we imposed on each case study as part of each drastic change.
Most of the values in Figure 5 are self-explanatory with two exceptions. Firstly, the
kloc * 0.5 in “reduce functionality” means that, when imposing this drastic change,
we only implement half the system. Secondly, most of the features fall in the range
one to five. However, some have minimum values of 2 or higher (e.g., pvol in “im-
prove tools/tech/dev”), and some have maximum values of 6 (e.g., site in “improve
tools/tech/dev”). This explains why some of the drastic changes result in values other
than one or five.

To impose a drastic change on a case study, if that change refers to feature X (in
the right-hand column of Figure 5), then we first (a) removed X from the values and
ranges of the case study (if it was present); then (b) added the changes of Figure 5 as
fixed values for that case study.

3 Case Studies

Recall that the goal of our study is to analyze simulations of process estimation us-
ing COCOMO and COQUALMO models on typical NASA projects. Our purpose is
to evaluate the relative merits of adopting software reuse compared to other project
improvement strategies. The comparison is based on effort, quality, and schedule mea-
sured in person-months, defects per KSLOC, and months, respectively. In this study
we explore the perspective of the Project Manager in the context of NASA software
development.

Drastic change Effects on Projects

1 Improve personnel acap = 5; pcap = 5; pcon =5
apex =5;plex=5;ltex=5
2 Improve tools, techniques, or development platform time = 3; stor =3
pvol = 2; tool =5
site = 6
3 Improve precedentness / development flexibility prec = 5; flex =5
4 Increase architectural analysis / risk resolution resl=5
5 Relax schedule sced =5
6 Improve process maturity pmat=>5
7 Reduce data = 2; kloc * 0.5
functionality
8 Improve the team team =5
9 Reduce quality rely=1;docu=1

time =3 ;cplx=1

Fig. 5. Implementing drastic changes.

ranges values ranges values

project |feature low high|feature setting project |feature low high|feature setting

rely 3 5|tool 2 rely 1 4{tool 2

JPL |data 2 3|sced 3 JPL |data 2 3|sced 3
flight |cplx 3 6 ground [cplx 1 4
software | time 3 4 software | time 3 4
stor 3 4 stor 3 4
acap 35 acap 3 5
apex 2 5 apex 2 5
pcap 3 5 pcap 35
plex 1 4 plex 1 4
Itex 1 4 Itex 1 4
pmat 2 3 pmat 2 3
KSLOC 7 418 KSLOC 11 392

Fig.6. Two case studies. Numeric values {1,2,3,4,5,6} map to
{verylow, low, nominal, high, veryhigh, extrahigh}.

Figure 6 partially describes the two NASA case studies we explore in terms of the
COCOMO and COQUALMO input parameters. Both case studies reflect typical ranges
seen at NASA’s Jet Propulsion Laboratory [7].

Inside our model, project choices typically range from 1 to 5 where “3” is the nom-
inal value that offers no change to the default estimate. Some of the project choices
in Figure 6 are known precisely (see all the choices with single values). But many of
the features in Figure 6 do not have precise values (see all the features that range from
some low to high value).

We evaluate the effects of the project improvement strategies on the case studies
above using STAR: a Monte Carlo engine augmented by a simulated annealer.

STAR runs as follows. First, a project P is specified as a set of min/max ranges to
the input variables of STAR’s models:

— If a variable is known to be exactly z, then then min = mazx = .

— Else, if a variable’s exact value is not known but the range of possible values is
known, then min/max is set to the smallest and largest value in that range of possi-
bilities.

— Else, if a variable’s value is completely unknown then min/min is set to the full
range of that variable in Figure 3.

Second, STAR’s simulated annealer’® seeks constraints on P that most improve the
model’s score. A particular subset of P’ C P is scored by using P’ as inputs to the
COCOMO and COQUALMO. When those models run, variables are selected at ran-
dom from the min/max range of possible tunings 7" and project options P. In practice,
the majority of the variables in P’ can be removed without effecting the score; i.e. our
models exhibit a keys effect where a small number of variables control the rest [23].
Finding that minimal set of variables is very useful for management since it reveals
the least they need to change in order to most improve the outcome. Hence, simulated
annealing, STAR takes a third step.

In this third step, a Bayesian sensitivity analysis finds the smallest subset of P’
that most effects the output. The scores seen during simulated annealing are sorted
into the (10,90)% (best,rest) results. Members of P’ are then ranked by their Bayesian
probability of appearing in best. For example, 10,000 runs of the simulated annealer
can be divided into 1,000 lowest best solutions and 9,000 rest. If the range rely = vh
might appears 10 times in the best solutions, but only 5 times in the rest then:

E = (reply = vh)

P(best) = 1000/10000 = 0.1

P(rest) = 9000/10000 = 0.9
freq(E|best) = 10/1000 = 0.01
freq(E|rest) = 5/9000 = 0.00056
like(best|E) = freq(E|best) - P(best) = 0.001
like(rest|E) = freq(E|rest) - P(rest) = 0.000504

like(best|E)

P(best|E) = = 0.66 1
(best| B) like(best|E) + like(rest|E) ()

Equation 1 is a poor ranking heuristic since it is distracted by low frequency evi-
dence. For example, note how the probability of E belonging to the best class is moder-
ately high even though its support is very low; i.e. P(best|E) = 0.66 but freq(E|best) =
0.01. To avoid such unreliable low frequency evidence, we augment Equation 1 with a
support term. Support should increase as the frequency of a range increases, i.e.
like(x|best) is a valid support measure. STAR1 hence ranks ranges via

like(x|best)?
P(best|E) x support(best|E) = Tihe(albest) + like(zlrest) 2)

After ranking members of P’, STAR then imposes the top i-th ranked items of P’
on the model inputs, then running the models 100 times. This continues until the scores
seen using 7 + 1 items is not statistically different to those seen using ¢ (t-tests, 95%
confidence). STAR returns items 1.. of P’ as the least set of project decisions that most
reduce effort, defects, and development time. We call these returned items the policy.

3 Simulated annealers randomly alter part of the some current solution. If this new solution
scores better than the current solution, then current = new. Else, at some probability de-
termined by a temperature variable, the simulated annealer may jump to a sub-optimal new
solution. Initially the temperature is “hot” so the annealer jumps all over the solution space.
Later, the temperature “cools” and the annealer reverts to a simple hill climbing search that
only jumps to new better solutions. For more details, see [22].

Note that STAR constraints the project options P but never the tuning options 7'.
That is, the policy generated by STAR contains parts of the project options P that most
improve the score, despite variations in the tunings 7. This approach has the advantage
that it can reuse COCOMO models without requiring local tuning data.

Previously [7] we have shown that this approach, that does not use local tuning,
generates estimates very similar to those generated after using local tuning via the “LC”
method proposed by Boehm and in widespread use in the COCOMO community [24].
We have explained this effect as follows. Uncertainty in the project options P and the
tuning options 7" contribute to uncertainty in the estimates generated by STAR’s models.
However, at least for the COCOMO and COQUALMO models used by STAR, the
uncertainty created by P dominates that of 7". Hence, any uncertainty in the output can
be tamed by constraining PP and not 7'.

The reader may wonder why we use an stochastic method like STAR: would not
a simpler method suffice? For example, Many of the relationships inside COCOMO
model are linear and a simple linear extrapolation across the space of possibilities could
assess the relative effectiveness of different changes. In reply, we note that:

— Even after tuning the gradient of the relationships may not be known with certainty.
For example, in the COCOMO effort model, predictions are affected linearly and
exponentially by two types of input parameters; the new project data and the his-
torical dataset. In COCOMO this results in the coefficients, a and b, which define
the relationship between size and effort. Baker [25] tuned these a, b values using
data from NASA systems. After thirty 90% random samples of that data, the a, b
ranges were surprisingly large: (2.2 < a < 9.18) A (0.88 < b < 1.09). Baker’s re-
sults forced a rethinking of much our prior work in this area. Instead of exploring
better learners for local calibration, now we use tools like STAR to search models
for conclusions that persist across the space of possible calibrations.

— Simplistic linear extrapolation may be inappropriate when optimizing for effort
and time and defects, there may be contradictory effects. For example, we have
results where reducing effort leads to a dramatic increase in defects [8]. Hence,
optimizing our models is not a simple matter of moving fixed distances over some
linear effect: there are also some trade-offs to be considered (e.g. using a tool that
considers combinations of effects, like STAR).

4 Results

For each case study of Figure 6, STAR searches within the ranges to find constraints
that most reduce development effort, development time, and defects. The results are
shown in Figure 7, Figure 8, and Figure 9. In those figures:

All results are normalized to run 0..100, min..max.

Each row shows the 25% to 75% quartile range of the normalized scores collected
during the simulation.

The median result is shown as a black dot.

All the performance scores get better when the observed scores get smaller.

Flight Ground

Rank Change 50% Rank Change 50%

1 flight2reuse ro—i U 1 groundlreuse Fo———

2 improveteam e | 2 ground4reuse i

2 none o—i | 2 ground3reuse e |

3 reducefunc, e | 2 improvepmat i |

3 improveprecflex, ——i | 2 improveteam i |

3 flight4reuse, e—ri | 3 archriskresl, Fe—i |

4 relaxschedule, e——! 4 none, Fo— |

4 archriskresl, i | 4 relaxschedule, fo— |

5 improvepmat, F—e—o| 4 improveprecflex, i |

6 flight3reuse, —e—i | 4 improvepcap, F—e—i!

7 reducequality, Fe—il 5 reducefunc, et |

8 improvepcap, F—e—i! 6 reducequality, i |

9 improvetooltechplat, —e—ro 7 ground2reuse, P
10 flightlreuse, P 8 improvetooltechplat, ——e

Fig. 7. EFFORT: staff months (normalized 0..100%): top-ranked changes are shaded.

Flight Ground
Rank Change 50% Rank Change 50%
1 flight2reuse fo—i 1 groundlreuse He——
2 improveteam It 2 ground4reuse I ey
2 none ' 2 ground3reuse I e
3 reducefunc, l—e 3 improveteam, I e
3 relaxschedule, I re— 3 improvepmat, I e
3 flight4reuse, | o 3 none, I e
3 flight3reuse, I e 3 relaxschedule, ! e
4 improveprecflex, I e 3 reducefunc, I
5 improvepmat, I e 3 improvepcap, B o
6 archriskresl, e o 3 ground2reuse, | ——H
7 reducequality, b 4 archriskresl, I e
7 improvepcap, b e 5 improveprecflex, I e
8 improvetooltechplat, ! F—e— 6 reducequality, I e
9 flightlreuse, R 7 improvetooltechplat, ! el
Fig. 8. MONTHS: calendar (normalized 0..100%): top-ranked changes are shaded.
Flight Ground
Rank Change Defects Rank Change 50%
1 relaxschedule ™—————————1 1 improveteam ®——— 1 U
1 none ™ U 1 improveprecflex ————— !
1 improveteam 1 U 1 archriskres] ®—————
1 reducefunc 1 U 1 improvepcap ¢ U
2 improveprecflex '* ! 1 reducefunc 1 U
3 improvepcap, ! 1 improvepmat —*———— !
3 archriskresl, '*— ! 2 ground4reuse 1 U
3 improvetooltechplat, o 2 ground3reuse ¢ J
3 flight2reuse, ® ! 3 groundlreuse, 1 !
4 flight4reuse, ' ! 4 none, H—¢— !
5 improvepmat, — 1 4 reducequality, F——————*—
5 reducequality, e 4 improvetooltechplat, P
5 flight3reuse, Ho—— ! 5 relaxschedule, F——®—— !
6 flightlreuse, b ' *—i 6 ground2reuse, F————————¢+——

Fig. 9. Defect / KLOC (normalized 0..100%): top-ranked changes are shaded.

The “none” row comes from Monte Carlo simulations of the current ranges, without
any changes.

In each figure, the rows are sorted by the number of times a change looses to other
changes. In order to assess number of losses, we used the Mann-Whitney test at 95%
confidence test (this test was chosen since (a) due to the random nature of Monte Carlo
simulations, the inputs to each run are not paired; and (b) ranked tests make no, possibly
inappropriate, assumption about normality of the results). Two rows have the same rank
if there is no statistical difference in their distributions. Otherwise, we compare the
number of losses.

The shaded rows in Figures 7, 8, and 9 mark the top ranked changes. Observe how,
with Ground systems, first and second generation reuse always appears in the top rank
for effort, months, and defects. That is, for these systems, two generations of reuse is
as good, or better, than other proposed changes to a project. That is, for NASA ground
software a case can be made in support of software reuse as it is shown to be as good or
better than the other strategies.

The results are quite different for Flight systems where all reuse methods are absent
from the top ranked changes. In fact, no reuse change appears in the Flight results till
rank three or above and all reuse strategies rank below “none” (meaning that adopting
no strategy could yield better results). For NASA flight software, no case can be made
for adopting software reuse.

What is surprising is how different the strategies work for similar projects such as
the ones presented in this study. The only difference between NASA ground and flight
systems lies in size (KLOC), reliability (rely), and complexity(cplx). Ground tends to
have lower values for these ranges. Other than that, both case studies have the same
ranges and values.

Another finding worth mentioning is how “improve team” consistently ranks top
along side with reuse for ground systems. This might be related to the notion that so-
ciology beats technology in terms of successfully completing projects,” [26] or it might
be at least comparable.

S External Validity

Our results make no use of local calibration data. That is, our results are not biased
by the historical record of different sites. Hence, in this respect, our results score very
highly in terms of external validity.

However, in another respect, the external validity of our results is highly biased by
the choice of underlying model (COCOMO, COQUALMO); and the range of changes
and projects we have explored:

— Biases from the model: While the above results hold over the entire space of cal-
ibration possibilities of COCOMO/COQUALMO, then may not hold for different
models. One reason we are staying with COCOMO/COQUALMO (at least for the
time being) is that we have shown that STAR can control these models without re-
quiring local calibration data. We find this to be a compelling reason to prefer these
models.

— Biased from the range of cases explored: Another threat to the external validity
of our models is the range of changes explored in this study. This paper has only

ranked reuse against the changes listed in Figure 2. Our changes may do better than
and we will explore those in future work.

— Biases from our selected case studies: Lastly, we have only explored the projects
listed in Figure 6. We are currently working towards a more extensive study where
we explore more projects, including projects that do not come from NASA.

6 Conclusion

Our reading of the literature is that much prior assessment of reuse has focused on a very
narrow range of of issues. Here, we have tried broadening the debate by assessing reuse
with respect to the broader context of minimizing effort and defects and development
time.

This paper has explored the case of (a) ranking reuse against different effort, sched-
ule, and defect reduction strategies using (b) models with competing influences that (c)
have not been precisely tuned using local data. In this case, we avoided the need for
local data to calibrate the models via using the STAR tool. STAR leaves the calibration
variables of a model unconstrained, then uses Al search to find project options that most
reduces effort, development time, and defects.

STAR was applied here to a study of four incremental reuse strategies and the eight
drastic changes. These 13 project changes were applied to two NASA case studies. We
found that reuse strategies in general performed as well or better than drastic change
strategies on ground software, but did worse than adopting no strategy in the case of
flight software systems.

These results suggest that project managers looking for implementing software
reuse into their projects may find worthwhile checking the relative merits of reuse
against other project improvement options. That is, the relative merits of software reuse
should be evaluated in a project-by-project basis. reuse strategies against other project
improvement strategies.

In conclusion, in theory, software reuse is an attractive approach to any software
project capable of adopting it. However, in practice, reuse might not be the most useful
strategy and changing something else (or changing nothing at all) could be more bene-
ficial. Al search over process simulation models is useful for finding the best changes,
particularly when there is not sufficient data for precisely tuning a simulation model.

References

1. Trauter, R.: Design-related reuse problems an experience report. In: Proceedings of the
International Conference on Software Reuse. (1998)

2. Poulin, J.S.: Measuring Software Reuse. Addison Wesley (1997)

3. Lions, J.: Ariane 5 flight 501 failure (July 1996) Available from: http://www.ima.
umn.edu/"arnold/disasters/arianeS5rep.html.

4. Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. IEEE Computer
26(7) (July 1993) 1841

5. Raffo, D.: Modeling software processes quantitatively and assessing the impact of poten-
tial process changes of process performance (May 1996) Ph.D. thesis, Manufacturing and
Operations Systems.

10.

11.

12.
13.

15.

16.

17.

20.

21.

22.

23.

24.
25.

26.

. Menzies, T., Elwaras, O., Hihn, J., Feathear, M., Boehm, B., Madachy, R.: The business

case for automated software engineerng. In: IEEE ASE. (2007) Available from http:
//menzies.us/pdf/07casease-v0.pdf.

. Menzies, T., Elrawas, O., Barry, B., Madachy, R., Hihn, J., Baker, D., Lum, K.: Accu-

rate estiamtes without calibration. In: International Conference on Software Process. (2008)
Available from http://menzies.us/pdf/08icsp.pdf.

. Menzies, T., Williams, S., El-waras, O., Boehm, B., Hihn, J.: How to avoid drastic software

process change (using stochastic statbility). In: ICSE’09. (2009)

. Boehm, B., In, H.: Conflict analysis and negotiation aids for cost-quality requirements.

Software Quality Professional 1(2) (March 1999) 38-50

Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B.K., Steece, B., Brown, A.W.,
Chulani, S., Abts, C.: Software Cost Estimation with Cocomo II. Prentice Hall (2000)
Park, R.: The central equations of the price software cost model. In: 4th COCOMO Users
Group Meeting. (November 1988)

Putnam, L., Myers, W.: Measures for Excellence. Yourdon Press Computing Series (1992)
Jensen, R.: An improved macrolevel software development resource estimation model. In:
5th ISPA Conference. (April 1983) 88-92

. Chulani, S., Boehm, B., Steece, B.: Bayesian analysis of empirical software engineering cost

models. IEEE Transaction on Software Engineerining 25(4) (July/August 1999)

Raffo, D., Menzies, T.: Evaluating the impact of a new technology using simulation: The
case for mining software repositories. In: Proceedings of the 6th International Workshop on
Software Process Simulation Modeling (ProSim’05). (2005)

Kelton, D., Sadowski, R., Sadowski, D.: Simulation with Arena, second edition. McGraw-
Hill (2002)

Abdel-Hamid, T., Madnick, S.: Software Project Dynamics: An Integrated Approach.
Prentice-Hall Software Series (1991)

. Martin, R., Raffo, D.M.: A model of the software development process using both continuous

and discrete models. International Journal of Software Process Improvement and Practice
(June/July 2000)

. Mi, P, Scacchi, W.: A knowledge-based environment for modeling and simulation software

engineering processes. IEEE Transactions on Knowledge and Data Engineering (September
1990) 283-294

Cass, A., Lerner, B.S., McCall, E., Osterweil, L., Jr., S.M.S., Wise, A.: Little-jil/juliette:
A process definition language and interpreter. In: Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000). (June 2000) 754-757

Orrego, A.: Software reuse study report. Technical report, NASA IV&YV Facility, Fairmont,
WYV, USA. (April 2005)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science,
Number 4598, 13 May 1983 220, 4598 (1983) 671-680

Menzies, T., D.Owen, Richardson, J.: The strangest thing about software. IEEE Computer
(2007) http://menzies.us/pdf/07strange.pdf.

Boehm, B.: Software Engineering Economics. Prentice Hall (1981)

Baker, D.: A hybrid approach to expert and model-based effort estimation. Master’s thesis,
Lane Department of Computer Science and Electrical Engineering, West Virginia Univer-
sity (2007) Available from https://eidr.wvu.edu/etd/documentdata.eTD?
documentid=5443.

DeMarco, T., Lister, T.: Peopleware: productive projects and teams. Dorset House Publishing
Co., Inc., New York, NY, USA (1987)

