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Abstract—When AI search methods are applied to soft-
ware process models, then appropriate technologies can be
discovered for a software project. We show that those rec-
ommendations are greatly affected by the business context
of its use. For example, the automatic defect reduction tools
explored by the ASE community are only relevant to a subset
of software projects, and only according to certain value
criteria. Therefore, when arguing for the value of a particular
technology, that argument should include a description of the
value function of the target user community.
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I. INTRODUCTION

There are many software engineering (SE) technologies

that a manager might apply in the hope of improving their
software development project. Some of these technologies
are paper-based methods like the checklists proposed by
orthogonal defect classification [1]. Other technologies are
tool-based such as using the new generation of functional
programming languages or execution and testing tools [2]
or automated formal analysis [3]. Yet other technologies
are more process-based including process improvement ini-
tiatives, changing an organization’s hiring practices, or a
continual renegotiation of the requirements as part of an
agile software development cycle [4].

SE technologies can be inappropriately applied to projects
if a project manager do not assess the technology’s benefits

against its associated drawbacks. For example, using less-
skilled developers is tempting (since there are so many of
them), but the resulting product may be more defect-prone.
As a result, products might get to market faster but contain
too many defects.

In theory, software process models can be used to model
the trade-offs associated with different technologies. How-
ever, such models can suffer from tuning instability. Large
instabilities make it hard to recognize important influences
on a project. For example, consider the following simplified
COCOMO [5] model,

effort = a · LOCb+pmat · acap (1)

While simplified, the equation presents the core assump-
tion of COCOMO; i.e. that software development effort is
exponential on the size of the program. In this equation,
(a, b) control the linear and exponential effects (respectively)
on model estimates; while pmat (process maturity) and
acap (analyst capability) are project choices adjusted by

managers. Equation 1 contains two features (acap, pmat)
and a full COCOMO-II model contains 22 [5].

Baker [6] reports a study that learned values of (a, b)
for a full COCOMO model using Boehm’s local calibration
method [7] from 30 randomly selected samples of 90% of
the available project data. The ranges varied widely:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (2)

Such large variations make it possible to misunderstand the
effects of project options. Suppose some proposed technol-
ogy doubles productivity, but a moves from 9 to 4.5. The
improvement resulting from that change would be obscured
by the tuning variance.

Previously we have reported some success with stochastic
AI tools that search through the space of possible tunings
within process models [8]–[12]. This approach returned
conclusions about the project that were stable across the
entire space of possibilities. For example, in two studies [8],
[9] we found that automated defect removal tools (such
as those discussed at the ASE conference) were often
required to achieve minimum defects/ development effort/
development time1. Elsewhere [10], [11], we have used this
tool to comparatively assess different proposed changes to
a project.

Our prior reports did not compare the recommendations
found by different AI search methods. Nor did we explore
the effect of changing the value function that models user
goals. Here, we compare half a dozen AI methods and
apply the best one to four case studies. Next, we repeat
that analysis using a different value function.

The results were very surprising. Prior to this research,
we had a pre-experimental intuition that concepts of value
might change the organization of a project. However, we
suspected that some things would remain constant (e.g.,
condoning the use of execution testing tools).

This turned out not to be the case. For the two value
functions explored here, if one function approves of X then
the other usually approves of not X . This result that value

can change everything should motivate much future work
on the business context of our tools.

1Time refers to calendar months required to complete a project while
effort refers to the number of staff hours within those months. For example,
4 people working for one year takes time = 12 months and effort = 48
months.



II. RELATED WORK

This work was inspired by Barry Boehm’s 2004 ASE
keynote [13] in which he advocated assessing SE tools
by their value to a stake-holder, rather than just via their
functionality. More specifically, one of the value functions
used in this report was developed by Boehm and Huang [14].

In his description of value-based SE, Boehm favors con-
tinuous optimization methods to conduct cost/benefit trade-
off studies. Tuning instability can confuse such continuous
optimization methods. For example, the results of gradient
descent methods can be misleading if the coefficients on the
partial functions are very uncertain.

In our view, uncertainty in software process models is
a very under-explored area. For example, the variance of
Equation 2 remained undiscovered for 26 years until Baker,
at our suggestion, looked for it. Much of the related work on
uncertainty in software engineering uses a Bayesian analysis.
For example, Pendharkar et al. [15] demonstrate the utility
of Bayes networks in effort estimation while Fenton and Neil
explore Bayes nets and defect prediction [16] (but unlike this
paper, neither of these teams links defect models to effort
models). We elect to take a non-Bayesian approach since
most of the industrial and government contractors we work
with use parametric models like COCOMO.

Other related work is the search-based SE approach advo-
cated by Harman [17]. Search-Based Software Engineering
(SBSE) uses optimization techniques from operations re-
search and meta-heuristic search (e.g., simulated annealing
and genetic algorithms) to hunt for near-optimal solutions
to complex and over-constrained software engineering prob-
lems. Harman takes care to distinguish AI search-based
methods from those seen in standard numeric optimizations.
Such optimizers usually offer settings to all controllables.
This may result in needlessly complex recommendations
since a repeated empirical observation is that many model
inputs are noisy or correlated in similar ways to model
outputs [18]. Such noisy or correlated variables can be
pruned away to generate simpler solutions that are easier and
quicker to understand. In continuous domains, there is much
work on feature selection [19] and techniques like principal
component analysis [20] to reduce the number of dimensions
reported by an analysis. Comparative studies report that
discrete AI-based methods can do better at reducing the size
of the reported theory [18].

The SBSE approach can and has been applied to many
problems in software engineering (e.g., requirements en-
gineering [21]) but most often in the field of software
testing [2]. Harman’s writing inspired us to try simulated
annealing to search the what-ifs in untuned COCOMO
models [9]. SA is a widely-used algorithm, perhaps due to
the simplicity of its implementation and its very low memory
requirements. Our results, shown below, indicate that several
other algorithms out-perform SA (at least, on our models).

This result strongly suggests that proponents of SA should
try a broader range of search engines.

The paper compares SEESAW to five AI search algo-
rithms. These half a dozen algorithms hardly represent an
exhaustive list of possibilities. For example, Gu et al. [22]
list hundreds of optimization algorithms and no single con-
ference paper can experiment with them all. However, we
make one comment as to why the above list does not include
integer programming methods. Coarfa et al. [23] found
that integer programming-based approaches ran an order
of magnitude slower than discrete methods like SEESAW.
Similar results were reported by Gu et al. where discrete
methods ran 100 times faster than integer programming [22].

Our research grew out of a frustration with standard
methods to reduce tuning variance. Previously, we have tried
reducing that variance in various ways:

• Feature selection to prune spurious details [24];
• Instance selection to prune irrelevancies [25];
• Extended data collection.

Despite all that work, the variance observed in our models
remains very large. Even the application of techniques such
as instance-based learning have failed to reduce variance
in our effort predictions [26]. Feature subset selection has
also been disappointing: while it reduces the median perfor-
mance variance somewhat (in our experiments, from 150%
to 53% [25]), the residual error rates are large enough
that it is hard to use the predictions of these models as
evidence for the value of some proposed approach. Lastly,
further data collection has not proven useful. Certainly,
there is an increase in the availability of historical data on
prior projects2. However, Kitchenham [27] cautions that the
literature is contradictory regarding the value of using data
from other companies to learn local models.

Having failed to tame tuning variance, despite years of
research, we turned to alternate methods.

III. DODGING TUNING VARIANCE

In order to tame prediction variance, we need to under-
stand its source. The predictions of a model about a software
engineering project are altered by project variables P and
tuning variables T :

prediction = model(P, T ) (3)

For example, in Equation 1, the tuning options T are the
range of (a, b) and the project options P are the range
of pmat (process maturity) and acap (analyst capability).
Based on the definitions of the COCOMO model we can
say that the ranges of the project variables are P = 1 ≤
(pmat, acap) ≤ 5. Further, given the cone of uncertainty
associated with a particular project p, we can identify the
subset of the project options p ⊆ P relevant to a particular
project. For example, a project manager may be unsure of

2see http://promisedata.org.data/data and http://www.isbsg.org/.



the exact skill level of team members. However, if she were
to assert “my analysts are better than most”, then p would
include {acap = 4, acap = 5}.

Our approach assumes that the dominant influences on
the prediction are the project options p (and not the tuning
options T ). Under this assumption, the predictions can be
controlled by

• Constraining p (using some AI tool);
• While leaving T unconstrained (and sampling t ∈ T

using Monte Carlo methods).

Specifically, we seek a treatment rx ⊆ p that maximizes the
value of a model’s predictions where value is a domain-
specific function that scores model outputs according to user
goals:

arg max
x





AI search
︷ ︸︸ ︷

rx ⊆ p , t ⊆ T, value(model(rx, t))
︸ ︷︷ ︸

Monte Carlo



 (4)

This approach is somewhat different from standard meth-
ods for decision support for software process models.
From [28], we define standard practice as:

1) Collect domain knowledge.
2) Build an initial model based on step 1 including as

yet unknown parameters. Note that these unknowns
represent a range of tuning options.

3) Tune model by (e.g.) regression on local data.
4) Conduct sensitivity analysis on the tuned models.

These four steps can take quite some time and, at least in our
experience with more complex versions of Equation 1, may
result in models with large tuning instabilities. The sensi-
tivity analysis, if conducted using gradient descent methods,
will not be successful for our models since the gradients
exhibit the very large variances of Equation 2. Hence,
another method that need not wait for time-consuming (and
possibly pointless) local data collection and tuning:

1) Check the literature for software process models where
the dominant influences on predictions are the project
options P , not the tuning options T .

2) Map project options to model input options.
3) Sample those models using AI tools to constrain the

project options, while sampling the tuning options
with Monte Carlo methods (i.e., Equation 4).

One heuristic for checking the literature in step 1 is to avoid
overly elaborate models whose authors may have extended
the model far beyond what can be supported with the
available data. We suspect a “Goldilocks” principle might
be appropriate:

• Tiny models offer trite conclusions and are insensitive
to important project features.

• Very large models may need much data collection to
constrain the tunings.

• In between there may exist some models that are “just
right”; i.e., big enough to draw interesting conclusions,

scale prec: have we done this before?
factors flex: development flexibility
(exponentially resl: any risk resolution activities?
decrease team: team cohesion
effort&cost) pmat: process maturity
upper acap: analyst capability
(linearly pcap: programmer capability
decrease pcon: programmer continuity
effort&cost) aexp: analyst experience

pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule
lower rely: required reliability
(linearly data: secondary memory storage requirements
increase cplx: program complexity
effort&cost) ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements

pvol: platform volatility

Figure 1. The COCOMO “scale factors” and “effort multipliers”
change effort and cost by an exponential and linear amount (respectively).
Increasing these values has the effect described in column one.

aa: automated analysis
etat: execution-based testing and tools

pr: peer-reviews

Figure 2. The COQUALMO defect removal methods. Increasing these
values decreases delivered defects.

but small enough such that the internal tuning variance
does not dominate the variance results from input
project options.

We make no claim that all process models are “just right”
and, hence, can be controlled via Equation 4. Some pro-
cess models can be quite complex and include: discrete-
event models [29], [30]; system dynamics models [31];
state-based models [32]–[34]; rule-based programs [35]; or
standard programming constructs such as those used in
Little-JIL [36], [37]. These rich modeling frameworks allow
the representation of detailed insights into an organization.
However, the effort required to tune them is non-trivial.

In terms of the Goldilocks principle, we suspect that many
process models may not be near the “right size” and will
require extensive tuning before they can be used for decision
making. Fortunately, we have found that the USC COCOMO
and COQUALMO models [38] are “just right”. In all our
studies [8]–[12] we have found that prediction variance can
be controlled by only constraining project options while
letting the tuning variance remaining unchecked. Hence, we
use these models for our research. One advantage of these
models is that they are fully described in the literature. The
same can not be said for other commercial models such
as PRICE TRUE PLANNING [39], SLIM [40], or SEER-
SEM [41]. Also, at least for the COCOMO effort model,
there exist baseline results [42].



IV. MODEL DETAILS

COCOMO offers effort and time predictions while CO-
QUALMO offers defect predictions. Using the models we
can represent the project options P and tuning options T of
Equation 3 as follows.

A. Project Options: P

COCOMO and COQUALMO’s features are shown in
Figure 1 and Figure 2. The features have a range taken from
{very low, low, nominal, high, very high, extremely high}
or

{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}

These features include manual methods for defect removal.
High values for peer reviews (or pr, see Figure 2) denote
formal peer group review activities (participants have well
defined and separate roles, the reviews are guided by exten-
sive review checklists/root cause analysis, and reviews are a
continuous process guided by statistical control theory [43]).

COQUALMO also models automatic methods for defect
removal. Chulani [44] defines the top half of automated

analysis as:

4 (high): intermediate-level module and inter-module
code syntax and semantic analysis. Simple require-
ments/design view consistency checking.

5 (very high): More elaborate requirements/design view
consistency checking. Basic distributed-processing and
temporal analysis, model checking, symbolic execution.

6 (extremely high): Formalized3 specification and veri-
fication. Temporal analysis, model checking, symbolic
execution.

The top half of execution-based testing and tools is:

4 (high): Well-defined test sequence tailored to organiza-
tion (acceptance / alpha / beta / flight / etc.) test. Basic
test coverage tools, test support system.

5 (very high): More advanced tools, test data preparation,
basic test oracle support, distributed monitoring and
analysis, assertion checking. Metrics-based test process
management.

6 (extremely high): Highly advanced tools: oracles, dis-
tributed monitoring and analysis, assertion checking.
Integration of automated analysis and test tools. Model-
based test process management.

In the sequel, the following observation will become impor-
tant: Figure 1 is much longer than Figure 2. This reflects a
modeling intuition of COCOMO/COQUALMO: it is better
to prevent the introduction of defects (using changes to
Figure 1) than to try and find them, once they have been
introduced (using Figure 2).

3Consistency-checkable pre- conditions and post-conditions, but not
necessarily mathematical theorems.

B. Tuning Options: T

For COCOMO effort multipliers (the features that that
affect effort/cost in a linear manner), the off-nominal ranges
{vl=1, l=2, h=4, vh=5, xh=6} change the prediction by some
ratio. The nominal range {n=3}, however, corresponds to an
effort multiplier of 1, causing no change to the prediction.
Hence, these ranges can be modeled as straight lines y =
mx + b passing through the point (x, y)=(3, 1). Such a line
has a y-intercept of b = 1 − 3m. Substituting this value of
b into y = mx + b yields:

∀x ∈ {1..6} EMi = mα(x − 3) + 1 (5)

where mα is the effect of α on effort/cost.

We can also derive a general equation for the features
that influence cost/effort in an exponential manner. These
features do not “hinge” around (3,1) but take the following
form:

∀x ∈ {1..6} SFi = mβ(x − 6) (6)

where mβ is the effect of factor i on effort/cost.

COQUALMO contains equations of the same syntactic
form as Equation 5 and Equation 6, but with different
coefficients. Using experience for 161 projects [5], we can
find the maximum and minimum values ever assigned to m
for COQUALMO and COCOMO. Hence, to explore tuning
variance (the t ∈ T term in Equation 4), all we need to do
is select m values at random from the min/max m values
ever seen. An appendix to this document lists those ranges.

C. Case Studies: p ⊆ P

We use p to denote the subset of the project options pi ⊆
P relevant to particular projects. The four particular projects
p1, p2, p3, p4 used as the case studies of this paper are shown
in in Figure 3:

• OSP is the GNC (guidance, navigation, and control)
component of NASA’s Orbital Space Plane;

• OSP2 is a later version of OSP;
• Flight and ground systems reflect typical ranges seen

at NASA’s Jet Propulsion Laboratory.

Some of the features in Figure 3 are known precisely (see
all the features with single fixed settings). But many of the
features in Figure 3 do not have precise settings (see all the
features that range from some low to high value). Sometimes
the ranges are very narrow (e.g., the process maturity of JPL
ground software is between 2 and 3), and sometimes the
ranges are very broad.

Figure 3 does not mention all the features listed in
Figure 1 inputs. For example, our defect predictor has inputs
for use of automated analysis, peer reviews, and execution-

based testing tools. For all inputs not mentioned in Figure 3,
ranges are picked at random from (usually) {1, 2, 3, 4, 5}.



ranges fixed settings
project pi feature low high feature setting

prec 1 2 data 3
p1=OSP: flex 2 5 pvol 2
Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

p2=OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 3 5 tool 2
p3=JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2

p4=JPL data 2 3 sced 3
ground cplx 1 4

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 3. Four case studies. Numeric values {1, 2, 3, 4, 5, 6} map to
very low, low, nominal, high, very high, extra high. This data comes from
experienced NASA managers summarizing over real-world projects.

D. Value

If there exist multiple possible treatments, a value func-
tion is required to rank alternatives. The value function
should model the goals of the business users who are making
project decisions about some software development. At the
end of this paper, we compare results from two very different
value functions.

1) “BFC” = Better, Faster, Cheaper: Ideally, software is
built with fewer defects D, using less effort E, and in shorter
time T . A value function for this goal can be modeled as
the Euclidean distance to minimum effort, time, defects:

bfc =

√

fT̄ 2 + cĒ2 +
(

bD̄
(

1 + 1.8rely−3
))2

(7)

valuebfc =
1

bfc
(8)

In the above, value is highest when defects and effort and
development time are lowest. Also, 0 ≤ (b, f, c) ≤ 1 rep-
resents the business importance of (better, faster, cheaper).
For this study, we use b = f = c = 1. In other work, we
have explored the effects of using other b, f, c values [12].

In Equation 7, T̄ , Ē, D̄ are the time, effort, and defect
scores normalized zero to one. Equation 7 models the
business intuition that defects in high reliability systems
and exponentially more troublesome than in low reliability
systems:

• If reliability moves from very low to very hight (1 to
6), the term 1.8rely−3 models a function that (a) is
ten times larger for very high than very low reliability
systems; and (b) passes through 1 at rely = 3 (so
systems with nominal reliability do not change the
importance of defects).

2) “XPOS” = Risk Exposure: The BFC value function is
somewhat idealistic in that it seeks to remove all defects by
spending less money on faster developments. An alternate
value function comes from Huang and Boehm [14]. This
alternate value function, which we call “XPOS”, models the
situation where a software company must rush a product to
market, without compromising too much on software quality.
Based on Huang’s Ph.D. dissertation [45], we operationalize
XPOS as follows.

Huang defines business risk exposure (RE) as a combi-
nation of software quality investment risk exposure (REq)
and market share erosion risk exposure (REm). We invert
that expression to yield valueXPOS (so an exposed project
has low value):

RE = REq + REm (9)

valueXPOS =
1

RE
(10)

REq values high-quality software and therefore prioritizes
quality over time. REq is composed of two primary compo-
nents: probability of loss due to unacceptable quality Pq(L)
and size of loss due to unacceptable quality Sq(L). Pq(L)
is calculated based on defects. Sq(L) is calculated based on
complexity (the COCOMO cplx feature), reliability (rely),
and a cost function. Sc is a value from a Pareto-valued table
based on rely. We choose the project months estimate as
the basis of this cost function.

REq = Pq(L) ∗ Sq(L) (11)

Pq(L) =
defects

defectsvl
(12)

Sq(L) = 3
cplx−3

2 · PM · Sc (13)

In Equation 12, defectsvl is the lower bound on defects
for that project.

In Equation 13 the cplx−3

2
term is similar to the D̄

coefficient inside Equation 7: if complexity changes below



or above 3, then it reduces or adds (respectively) to the un-
acceptable quality risk. However at cplx = 3, the multiplier
is one (i.e., no effect).

REm values a fast time-to-market and therefore prioritizes
time over quality. REm is calculated from PM and reliability
(rely). Mc is a value from a exponential-valued table based
on rely.

REm = PM · Mc (14)

V. SEARCHING FOR rx

Our search runs two phases: a forward select and a back

select phase. The forward select grows rx, starting with the
empty set. At each round i in the forward select one or more
ranges (e.g., acap = 3) are added to rx. The resulting rx

set found at round i is denoted ri
x.

The forward select ends when the search engine cannot
find more ranges to usefully add to ri

x. Before termination,
we say that the open features at round i are the features in
Figure 1 and Figure 2 not mentioned by any range in ri

x.
The value of ri

x is assessed by running the model N times
with:

1) all of ri
x

2) any t ∈ T , selected at random
3) any range at random for open features.

In order to ensure minimality, a back select checks if the
final rx set can be pruned. If the forward select caches the
simulation results seen at each round i, the back select can
perform statistical tests to see if the results of round i − 1
are significantly different from round i. If the difference is
not statistically significant, then the ranges added at round i
are pruned away and the back select recurses for i− 1. We
call the un-pruned ranges the selected ranges and the point
where pruning stops the policy point.

For example, in Figure 4, the policy point is round 13 and
the decisions made at subsequent rounds are pruned by the
back select. That is, the treatments returned by our search
engines are all the ranges ri

x for 1 ≤ i ≤ 13. The selected

ranges are shown in a table at the bottom of the figure and
the effects of applying the conjunction of ranges in r13

x can
be seen by comparing the values at round=0 to round=13:

• Defects/KLOC reduced: 350 to 75;
• Time reduced: 16 to 10 months;
• Effort reduced: 170 to 80 staff months.

A. Alternate Search Methods

This paper implements the forward select using SA,
MaxWalkSat, SEESAW, BEAM, A-STAR and ISAMP.

SA: In our initial experiments [9], we ran forward/back
selects as a post-processor to a simulated annealer. Consider
a typical SA run that has explored 10,000 variants on
some solution. A side-effect of that run is 10,000 sets of
inputs, each scored with a value function. Our tool “STAR”
classified the outputs into 10% best values and 90% rest.
All the ranges from all the features were then sorted into

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25  30

m
e

d
ia

n
 s

co
re

 a
t 

e
a

ch
 r

o
u

n
d

round 

pruned

time*10
defects

effort

Decisions made from round=1 to round=13:
round0: rx = ∅
round1 added {pmat=3}
round2: added {resl=4}
round3: added {team=5}
round4: added {aexp=4}
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round9: added {time = 3}
round10: added {tool = 4}
round11: added {sced = 2}
round12: added {site = 4}
round13: added {acap = 5}

Figure 4. Example forward and back select results.

a list of length R according to how much more frequently
they appeared in best than rest. The forward select was then
called using the first i items 1 ≤ i ≤ R.

MaxWalkSat is a local search algorithm [46]. Given a
random selected treatment, MaxWalkSat attempts n mod-
ifications to randomly selected features. Sometimes (con-
trolled by the α parameter), the modification is “smart”: for
the selected feature, the algorithm chooses the range that
minimizes the value of the current solution. The rest of the
time (i.e., at probability 1−α), a random range is chosen for
the feature. Occasionally, MaxWalkSat will reset to a new
randomly selected initial solution and, after N attempts, the
best solution is returned. Our implementation used n = 50,
α = 0.5, and N = 10.

SEESAW is a variant of MaxWalkSat we first reported
in [12]. While searching the ranges of a feature, this
algorithm exploits the monotonic nature of Equation 5
and Equation 6. SEESAW ignores all ranges except the
minimum and maximum values for a feature in p. Like
MaxWalkSat, the feature chosen on each iteration is made
randomly. However, SEESAW has the ability to delay bad
decisions until the end of the algorithm (i.e., decisions where
constraining the feature to either the minimum or maximum
value results in a worse solution). These treatments are then
guaranteed to be pruned during the back select.

ISAMP is a fast stochastic iterative sampling method that
extends a treatment using randomly selected ranges. The
algorithm follows one solution, then resets to try other paths
(our implementation resets 20 times). The algorithm has
proved remarkably effective at scheduling problems, perhaps
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because it can rapidly explore more of the search space [47].
To avoid exploring low-value regions, our version of ISAMP
stores the worst solution seen so far. Any conjunction whose
value exceeds that of the worst solution is abandoned, and
the new “worst value” is stored. If a conjunction runs out
of new ranges to add, then the “worst value” is slightly
decreased. This ensures that consecutive failing searches
do not permanently raise the “worst value” by an overly
permissive amount.

Our remaining algorithms use some variant of tree search.
Each branch of the tree is a different treatment (a conjunction
of ranges) of size i. In terms of the forward select search de-
scribed above, the y-axis statistics of Figure 4 are collected
whenever branches of size i are extended to size i + 1.

BEAM search extends branches as follows. Each branch
forks once for every new option available to that range. All
the new leaves are sorted by their value and only the top
N ranked branches are marked for further expansion. For
this study we used N = 10 and the y axis of Figure 4 was
reported using the median values seen in the top N branches.

A-STAR runs like BEAM, but the sort order is determined
by the sum f (the cost of reaching the current solution) plus
g (a heuristic estimate of the cost to reach the final solution).
Also, unlike BEAM, the list of options is not truncated so
a termination criterion is needed (we stop the search if the
best solution so far has not improved after m iterations). For
this study, we used Equation 7 for g and the percentage of
the features with ranges in the current branch as f .

VI. EXPERIMENTS

A. Comparing Algorithms

We ran 20 forward selects on the case studies of Figure 3
using BFC followed by back selects (t-tests pruned round
i if it was statistically the same at 95% confidence as
round i − 1). Separate statistics were collected for the
defects/effort/time predictions seen at the policy point in
the 20*4 trials. The top-ranked algorithm(s) had statistically
different and lower defects/effort/time predictions than any
other algorithm(s).

Figure 5 shows how many times each algorithm was top-

ranked. Note that the maximum value possible is 4 (i.e.,
once for each Figure 3 case study). In those results, the two
stand-out worst algorithms are MaxWalkSat and ISAMP and
the two stand-out best algorithms are SEESAW and BEAM.

algorithm Defects months time
SEESAW 4 4 3

BEAM 0 3 3
A-star 0 1 1

SA 0 1 1
MaxWalkSat 0 0 0

ISSAMP 0 0 0

Figure 5. Number of times algorithm found to be top-ranked from 20
repeats of forward/back selecting over the four case studies of Figure 3.

data set defects time effort
flight 80% 39% 72%

ground 85% 38% 73%
osp 65% 4% 42%

ops2 26% 22% 5%
median 73% 30% 57%

Figure 6. Percent reductions (1− final/initial) achieved by SEESAW
on the Figure 3 case studies. The initial values come from round 0 of the
forward select. The final values come from the policy point. Note that all
the initial and final values are statistically different (Mann-Whitney, 95%
confidence).

The performance of these two is sometimes equivalent (e.g.,
in time, both algorithms achieved an equal number of top
ranks). However, we cannot recommend BEAM search for
this domain:

• BEAM runs 10 times slower than SEESAW.
• SEESAW performs better than BEAM in some cases

(e.g. in defects, BEAM is never top-ranked).

Figure 5 shows a great difference between MaxWalkSat
and SEESAW results. As mentioned above, the difference
between these two algorithms is very small: SEESAW
assumed that the local search state space was monotonic,
so it only explored minimum and maximum values for each
feature. This single domain heuristic resulted in a dramatic
performance improvement. This is not a new result: AI
research in the 1980s [48] showed the value of combining
domain-general “weak” heuristic algorithms (e.g., A-STAR,
BEAM search) with domain-specific “strong” heuristics such
as the monotonicity assumption exploited by SEESAW.
However, even if it is not a new finding, it should remind
researchers not to depend too heavily on off-the-shelf al-
gorithms. As shown here, a little algorithm tweaking with
domain knowledge can go a long way.

Figure 6 shows the percent reductions achieved by SEE-
SAW on the four case studies of Figure 3. SEESAW’s
treatments can reduce project defect/time/effort estimates by
73, 30, and 57% (respectively). That is, even if SEESAW
cannot offer a major reduction in the development time, it
can advise how to reduce defects and development effort
by over half. Based on Figure 6, we would recommend
using SEESAW before all the project decisions are made,
otherwise there is very little for it to work with. For example,
SEESAW’s worst performance was with the OSP2 case
study. As shown in Figure 3, this project has the most
amount of fixed settings, so SEESAW only has a small range
of options it can explore.

B. Effects of Changing the Value Function

Our prior ASE report on this work [49] used simulated
annealing to find treatments. That work reported that, in all
studied cases, automated defect removal tools were always
found in the learned treatments.

The poor performance of SA in Figure 6 means we must
revisit those conclusions, using SEESAW rather than SA.
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value defect
Data Range B=BFC X=XPOS B

B+X
removal

manual automatic
ground rely = 4 70 20 77

aa = 6 70 25 73 hi in B
resl = 6 65 40 61
etat = 1 35 65 35 lo in X
aexp = 5 45 85 34

pr = 1 35 80 30 lo in X
aa = 1 25 60 29 lo in X

data = 2 25 70 26
rely = 1 15 70 17

flight rely = 5 65 25 72
flex = 6 80 50 61
docu = 1 55 85 39
site = 6 55 85 39
resl = 6 45 70 39
pr = 1 45 70 39 lo in X

pvol = 2 45 75 37
data = 2 35 60 36
cplx = 3 45 90 33
rely = 3 15 60 20

OSP pmat = 4 85 45 65
resl = 3 45 70 39
ruse = 2 40 65 38
docu = 2 25 90 21

OSP2 sced = 2 100 0 100
sced = 4 0 80 0

Figure 7. Frequency (in percents) of feature ranges seen in 20 repeats
of SEESAW, using two different goal functions: BFC and XPOS. The last
two columns comment on any defect reduction feature. Not shown in this
figure are any feature ranges that occur less than 50% of the time.

Figure 7 shows the ranges seen in SEESAW’s treatment
(after a back select). The BFC and XPOS columns show
the percent frequency of a range appearing when SEESAW
used our different value functions. These experiments were
repeated 20 times and only the ranges found in the majority
(more than 50%) of the trials are reported.

The results are divided into our four case studies: ground,
flight, OSP, and OSP2. Within each case study, the results
are sorted by the fraction BFC

BFC+XPOS . This fraction ranges
0 to 100 and:

• If close to 100, then a range is selected by BFC more
than XPOS.

• If close to 0, then a range is selected by XPOS more
than BFC.

The right-hand columns of Figure 7 flag the presence of
manual defect remove methods (pr=peer reviews) or au-
tomatic defect removal methods (aa=automated analysis;
etat=execution testing tools). Note that high levels of auto-
matic defect removal methods are only frequently required in
ground systems, and only when valuing BFC. More usually,
defect removal techniques are not recommended. In ground
systems, etat = 1, pr = 1, and aa = 1 are all examples of
SEESAW discouraging rather than endorsing the use defect
removal methods. That is, in three of our four case studies, it
is more important to prevent defect introduction than to use
after-the-fact defect removal methods. In ground, OSP, and
OSP2, defect removal methods are very rare (only pr = 1
in flight systems).

Another important aspect of Figure 7 is that there is
no example of both value functions frequently endorsing
the same range. If a range is commonly selected by BFC,

then it is usually not commonly accepted by XPOS. The
most dramatic example of this is the OSP2 results of
Figure 7: BFC always selects (at 100%) the low end of a
feature (sced=2) while XPOS nearly always selects (at 80%
frequency) the opposite high end of that feature.

In summary, perceptions of value can change everything.
Techniques that seem useful to one kind of project/value
function may be counter-indicated for another. One charac-
terization of the Figure 7 results is that, for some projects,
it is preferable to prevent defects before they arrive (by
reorganizing the project) rather than try to remove them
afterwards using (say) peer review, automated analysis, or
execution test tools.

VII. CONCLUSIONS

There are many different SE technologies that can be
applied to a project. Such technologies can be defined as
conjunctions of inputs to software process models. Technol-
ogy X is preferred to technology Y if X’s inputs lead to
better output scores that Y .

Assessing the value of different SE technologies via
process models is complicated by tuning instabilities. For
several years, we have tried to reduce this problem using a
variety of techniques. The failure of that work has prompted
research on alternate methods. We dodge the model tuning
problem by searching for conclusions that are stable across
the space of possible tunings. Our tool uses AI to search
for different project options. Each option is scored by a
Monte Carlo run that selects tuning options at random from
the space of possible options. For models where project
values (and not tuning values) are the dominant influence
on predictions, this combined method finds critical project
options without requiring local tuning data. This is a very
different approach to standard software process modeling
where local data is essential to model tuning.

This paper certified that our current preferred search
engine (SEESAW) runs as well (or better) than several
alternatives. When we applied SEESAW with two different
value functions, the treatments found by SEESAW changed
dramatically. In particular, most projects worked best when
they were organized to stop defects entering the code base
rather than using some automated analysis method to remove
them, after they have been introduced.

This work has significant implications for the ASE com-
munity. Based on this work we argue that it is no longer
enough to just propose (say) some automated defect reduc-
tion tool. Rather, the value of ASE tools for a software
project needs to be carefully assessed with respect to the
core values of that project.
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APPENDIX

This appendix lists the minimum and maximum m values
used for Equation 5 and Equation 6. In the following, mα

and mβ denote COCOMO’s linear and exponential influ-
ences on effort/cost, and mγ and mδ denote COQUALMO’s
linear and exponential influences on number of defects.

Their are two sets of effort/cost multipliers:

1) The positive effort EM features, with slopes m+
α , that

are proportional to effort/cost. These features are: cplx,
data, docu, pvol, rely, ruse, stor, and time.

2) The negative effort EM features, with slopes m−

α , are
inversely proportional to effort/cost. These features are
acap, apex, ltex, pcap, pcon, plex, sced, site, and tool.

Their m ranges, as seen in 161 projects [38], are:
(

0.073 ≤ m+
α ≤ 0.21

)

∧
(

−0.178 ≤ m−

α ≤ −0.078
)

(15)

In the same sample of projects, the COCOMO effort/cost
scale factors (prec, flex, resl, team, pmat) have the range:

−1.56 ≤ mβ ≤ −1.014 (16)

Similarly, there are two sets of defect multipliers and scale
factors:

1) The positive defect features have slopes m+
γ and are

proportional to estimated defects. These features are
flex, data, ruse, cplx, time, stor, and pvol.

2) The negative defect features, with slopes m−

γ , that are
inversely proportional to the estimated defects. These
features are acap, pcap, pcon, apex, plex, ltex, tool,
site, sced, prec, resl, team, pmat, rely, and docu.

COQUALMO divides into three models describing how
defects change in requirements, design, and coding. These
tunings options have the range:

requirements

{

0 ≤ m+
γ ≤ 0.112

−0.183 ≤ m−

γ ≤ −0.035

design

{

0 ≤ m+
γ ≤ 0.14

−0.208 ≤ m−

γ ≤ −0.048

coding

{

0 ≤ m+
γ ≤ 0.14

−0.19 ≤ m−

γ ≤ −0.053

(17)

The tuning options for the defect removal features are:

∀x ∈ {1..6} SFi = mδ(x − 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(18)

where mδ denotes the effect of i on defect removal.


