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Abstract Cost estimation is one of the most important but most difficult tasks in software
project management. Many methods have been proposed for software cost estimation.
Analogy Based Estimation (ABE), which is essentially a case-based reasoning (CBR)
approach, is one popular technique. To improve the accuracy of ABE method, several
studies have been focusing on the adjustments to the original solutions. However, most
published adjustment mechanisms are based on linear forms and are restricted to numerical
type of project features. On the other hand, software project datasets often exhibit non-
normal characteristics with large proportions of categorical features. To explore the
possibilities for a better adjustment mechanism, this paper proposes Artificial Neural
Network (ANN) for Non-linear adjustment to ABE (NABE) with the learning ability to
approximate complex relationships and incorporating the categorical features. The proposed
NABE is validated on four real world datasets and compared against the linear adjusted
ABEs, CART, ANN and SWR. Subsequently, eight artificial datasets are generated for a
systematic investigation on the relationship between model accuracies and dataset
properties. The comparisons and analysis show that non-linear adjustment could generally
extend ABE’s flexibility on complex datasets with large number of categorical features and
improve the accuracies of adjustment techniques.
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Abbreviations
MRE Magnitude of Relative Error
MMRE Mean Magnitude of Relative Error
PRED(0.25) PREDiction at level 0.25
MdMRE Median Magnitude of Relative Error
ABE Analogy Based Estimation
NABE Non-linear adjusted ABE
GABE GA optimized linear adjusted ABE
LABE Linear adjusted ABE
RABE Regression Toward the Mean adjusted ABE
ANN Artificial Neural Network
CART Classification and Regression Trees
OLS Ordinary Least Square regression
SWR Stepwise Regression

1 Introduction

Software cost estimation is a continuous activity which often starts at the first stage of the
software life cycle and continues throughout the life time. Since software cost estimation
affects most software development activities, it has become a critical practice in software
project management. The importance of accurate cost estimation has led to extensive
research efforts onto estimation methods in the past decades. These methods can be
classified into three basic types (Angelis and Stamelos 2000): expert judgment (Jorgensen
2004, 2005, 2007), algorithmic estimation (Jun and Lee 2001; Heiat 2002; Pendharkar et al.
2005; Van Koten and Gray 2006), and analogy based estimation (Shepperd and Schofield
1997; Auer et al. 2006; Lee and Lee 2006; Chiu and Huang 2007; Li et al. 2007; Li and
Ruhe 2008)

The analogy based estimation (ABE) was first proposed by Shepperd and Schofield
(1997) as a valid alternative to expert judgment and algorithmic estimation. ABE is
partially motivated by the obvious connections between project managers making
estimation based on the memories of past similar projects and the formal use of
analogies in Case Based Reasoning (CBR) (Kolodner 1993). The fundamental principle of
ABE is simple: when provided a new project for estimation, the most similar historical
projects (analogies) are retrieved, the solutions (cost values) of the retrieved projects are used
to construct a ‘retrieved solution’ to the new project, with the expectation that the cost values
of the retrieved projects will be similar to the real cost of the new project.

However, the adjustment on the retrieved solution is of necessity since it can capture the
differences between the new project and the retrieved projects, and refine the retrieved
solution into the target solution (Walkerden and Jeffery 1999). In the literature, many works
(Walkerden and Jeffery 1999; Jorgensen et al. 2003; Chiu and Huang 2007; Li et al. 2007;
Li and Ruhe 2008) have been focusing on the adjustments to the retrieved solution.
However, most of these adjustment mechanisms are based on predetermined linear forms
without learning ability to adapt to more complex situations such as non-normality. In
addition, these adjustment techniques are limited to the numeric features despite that the
categorical features also contain valuable information to improve the cost estimation
accuracies (Angelis et al. 2000). In contrast, software project datasets often exhibit non-
normal characteristics (Pickard et al. 2001) and contain large proportion of categorical
features (Sentas and Angelis 2006; Liu and Mintram 2005).
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To improve the existing adjustment mechanisms, we propose a more flexible non-linear
adjustment with learning ability and including categorical features. The Non-linearity
adjusted Analogy Based Estimation (NABE) is realized by adding a non-linear component
(Artificial Neural Network) onto the retrieved solution of the ABE system. In this approach,
the ordinary ABE procedure is first executed to produce an un-adjusted retrieval solution to
the new project. Then, the differences between the new project’s features and its analogies’
features are treated as inputs to ANN model to generate the non-linear adjustment. Finally,
the retrieved solution and the adjustment from ANN are summed up to form the final
prediction.

The rest of this paper is organized as follows: Section 2 presents the related work on the
adjustments of analogy based cost estimation, the detailed comparisons of the existing
adjustment mechanisms and how they are related to the properties of the project datasets.
Section 3 describes the details of non-linearity adjusted ABE system (NABE). Section 4
presents four real world data sets and the evaluation criteria for experiments. Section 5
provides an illustrative example of the application procedure of NABE. In Section 6, the
NABE is tested on the real world datasets and is compared against the linear adjusted
ABEs, ANN CART and SWR. In Section 7, eight artificial data sets are generated and a
systematic analysis is conducted to explore how the model accuracies are related to dataset
properties. In Section 8, the threats to validity are presented. The final section presents the
conclusions and future works.

2 Related Work and Motivations

2.1 Related Work

Analogy based software cost estimation is essentially a case-based reasoning (CBR)
approach (Shepperd and Schofield 1997). This approach identifies one or more historical
projects that are similar to the present project and then derives the cost estimates from the
similar projects. Generally, the ABE consists of four parts (Fig. 1): a case/project data base,
a similarity function, a retrieved solution and the associated retrieval rules (Kolodner 1993).

Similarity function 

Similar  Projects 
retrieval 

Projects for  
Training  

Predicted value 

Historical 
Projects 

Retrieved Solution Adjustment 
Mechanism

Fig. 1 The general framework of
analogy based estimation
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Figure 1 shows that the retrieved solution function is a crucial component in ABE, since
it obtains the adjustment and produces the final prediction. Retrieved solution has a general
mathematical form shown the following formula:

bCx ¼ g C1;C2; . . . ;Cnð Þ ð1Þ

whereĈx denotes the estimated cost for the new project x, Ci is the cost value of the ith closest
analogy to project x, and n denotes the total number of closest analogies. The retrieved solution
function (1) only includes the ‘cost’ values as its variables while other project features such as
‘lines of source code’ and ‘function points’ do not appear in this function. In the literature
several retrieved solutions have been proposed, such as un-weighted mean (Shepperd and
Schofield 1997; Jorgensen et al. 2003), weighted mean (Mendes et al. 2003), and median
(Angelis and Stamelos 2000; Mendes et al. 2003). However, these solution functions can be
rarely directly applied to predict Ĉx. Instead, they need to be adjusted in order to fit the
situations of the new project (Walkerden and Jeffery 1999). Therefore the adjustment
mechanisms should first identify the differences between the new project (features) and the
retrieved projects (features) and then convert these differences into the amount of change in the
cost value. In the literature, many adjustment techniques have been proposed:

Walkerden and Jeffery (1999) first proposed the linear size adjustment. This approach
performs a linear extrapolation along a single metric—the number of function points (FP)
which is supposed to be strongly correlated with the project cost.

bCx ¼
FPx

FPCA
CCA ð2Þ

where Ĉx denotes the estimated cost of a new project x, CCA is the cost value of the closest
analogy (CA) or the most nearest neighbor, FPx is the number of function points of the new
project x, and FPCA is the number of function points of the closest project. However, this
adjustment technique may not be applicable when the size measure is not function point or
there are many size measures other than function points such as the size measures of
website projects (Mendes et al. 2001). Thus, based on Walkerden and Jeffery’s work,
Mendes and Mosley (2003) further extended the naive form into an arbitrary number of size
related features with multiple closest analogies.

bCx ¼
1
K

XK

i¼1

1
Q

XQ

p¼1

sqx
sqi

Ci

 !
ð3Þ

where Ci is the project cost of the ith closest analogy, K is the total number of retrieved
closest analogies, spx is the qth size related feature of the new project x, spi is the qth size
related feature of the ith closest project, and Q is the total number of size related features. In
a later study, Kirsopp et al. (2003) conducted an empirical investigation into the above two
types of linear adjustments on ABE system.

Later, Jorgensen et al. (2003) proposed the ‘Regression Toward the Mean’ (RMT)
adjustment mechanism:

bCx ¼ FPCA $ bPx

bPx ¼ PCA þ M & PCAð Þ $ 1& rð Þ
ð4Þ
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where bPx denotes the adjusted productivity (Productivity = Cost / Function Points) of the
new project x, PCA is the productivity of the closest analogies, M is the average productivity
of the similar projects, and r is the historical correlation between the non-adjusted analogy
based productivity and the actual productivity as a measure of the expected estimation
accuracy. This method can also be regarded as an extension of Walkerden and Jeffery’s
model, as it adjusts the ratio PCA=CCA/FPCA in (2) by adding a component (M−PCA)×(1−r)
representing ‘regression toward the mean’.

At a later stage, heuristic method has been applied onto adjustment techniques. Chiu and
Huang (2007) proposed Genetic Algorithm (GA) to optimize a linear adjustment model:

bCx ¼ CCA þ Adj ð5Þ

where CCA denotes the cost value of the closest analogy, Adj ¼
Pm

i¼1
ai $ sxi & sCAið Þ is the

linear adjustment term, Sxi is the ith feature of the new project x, and SCAi denotes the ith
feature of the closest analogy. Genetic Algorithm is used to optimize the coefficients αi in
this equation.

More recently, the categorical features are included into the adjustment model. Li et al.
(2007) and Li and Ruhe (2008) proposed AQUA and AQUA+ for cost estimation. In their
works, the following similarity adjusted solution function is proposed:

bCx ¼
XK

i¼1

Sim x; ið Þ
PK

i¼1
Sim x; ið Þ

' Ci

2

6664

3

7775 ð6Þ

whereCi is the project cost of the ith closest analogies, Sim(x, i) is the similarity between project
x and its ith analogy, and K is the total number of closest analogies. The similarity measure Sim
(x, i) can deal with both numerical and categorical features. In AQUA, the similarity measure
assigns equal weights to the project features to eliminate the impact of different features, while
AQUA+ employs the rough set approach to weight each project feature.

2.2 Motivations

Subsequent to the short descriptions of the published adjustment techniques, we present the
motivations of this study in this section. Table 1 characterizes each adjustment method from

Table 1 Comparison of published adjustment mechanisms

Source Adjustment
function

Adjustment
feature

Categorical
feature

Learning
ability

Number
of analogies

Walkerden and Jeffery (1999) Linear Function point (FP) No No One
Mendes et al. (2003) Linear Size related features No No Multiple
Jorgensen et al. (2003) Linear Function point (FP) No No Multiple
Chiu and Huang (2007) Linear Size related features No Yes One
Li et al. (2007)
and Li and Ruhe (2008)

Linear All relevant features Yes No Multiple

Empir Software Eng (2009) 14:603–643 607



six aspects. The first column contains the source of the adjustment. The second column is
the type of function (linear / non-linear) that the adjustment bases on. The third column
describes the type of project feature used in the adjustment function. The fourth column
indicates whether the categorical features are considered in the adjustment. The fifth
column shows whether the adjustment function can learn from the training dataset to
approximate a complex relationship. The last column presents the number of closest
analogies (one / multiple) used in the adjustment function. The reasons for selecting these
criteria are as follows. The function type reflects the basic structure of the adjustment
model. The adjustment feature, categorical feature, and number of analogies together
determine the inputs of adjustment model. The learning ability indicates whether the
adjustment mechanism has the flexibility to adapt to complex relationships.

We can tell from Table 1 that most works are restricted on the linear functions without
learning ability except the GA adjusted approach (Chiu and Huang 2007) and most works
do not consider the categorical features except the similarity adjusted function (Li et al.
2007; Li and Ruhe 2008). To improve the adjustments mechanism, we propose the more
flexible non-linear adjustment mechanism with learning ability and incorporating
categorical features.

On the other hand, three relevant dataset characteristics are considered in our study:
non-normality, categorical feature, and dataset size. These properties are likely to be
relevant to the differences between the adjustment models. First, the non-normality is a
commonly referred characteristic cross the software engineering datasets (Pickard et al.
2001). Many existing studies (Myrtveit and Stensrud 1999; Shepperd and Kadoda 2001;
Mendes et al. 2003) have considered the non-normality as an influential factor to the
accuracies of the models including analogy based methods. Generally, the higher degree
of non-normality leads to lower modeling accuracy. This property appears to relate to
the function type of the adjustment models since the linear models usually work well
under the normal condition and non-linear models with adaptive abilities seems to
produce better results under non-normal conditions. Several application studies of ANN
in other research fields show that ANN model or ANN based models are robust to the
non-normal datasets (Guh 2002; Chang and Ho 1999; Cannon 2007) and theoretically ANN
is capable to approximate arbitrary relationships (Lawrence 1994). Therefore, it is expected
that ANN based adjustment might enhance ABE model’s robustness to non-normality.

Given the fact that categorical features frequently appear in software engineering
datasets (Sentas and Angelis 2006; Liu and Mintram 2005) and they may enclose useful
information which could distinguish the projects (Angelis et al. 2000), many papers start to
incorporate the categorical feature into consideration (Angelis et al. 2000; Sentas et al.
2005; Li et al. 2007; Li and Ruhe 2008). However, most existing adjustment techniques do
not consider categorical features. NABE aims incorporate categorical features into
adjustment mechanism for improvement of total performance. Therefore, the appearance
of categorical features is regarded as one important data set property in our study.

The dataset size is also an influential factor on ABE methods. The ABE system retrieves
the similar cases from the historical project dataset. The dataset with more projects could
provide larger searching space for ABE. If the data is not very heterogeneous, it might lead
to a higher chance for good prediction. Several papers (Auer et al. 2006; Shepperd and
Kadoda 2001; Shepperd and Schofield 1997) studied dataset size as one major factor on the
accuracy of analogy based method. In both Shepperd and Schofield’s paper and Auer’s
paper, the authors analyzed the trends in estimation accuracy as the datasets grow. While in
Shepperd and Kadoda’s work, they confirmed that ABE benefits from having larger
training sets. In addition, Shepperd and Kadoda also found that ANN can achieve better
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performance from large training sets. Hence, the dataset size seems to have some
connection with the learning ability of ANN and ABE.

As discussed above, dataset characteristics have large impacts on the estimation results
and therefore it is more fruitful to identify which is the preferable estimation system in a
particular context rather than to search for the ‘best’ prediction system for any case.

3 Artificial Neural Networks for Non-Linear Adjustment

In this section, a detailed description of the non-linear adjusted analogy based estimation
(NABE) is presented.

First of all, the non-linear component—ANN is briefly introduced. Artificial Neural
Network (ANN) is one type of machine learning technique that have played an important
role in approximating complex relationships (Lawrence 1994). Due to its excellent
approximation capability, ANN has been widely applied for software cost estimation
research (Gray and MacDonell 1997; Heiat 2002; De Barcelos Tronto et al. 2007).

In the ANN architecture there are typically three layers: the input layer, the hidden
layers, and the output layer. All the layers are composed of neurons. The connections
between neurons across layers represent the transmission of information between neurons.
ANN has the following mathematical form:

y ¼ y xð Þ ¼
XJ

j¼1

wj f
XI

i¼1

vij f xið Þ þ aj

 !
þ b þ " ð7Þ

where x is an I-dimensional vector with {x1, x2, …, xI} as its elements, f(·) is the user
defined transfer function, ɛ is a random error with 0 as mean, J is the total number of
hidden neurons, vij is the weight on the connection between the ith input neuron and the jth
hidden neuron, αj is the bias in the jth hidden neuron, wj is the weight on the connection
between the jth hidden neuron and the output neuron, and β is the bias in the output neuron.
The weights and biases are determined by the training procedure which minimizes the
training error. The commonly used training error function Mean Square Error (MSE) is
presented as follow:

E ¼ 1
I

XI

i¼1

t s & ysð Þ2 ð8Þ

where gs is the output of the network when the sth sample is the ANN input, and ts is the
sth training target. The classical Back Propagation (BP) algorithm is often used to update
the weights and biases to minimize the training error.

As shown by formula (7), ANN has three user-defined parameters: the number of hidden
layers, the number of hidden nodes and the type of transfer function. These parameters have
a major impact on ANN’s prediction performance (Hagan et al. 1997). Among these
parameters, one hidden layer is often recommended since multiple hidden layers may lead
to an over parameterized ANN structure. For the number of hidden nodes, too few hidden
nodes can compromise the ability of network to approximate a desired function. On the
contrary, too many hidden nodes can lead to over-fitting. In our study, ANN is used as the
adaptive non-linear adjustment component in NABE system. The NABE method and its
system procedure are described in Section 3.1.
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3.1 Non-linear Adjusted Analogy Based System

From the explanations in Section 2, the adjustment mechanism should capture the ‘update’
that transforms the solution from the retrieved projects into the target solution. Based on the
linear adjustment model proposed by Chiu and Huang (2007), we extend the linear
adjustment model to the following additive form:

bCx ¼ Cw=o þ f sx; Skð Þ ð9Þ

where f ( . ) is an arbitrary function approximating the update that is necessary to change the
retrieved solution into the target solution (in our study, f( . ) is the ANN model), sx is the
feature vector of project x, Sk is the feature matrix of the K closest analogies and Cw/o is
the cost value obtained from the ABE without adjustment (or the retrieved solution).

The NABE system consists of two stages. In the first stage NABE system obtains the
retrieved (un-adjusted) solution and trains the non-linear component—ANN. In the second
stage the non-linear component is used to produce the update and then the update is added
up with the retrieved solution to generate the final prediction.

3.1.1 Stage I—Training

The procedures of stage I are shown in Fig. 2. The jackknife approach (Angelis and
Stamelos 2000) (also known as leave one out cross-validation) is employed for the training
of the non-linear adjustment (ANN). For each project in the training dataset, the following
steps are performed:

Step 1: the ith project is extracted from the training dataset as the new project being
estimated, and the rest projects are treated as the historical projects in ABE
system.

Step 2: the ABE system finds the K closest analogies from the historical projects by the
similarity measure. In this study, the Euclidean distance is used to construct the
similarity function Sim(i, j):

Sim i; jð Þ ¼ 1

,

d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ

q¼1
Dist siq; sjq

" #
s" #

d ¼ 0:0001

Dist ¼
siq & sjq
" #2

1;
0;

8
<

:

if siq and sjq are numeric
if siq and sjq are categorical and siq ¼ sjq
if siq and sjq are categorical and siq 6¼ sjq

ð10Þ

where i represents the project being estimated, j denotes one historical project, Siq is the qth
feature value of project i, Sjq denotes the qth feature value of project j, Q is the total number
of features in each project and δ=0.0001 is a small constant to prevent the situation thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PQ

q¼1
Dist siq; sjq

" #
s

¼ 0. In our similarity function, we use un-weighed Euclidean distance to

eliminate the impacts of different feature weights.
After obtaining the K analogies, the retrieved solution (cost value) to the ith project is

generated. For the sake of simplicity, the un-weighted mean (Shepperd and Schofield 1997)
is used as retrieved solution in this study.
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Fig. 2 Training stage of the ANN adjusted ABE system with K closest analogies * AK means the Kth closest
analogy of project i
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Step 3: after obtaining the retrieved solution, the inputs and the training target are
prepared to train the ANN model in (9). The inputs of ANN are the residuals
between the features of project i and the features of its K analogies. The training
target of ANN is the residual between the ith project’s real cost value and the
retrieved solution from its K analogies:

Ci &
XK

k¼1

Ck

K
¼
XJ

j¼1

wj f
XK

k¼1

XQ

q¼1

vkqj f siq & skq
" #

þ aj

 !

þ b þ " ð11Þ

The left hand side of (11) is the training target: the difference between the real cost of
project i and the retrieved solution of project i. The right hand side of (11) is the ANN
model with siq as the qth feature of project i, skq as the qth feature of its kth analogy (if siq
and skq are categorical features, then siq–skq = 1 when siq = skq, and siq–skq = 0 when siq ≠
skq), with wj, vkqj, αj and β as ANN weights and biases, with f(·) as the transfer function,
with J as the number of hidden neurons, with K as the total number of analogies, and with
Q as the total number of features in each project. For example, if the ith project’s real cost is
40 and the retrieved solution is 21, then the targeting output of ANN is 40–21=19.

Step 4. given the inputs and the targeting output, the Back Propagation (BP) algorithm is
performed to update the parameter in (11) to minimize the training error MSE (8).

After repeating the above procedure to all the projects in training dataset, the training
stage is completed and the system moves to the testing stage.

3.1.2 Stage II—Predicting

The predicting stage is illustrated in Fig. 3. At this stage, a new project x is presented to the
trained NABE system. Then, a set of K analogies are retrieved from the training dataset by
applying (10) to calculate the similarities. After obtaining the K analogies, the retrieved
solution function is used to generate the un-adjusted prediction, and the differences between
features of project x and its K analogies are inputted into the trained ANN model to
generate the adjustment. Finally, the ABE prediction and the ANN adjustment are summed
up as the final prediction:

by xð Þ ¼
XK

k¼1

Ck

K
þ
XJ

j¼1

wj f
XK

k¼1

XQ

q¼1

vkqj f ðsxq & skqÞ þ aj

 !
þ b ð12Þ

For a better illustration of the NABE system procedure, an application example is given
in Section 5. Before the example, the accuracy evaluation criteria and the real world
datasets are presented in Section 4.

4 Evaluation Criteria and Data Sets

The evaluation criteria and real world data sets for experiments are presented in Section 4.1
and Section 4.2 respectively.
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Fig. 3 Predicting stage of the ANN adjusted ABE system with K closest analogies * AK means the Kth
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4.1 The Evaluation Criteria

Evaluation criteria are essential to the experiments. In the literature, several quality metrics
have been proposed to assess the performances of estimation methods. More specifically,
Mean Magnitude of Relative Error (MMRE), PRED(0.25) (Conte et al. 1986), and Median
Magnitude of Relative Error (MdMRE) (Jorgensen et al. 1995) are three popular metrics.

The MMRE is defined as below:

MMRE ¼ 1
n $

Pn

i¼1
MRE

MRE ¼ Ci&bCi
Ci

$$$
$$$

ð13Þ

where n denotes the total number of projects, Ci denotes the actual cost of project i, and Ĉi

denotes the estimated cost of project i. Small MMRE value indicates the low level of
estimation error. However, this metric is unbalanced and penalizes overestimation more
than underestimation.

The MdMRE (Kitchenham et al. 2001) is the median of all the MREs.

MdMRE ¼ median
Ci & bCi

Ci

$$$$$

$$$$$

 !

ð14Þ

It exhibits a similar pattern to MMRE but it is more likely to select the true model
especially in the underestimation cases since it is less sensitive to extreme outliers (Foss et
al. 2003). The PRED(0.25) is the percentage of predictions that fall within 25% of the
actual value.

PRED 0:25ð Þ ¼ 1
n
$
Xn

i¼1

MRE ( 0:25ð Þ ð15Þ

The PRED(0.25) identifies cost estimations that are generally accurate, while MMRE is
a biased and not always reliable as a performance metric. However, MMRE has been the de
facto standard in the software cost estimation literature. In addition to the metrics
mentioned above, there are several metrics available in the literature, such as Adjusted
Mean Square Error (AMSE) (Burgess and Lefley 2001), Standard Deviation (SD) (Foss et
al. 2003), Relative Standard Deviation (RSD) (Foss et al. 2003), and Logarithmic Standard
Deviation (LSD) (Foss et al. 2003).

4.2 Data Sets

Four well known real world datasets are chosen for experiments. The Albrecht dataset
(Albrecht and Gaffney 1983) is a popular dataset used by many recent studies (Shepperd
and Schofield 1997; Heiat 2002; Auer et al. 2006). This dataset includes 24 projects
developed by third generation languages. Eighteen out of 24 projects were written in
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COBOL, four were written in PL1, and two were written in DMS languages. There are five
independent features: ‘Inpcout’, ‘Outcount’, ‘Quecount’, ‘Filcount’, and ‘SLOC’. The two
dependent features are ‘Fp’ and ‘Effort’. The ‘Effort’ which is recorded in 1,000 person
hours is the targeting feature of cost estimation. The detailed descriptions of the features are
shown in Appendix A. The descriptive statistics is presented in Table 2. Among these
statistics, the ‘Skewness’ and ‘Kurtosis’ are used to quantify the degree of non-normality of
the features (Kendall and Stuart 1976). It is noted that Albrecht is a relatively small dataset
with high order non-normality comparing to the rest three datasets.

The Desharnais dataset was collected by Desharnais (1989). Despite the fact that
Desharnais dataset is relatively old, it is one of the large and publicly available datasets.
Therefore it still has been employed by many recent research works, such as Mair et al.
(2000), Burgess and Lefley, (2001), and Auer et al. (2006). This data set includes 81
projects (with nine features) from one Canadian software company. Four of 81 projects
contain missing values, so they have been excluded from further investigation. The eight
independent features are ‘TeamExp’, ‘ManagerExp’, ‘Length’, ‘Language’, ‘Trans-
actions’, ‘Entities’, ‘Envergure’, and ‘PointsAdjust’. The dependent feature ‘Effort’ is
recorded in 1,000 h. The definitions of the features are provided in Appendix B. The
descriptive statistics of all features are presented in Table 3. Table 3 shows that
Desharnais is a larger dataset with relatively lower order non-normality comparing with
Albrecht dataset.

The Maxwell dataset (Maxwell 2002) is a relative new dataset and has already been used
by some recent research works (Sentas et al. 2005; Li et al. 2008b). This dataset contains 62
projects (with 26 features) from one of the biggest commercial banks in Finland. In this
dataset, four out of 26 features are numerical and the rest features are categorical. The
categorical features can be further divided into ordinal features and nominal features, and
they have to be distinguished. When calculating the similarity measure, the ordinal features
are treated as ‘numerical features’ since they are sensitive to the order while the nominal
features are regarded as ‘categorical’ type. (See formula (10))

In Maxwell dataset, the numerical features are ‘Time’, ‘Duration’, ‘Size’ and ‘Effort’.
The categorical features are ‘Nlan’, ‘T01’-‘T15’, ‘App‘, ‘Har’, ‘Dba’, ‘Ifc’, ‘Source’ and
‘Telonuse’. The ordinal features are ‘Nlan’, and ‘T01’-‘T15’. The nominal features are
‘App’, ‘Har’, ‘Dba’, ‘Ifc’, ‘Source’ and ‘Telonuse’. The definitions of all the features are
presented in Appendix C. The descriptive statistics of all features are provided in Table 4. It
is shown that Maxwell is a relative large dataset with relatively lower order non-normality
and larger proportion of categorical features comparing with Albrecht set and Desharnais
set.

Table 2 Descriptive statistics of all features of Albrecht dataset

Features Mean Std Dev Min Max Skewness Kurtosis

Inpcount 40.25 36.91 7.00 193.00 3.07 13.44
Outcount 47.25 35.17 12.00 150.00 1.28 4.29
Quecount 17.38 15.52 3.00 60.00 1.40 3.96
Filcount 16.88 19.34 0 75.00 1.94 6.46
Fp 61.08 63.68 3.00 318.00 2.90 12.19
SLOC 199.00 1,902.00 647.63 488.00 1.44 4.02
Effort 21.88 28.42 0.50 105.20 2.16 6.51

Empir Software Eng (2009) 14:603–643 615



The ISBSG (International Software Benchmarking Standards Group) has developed and
refined its data collection standard over a ten-year period based on the metrics that have
proven to be very useful to improve software development processes. The latest data release
of this organization is the ISBSG R10 data repository (ISBSG 2007a) which contains
totally 4,106 projects (with 105 features) coming from 22 countries and various

Table 4 Descriptive statistics of all features of Maxwell data set

Features Mean Std Dev Min Max Skewness Kurtosis

Time 5.58 2.13 1.00 9.00 −0.42 2.25
App 2.35 0.99 1.00 5.00 0.96 4.11
Har 2.61 1.00 1.00 5.00 1.43 4.09
Dba 1.03 0.44 0.00 4.00 4.74 35.13
Ifc 1.94 0.25 1.00 2.00 −3.55 13.57
Source 1.87 0.34 1.00 2.00 −2.21 5.90
Telonuse 2.55 1.02 1.00 4.00 −0.04 1.91
Nlan 0.24 0.43 0.00 1.00 1.21 2.45
T01 3.05 1.00 1.00 5.00 −0.20 2.05
T02 3.05 0.71 1.00 5.00 −0.07 3.57
T03 3.03 0.89 2.00 5.00 0.51 2.51
T04 3.19 0.70 2.00 5.00 0.02 2.60
T05 3.05 0.71 1.00 5.00 0.48 4.98
T06 2.90 0.69 1.00 4.00 −0.46 3.49
T07 3.24 0.90 1.00 5.00 −0.08 2.52
T08 3.81 0.96 2.00 5.00 −0.17 1.97
T09 4.06 0.74 2.00 5.00 −0.58 3.32
T10 3.61 0.89 2.00 5.00 0.00 2.22
T11 3.42 0.98 2.00 5.00 0.12 2.02
T12 3.82 0.69 2.00 5.00 −0.66 3.83
T13 3.06 0.96 1.00 5.00 −0.24 2.35
T14 3.26 1.01 1.00 5.00 −0.15 2.37
T15 3.34 0.75 1.00 5.00 0.09 3.99
Duration 17.21 10.65 4.00 54.00 1.25 4.34
Size 673.31 784.08 48.00 3,643.00 2.28 7.80
Effort 8,223.21 10,499.90 583.00 63,694.00 3.27 15.52

Table 3 Descriptive statistics of all features of Desharnais dataset

Features Mean Std Dev Min Max Skewness Kurtosis

TeamExp 2.30 1.33 0 4.00 −0.05 1.73
ManagerExp 2.65 1.52 0 7.00 0.22 3.01
Length 11.30 6.79 1.00 36.00 1.43 5.49
Language 1.56 0.72 1.00 3.00 0.88 2.45
Transactions 177.47 146.08 9.00 886.00 2.34 10.09
Entities 120.55 86.11 7.00 387.00 1.36 4.37
Envergure 27.45 10.53 5.00 52.00 −0.19 2.58
PointsAdjust 298.01 182.26 73.00 1,127.00 1.81 7.67
Effort 4.83 4.189 0.55 23.94 2.00 7.89
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organizations such as banking, communications, insurance, business services, government
and manufacturing.

Due to the heterogeneous nature and the huge size of the entire repository, ISBSG
recommends extracting out a suitable subset for any cost estimation practice (ISBSG
2007b). At the first step, only the relevant features characterizing projects should be
considered to create the subset. Thus, we select out 14 important features (include project
effort) suggested by ISBSG (ISBSG 2007b): ‘DevType’, ‘OrgType’, ‘BusType’, ‘App-
Type’, ‘DevPlat’, ‘PriProLan’, ‘DevTech’, ‘ProjectSize’ (consisting of six sub features:
‘InpCont’, ‘OutCont’, ‘EnqCont’, ‘FileCont’, ‘IntCont’, and ‘AFP’), and ‘NorEffort’. Then,
the projects with missing values in any of the selected feature are excluded from the subset.
Afterward, a further step is taken to refine the subset. In ISBSG dataset, project data quality
is rated and only projects with A or B rating are used in published research works.
Therefore the projects with the ratings other than A and B are excluded from the subset.
Moreover, since the normalized effort (‘NorEffort’) is used as the target for estimation, the
risk of using normalized effort should be noted. For project covering less than a full
development life cycle, normalized effort is an estimate of the full development effort and
this may introduce biasness. Hence the normalized ratio (normalized effort / summary
effort) is used to refine the project subset. As suggested by ISBSG that the ratio up to 1.2 is
acceptable (ISBSG 2007b), we filter out the projects with normalized ration larger than 1.2.
Finally, the subset is further reduced to the projects with ‘Banking’ as ‘OrgType’. After all,
the above procedures results to a subset with 118 projects.

The definitions of the project features are presented in Appendix D. The descriptive
statistics of all features are summarized in Table 5. Table 5 and Appendix D show that the
ISBSG subset is the largest dataset with high order non-normality and large proportion of
categorical features comparing with the datasets above.

5 Application Example of NABE

This section presents an application example of the NABE system on Albrecht dataset.

Table 5 Descriptive statistics of all features of ISBSG data set

Features Mean Std Dev Min Max Skewness Kurtosis

DevType 1.52 0.50 1.00 2.00 −0.07 1.00
BusType 7.55 6.36 2.00 15.00 0.29 1.11
AppType 5.76 2.14 1.00 9.00 0.18 1.85
DevPlat 6.25 4.50 1.00 12.00 0.03 1.12
PriProLan 1.45 0.77 1.00 4.00 1.87 6.07
DevTech 10.19 3.96 4.00 16.00 0.10 1.66
InpCont 75.05 128.38 0 780.00 3.37 15.78
OutCont 68.90 96.81 0 648.00 3.42 17.50
EnqCont 41.49 75.80 0 398.00 2.70 10.23
FileCont 61.25 79.03 0 383.00 2.24 8.23
IntCont 28.07 36.74 0 172.00 1.83 6.02
AFP 284.41 340.65 10.00 2,190.00 2.81 12.63
NorEffort 4,309.08 5,520.68 508.00 36,046.00 2.86 13.29
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5.1 Stage I—Training

Step 1, suppose project i is used as the training target for the non-linear component (all
feature values are normalized in to region [0, 1]).

Features Inpcount Outcount Quecount Filcount Fp SLOC Effort
Project i 0.22 0.38 0.08 0.16 0.13 0.32 0.17

Step 2, the ABE algorithm searches through the training dataset for the K=1 analogy of
the project i. Suppose that the retrieved closest analogy is project j:

Features Inpcount Outcount Quecount Filcount Fp SLOC Effort
Project j 0.23 0.43 0.27 0.19 0.15 0.36 0.12

Step 3, the training target and inputs are calculated for the ANN component. The target
output is: (project i’s effort)—(project j’s effort)=0.17–0.12=0.05; the inputs of
ANN are the features of project i subtracting the corresponding features of project j:

Inputs 1 2 3 4 5 6
Residual −0.01 −0.05 −0.19 −0.03 −0.02 −0.04

Step 4, the back-propagation algorithm is performed to train ANN by using the target and
inputs from step 3.

Step 1 to step 4 are repeated cross all the projects in the training set. The trained ANN
model is the non-linear adjustment that adapts to the relationship that transforms the
retrieved solution to the target solution.

5.2 Stage II—Predicting

Suppose a new project x is being estimated and the effort value of this project is unknown.

Features Inpcount Outcount Quecount Filcount Fp SLOC Effort
Project x 0.36 0.18 0.20 0 0.06 0.23 ?

The ABE system firstly retrieves the closest analogy: project k from the training dataset.

Features Inpcount Outcount Quecount Filcount Fp SLOC Effort
Project k 0.18 0.09 0.08 0 0.11 0.11 0.08
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Therefore, the effort = 0.08 is the retrieved solution. Then the residuals between the
feature values of project x and the feature values of project k are calculated and inputted
into the ANN model.

Inputs 1 2 3 4 5 6
Residual 0.18 0.09 0.12 0 −0.05 0.12

After processing the inputs, the ANN generates an output = 0.07, according to its
network structure obtained from the training stage. At last, the final prediction is produced
by adding the ANN output to the retrieved solution (0.08+0.07=0.15).

6 Experiments and Results

In this section, the proposed NABE is tested on the four datasets introduced in Section 4,
comparing with the linear adjusted ABEs and other estimating methods including ANN,
CART and SWR. In Section 6.1, the experiments design and the methods parameterizations
are presented. From Section 6.2 to Section 6.5 the experimental results on the four datasets
are summarized and analyzed.

6.1 Experiments Design

6.1.1 Three-Fold Cross Validation

Prior to the experiments setup, all types of features are normalized into [0, 1] by dividing
each feature value by that feature range, similarly to ANGEL (Shepperd and Schofield
1997). The three-fold cross-validation is used to assess the accuracies of the methods,
similarly to Briand et al. (1999), Jeffery et al. (2001), and Mendes et al. (2003). Under this
scheme, the data set is randomly divided into k=3 equally sized subsets. At each time, one
of the three subsets is used as the testing set exclusively for evaluating model prediction,
and the rest two subsets are integrated to form a training set which is only used to construct
the estimating model. This process is repeated three times and each subset has been used as
testing set only one time. Finally the average training error and testing error across all three
trials are computed. The advantage of cross validation scheme is that it matters little how
the data is divided since every data point is assigned into a test set exactly once, and into a
training set twice.

6.1.2 Experiments Procedures

After determining the cross-validation scheme, the following procedures are performed to
validate the proposed NABE system with comparisons against other methods on each dataset.

1. The performances of NABE are analyzed on both training set and testing set by varying
the K number of analogies from 1 to 5 while keeping the similarity measure as the
formula in (10) and the retrieved solution function as the ‘un-weighted mean’. The
reason for changing K values is that K is an important parameter which determines
the number of inputs to the non-linear adjustment. The similarity measure and retrieved
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solution are fixed because the focus of this study is on non-linear adjustment but these
two parameters may not have direct impacts to the non-linear adjustment.

2. The optimal K value of the training practice (K minimizes the MMRE on training set) is
selected to configure NABE for comparisons. Similarly, the best variants of other
methods on the training sets are also obtained to compare with NABE. The training and
testing results are summarized and analyzed.

3. The Wilcoxon signed-rank tests (α=0.05) are performed to quantitatively identify the
significance of difference in each pair-wised comparisons on testing sets.

6.1.3 Methods Specifications

Many cost estimation techniques are included for comparisons. They are: the standard
ABE (Shepperd and Schofield 1997), the Linear size adjusted ABE (LABE) (Walkerden
and Jeffery 1999), Regression toward the mean adjusted ABE (RABE) (Jorgensen et al.
2003), GA optimized linear adjusted ABE (GABE) (Chiu and Huang 2007), Similarity
adjusted ABE (SABE) (Li and Ruhe 2008), and other popular cost estimation methods
including the Classification and Regression Trees (CART) (Stensrud 2001), the Artificial
Neural Network (ANN) (Mair et al. 2000) and Stepwise Regression (SWR) (Mendes et al.
2003).

To eliminate the impacts from different parameters, all types of ABE methods are
implemented with fixed similarity measure (Euclidean) and retrieve solution (un-weighted
mean). The only changeable parameter K number of analogies varies from 1 to 5. It is noted
that, in SABE method the un-weighted similarity function is applied since the feature
weighting is not included in this study.

For ANN, there are generally three parameters: the number of hidden nodes, the number
of hidden layers and the types of hidden transfer functions. In our study, only one hidden
layer is considered in order to avoid the over-parameterized ANN structure. The number of
hidden nodes is chosen from the set {1, 3, 5, 7, 10} and the type of hidden transfer function
is chosen from the set {Linear, Tan-Sigmoid, Log-Sigmoid}. Every combination of hidden
node and hidden transfer function is evaluated on the training data. The optimal
combination (minimize MMRE) is used for testing and comparisons.

The CART (Brieman et al. 1984) is a non-parametric and tree structured analysis
procedure that can be used for classification and regression. When the tree structure is
applied for numerical targets they are often called regression trees. CART has the following
advantages: the capability of dealing with categorical features, the easily understandable
diagram of complex data and the ability to identify the major subsets in the total dataset
(Srinivasan and Fisher 1995). The construction of the CART involves recursively splitting
the data set into (usually two) relatively homogeneous subsets until the terminate conditions
are satisfied. The best tree is obtained by applying cross-validation on the training set using
a spread minimization criterion. The best tree model is used in testing and comparisons.

For the stepwise regression method (SWR), the optimal regression model is determined
from the forward stepwise procedure on the training dataset. Then the optimal linear
equation is used in testing and comparisons. When the categorical features appear in the
dataset, the optimal scaling (or CATREG) technique by Angelis et al. (2000) is utilized to
build regression model based on both numerical and categorical features.

Finally, the random model (RAND) is also included in the comparisons as the control
group to produce the estimation by randomly selecting any project’s cost value from the
dataset (training set or testing set).
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All the methods are implemented via MATLAB code. The ANN component in NABE
system and the ANN method in comparisons are trained by BP algorithm. The MSE error
in (8) is use to determine how well the network is trained. The training stops when the MSE
drops below the specified threshold = 0.01 in this study.

6.2 The Results on Albrecht Dataset

This section presents the results and comparisons on Albrecht dataset. Table 6 summarizes
the three-fold cross validation results of NABE with different K values. It is observed that
the setting K=4 minimizes the training MMRE. Thus, the NABE system with K=4 is
chosen for the comparisons with other methods. In order to provide more insight on the
magnitude of adjustment proposed by ANN, the ratios of absolute adjustment / non-
adjusted values are calculated across the testing sets. The mean value of these ratio is 0.41
by NABE system with K=4.

Table 7 collects the training and testing results of the best variants of all cost estimation
models. The configurations for ABE based methods are K=2 for ABE, K=3 for RABE, K=
1 for LABE, K=2 for GABE and K=1 for SABE. The testing results in Table 7 show that
the NABE achieves the best values in MMRE, PRED(0.25) and MdMRE. Among other
types of ABEs, LABE obtains the smallest MMRE, ABE achieves the maximum PRED
(0.25), and SABE has the minimal MdMRE. In addition, it is noted that all methods have
better performances than the random model. Another interesting observation is that some
testing results are better than the training results. Some published cost estimation works
(such as Chiu and Huang (2007) and Huang and Chiu (2006)) also reported similar
patterns. This may be due to the fact that the machine learning techniques are data driven
methods and they learn from examples without any knowledge of the model type. If the
testing data happens to fit well to the model constructed on training data, then it is possible
to have better testing results than training results.

To further analyze the testing performances, we draw out the box plots of absolute
residuals, because absolute residuals are less sensitive to bias than the asymmetric MRE
values (Stensrud et al. 2003). The plots in Fig. 4 show that NABE has a lower median, a
shorter inter-quartile range, and fewer outliers than other methods. It is also observed that
the distributions of absolute residuals are heavily skewed. This implies that the standard t-
test is no longer valid for significance testing. Thus, the assumption-free Wilcoxon signed-
rank tests are performed instead. The p-values of Wilcoxon signed-rank tests are
summarized in Table 8.

Table 8 summarizes the p-values of Wilcoxon tests of NABE versus other method. Four
paired comparisons have p-values smaller than 0.05. They are NABE v.s. RABE, NABE v.

Table 6 Results of NABE on Albrecht dataset

K value Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K=1 0.84 0.13 0.64 0.70 0.50 0.28
K=2 0.87 0.33 0.40 0.48 0.38 0.41
K=3 0.89 0.46 0.28 0.59 0.46 0.29
K=4 0.82 0.29 0.31 0.41 0.36 0.25
K=5 0.93 0.42 0.29 1.01 0.33 0.39
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s. GABE, NABE v.s. CART, and NABE v.s. SWR. In addition, the improvements of NABE
to other methods in terms of MMRE values are presented in Table 8. Four of the MMRE
improvements are larger than 30% and the largest improvement is 60% on CART. The
smallest improvement is 6% on LABE.

6.3 The Results on Desharnais Dataset

In this section, we present the results on Desharnais dataset in a way that similar to the
presentations on Albrecht dataset. Table 9 illustrates the training errors and testing errors of
NABE with regard to different K values. The K=2 achieves the minimal training MMRE,
thus NABE with K=2 is chosen for comparisons with other methods. The average of the
radios of (absolute adjustment / non-adjusted prediction) is 0.03 on the testing sets.

Table 10 summarizes the training and testing errors of the best variants of all cost
estimation models. The optimal parameters for ABE based methods other than NABE are:
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Fig. 4 Boxplots of absolute
residuals on Albrecht dataset

Table 7 Accuracy comparison on Albrecht dataset

Methods MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.82 0.41 0.29 0.36 0.31 0.25
RABE 0.85 0.66 0.37 0.21 0.36 0.45
LABE 0.81 0.61 0.29 0.21 0.39 0.53
GABE 0.92 0.77 0.40 0.33 0.45 0.48
SABE 0.84 0.81 0.33 0.25 0.41 0.46
ABE 0.93 0.87 0.29 0.33 0.46 0.43
ANN 0.97 0.85 0.46 0.33 0.30 0.39
CART 3.36 1.44 0.13 0.17 0.93 0.66
SWR 1.19 0.94 0.25 0.17 0.81 0.55
RAND 4.47 1.71 0.17 0.13 0.74 0.72
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ABE with K=1, RABE with K=1, LABE with K=1, GABE with K=2 and SABE with K=
4. The testing results show that NABE achieves smallest MMRE and MdMRE, and second
largest PRED(0.25). Among other types of ABEs, GABE obtains the smallest MMRE,
RABE achieves the largest PRED(0.25) and the minimal MdMRE. It is also observed that
the differences between NABE and other methods are not as apparent as those on Albrecht
datasets. This observation maybe attribute to the characteristic of Desharnais dataset:
moderate non-normality. It implies that all methods tend to perform equally good when the
data set is close to normal distribution. As to the control group, all other methods have
better predictions than the random model.

For further analysis, the box plots of absolute residuals on testing datasets are presented
in Fig. 5. The plots in Fig. 5 show that NABE’s median is close to those of RABE, ANN
and SWR; NABE has the shortest inter-quartile range, NABE gets five outliers while SABE
and CART have fewer ones though their outliers are more extreme. The distributions of
absolute residuals are skewed and therefore Wilcoxon tests are used to quantitatively
investigate the differences between NABE and other methods.

In Table 11, the p-values from the Wilcoxon tests are presented together with the
improvements on MMRE. Six out of eight p-values are larger than 0.05, and the rest two p-
values are NABE vs. LABE = 0.02 and NABE vs. CART = 0.03. All the MMRE
improvements are not larger than 30%. The largest improvement is 30% on SWR while the
smallest improvement is 7% on GABE. These observations confirm the previous
observation that on Desharnais dataset NABE does not perform significantly better than
most methods and the performances of different methods are very close.

6.4 The Results on Maxwell Dataset

This section presents the results and comparisons on Maxwell dataset. Table 12 presents the
three-fold cross validation results of NABE with different K values. The best setting K=3
which minimizes the training MMRE is chosen for comparisons with other methods. The

Table 9 Results of NABE on Desharnais dataset

K value Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K=1 0.41 0.44 0.28 0.66 0.34 0.45
K=2 0.39 0.40 0.35 0.52 0.36 0.32
K=3 0.51 0.36 0.36 0.73 0.27 0.49
K=4 0.52 0.30 0.42 0.64 0.21 0.50
K=5 0.42 0.38 0.33 0.69 0.23 0.46

Table 8 NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in percentages

RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.02 0.19 0.04 0.08 0.08 0.12 0.00 0.00
Improvement on MMRE (%) 13 6 26 29 34 32 60 39
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mean of the radios of (absolute adjustment / non-adjusted prediction) is 0.37 on the testing
sets.

Table 13 presents the training and testing accuracies of different cost estimation models.
The results from best variants of all methods are collected in this table. The configurations
for ABE based methods are: ABE with K=3, RABE with K=3, LABE with K=2, GABE
K=3 and SABE K=4. The results show that NABE achieves best testing MMRE, PRED
(0.25) and MdMRE. Among other types of ABEs, SABE obtains the smallest MMRE,
LABE achieves the largest PRED(0.25), and SABE has the minimal MdMRE. As to the
control group, all other methods seem to be better than the random model

To further analyze the testing results, we draw out the box plots of absolute residuals.
The plots in Fig. 6 show that NABE has a median close to those of GABE and SABE;
NABE has a inter-quartile range close to those of GABE, SABE and CART; NABE gets
five outliers while RABE, GABE, ABE, ANN and SWR have fewer outliers though some

Table 10 Accuracy comparisons on Desharnais dataset

Methods MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.39 0.52 0.40 0.36 0.35 0.32
RABE 0.68 0.68 0.38 0.39 0.34 0.34
LABE 0.75 0.62 0.29 0.29 0.41 0.51
GABE 0.72 0.55 0.28 0.32 0.38 0.43
SABE 0.76 0.65 0.31 0.36 0.41 0.41
ABE 0.38 0.60 0.44 0.34 0.29 0.42
ANN 0.89 0.67 0.29 0.31 0.47 0.38
CART 0.58 0.71 0.31 0.25 0.41 0.44
SWR 0.67 0.73 0.35 0.35 0.39 0.34
RAND 1.81 1.14 0.12 0.18 0.67 0.60
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of their outliers are more extreme. The distributions of absolute residuals suggest the
Wilcoxon tests to identify the differences between NABE and other methods.

Table 14 summarizes the p-values of Wilcoxon tests and the improvements on MMRE
values. Four out of eight p-values are smaller than 0.05. Two of the MMRE improvements
are larger than 30%. The largest improvement is 48% on CART and the smallest
improvement is 7% on GABE. These observations confirm the finding that NABE performs
significantly better than other methods except SABE and GABE, on Maxwell dataset.

6.5 The Results on ISBSG Dataset

In this section, we present the results and comparisons on ISBSG dataset. Table 15
illustrates the training and testing errors of NABE with different K values. The K=2
achieves the minimal training MMRE and therefore NABE with K=2 is chosen for
comparisons with other methods. The mean value of the radios of (absolute adjustment /
non-adjusted prediction) is 0.43 on the testing sets, which is close to those on Albrecht data
set and Maxwell data set.

Table 16 summarizes the comparisons among the best variants of different cost
estimation models. The optimal parameters for ABE based methods are: ABE with K=3,
RABE with K=3, LABE with K=1, GABE with K=3 and SABE with K=5. The results
show that the NABE achieves best testing MMRE, PRED(0.25), and MdMRE. Among
other types of ABEs, SABE obtains the smallest MMRE, RABE achieves the largest PRED
(0.25) and the minimal MdMRE. Comparing to the control group, all methods appear to be
better than the random model.

The box plots of absolute residuals on testing sets are provided for further analysis. The
plots in Fig. 7 show that NABE achieves a lower median, the shorter inter-quartile range
than other methods. Another observation is that all methods are prone to extreme outliers.
This maybe attribute to the fact that ISBSG dataset were collected inter-organizationally
and internationally. Due to the diverse sources of data, even two similar projects might have
quite different amount of cost. In the next step, Wilcoxon tests are used to assess the
differences between NABE and other methods.

Table 11 NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in percentages

RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.28 0.02 0.23 0.20 0.23 0.25 0.03 0.22
Improvement on MMRE (%) 24 17 7 20 14 23 27 30

Table 12 Results of NABE on Maxwell dataset

K value Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K=1 0.91 0.23 0.61 1.21 0.16 0.57
K=2 0.87 0.27 0.61 1.22 0.21 0.58
K=3 0.80 0.23 0.51 0.80 0.35 0.45
K=4 0.89 0.21 0.54 0.77 0.19 0.49
K=5 0.89 0.24 0.56 0.93 0.19 0.56
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In Table 17, the p-values from the Wilcoxon tests are presented together with the
improvements on MMRE. In this table, all p-values are not larger than 0.05. As to the
MMRE improvement, four MMRE improvements are larger than 30%. The largest
improvement is 48% on RABE while the smallest improvement is 14% on SWR.

Besides the three-fold-cross validation, we conduct a different round of testing on
ISBSG dataset. In this experiment, we select the test subset to consist of 33% more recent
projects (completed in year 2000 and 2001) and the training subset to consist of 66% older
projects (completed from year 1993 to 1999), because this would provide a more realistic
setting: in real life applications the experimenter of NABE would train the method on old
projects and apply it to the incoming projects. The results on training and testing subsets are
summarized in Table 18. It is shown that most methods achieve better results than in three-
fold cross-validation. NABE achieves best results under all error metrics. Among other
ABEs, ABE obtains the smallest MMRE, and LABE achieves the largest PRED(0.25) and
the minimal MdMRE. Comparing to the control group, all methods appear to perform better
than the random model.

Table 13 Accuracy comparisons on Maxwell dataset

Methods MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.80 0.80 0.23 0.35 0.51 0.45
RABE 0.78 0.88 0.23 0.16 0.57 0.62
LABE 0.74 1.08 0.24 0.31 0.44 0.63
GABE 0.92 0.98 0.21 0.26 0.45 0.52
SABE 0.94 0.85 0.15 0.23 0.60 0.50
ABE 0.92 1.04 0.23 0.21 0.63 0.62
ANN 1.19 1.32 0.34 0.13 0.52 0.62
CART 1.60 1.52 0.23 0.26 0.61 0.65
SWR 1.53 1.09 0.18 0.23 0.65 0.76
RAND 2.49 1.70 0.16 0.05 0.66 0.81
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Fig. 6 Boxplots of absolute
residuals on Maxwell dataset
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7 Analysis on Dataset Characteristics

In Section 6, results and comparisons are presented on each real dataset individually.
However, the results vary dramatically from one dataset to another. For instance, NABE is
statistically better than RABE on ISBSG dataset (p=0.02) but their performances are
statistically equal to each other on Desharnais dataset (p=0.28). This is probably due to the
fact that model accuracies are not only affected by the parameters selections but also
affected by other factors such as the dataset characteristics (Shepperd and Kadoda 2001). In
this section, we conduct a systematic investigation in order to explore the relationship
between model accuracy and the dataset characteristics, and identify under which
conditions NABE is the preferred prediction system and under what conditions other
methods is also recommendable.

Table 19 summarizes a set of characteristics of the real world datasets. The columns in
this table list the dataset ID, the number of projects, total number of features, the number of
categorical features, and average of absolute skewness and kurtosis of each feature. The
skewness and kurtosis values together reflect the degree of non-normality of the dataset.

This table provides some insights to each dataset. It is shown that software dataset often
exhibits a mixture of several characteristics such as skewness and excessive outliers
(kurtosis). These characteristics do not always appear in the same degree. In some cases
they are moderate such as the Albrecht dataset, while in other cases they are severe such as
the ISBSG dataset. It is also noted that the data sets are largely contrast to each other, for
example Albrecht dataset has a relatively small size and small proportion of categorical
features while Maxwell dataset is larger and has large proportion of categorical features.
However, based on only the real world datasets, there are still some difficulties for a
systematic analysis. The real dataset properties are uncontrollable and the real world
datasets can not cover the full range of the combinations of the properties being studied.

Artificially generated dataset by simulation (Pickard et al. 2001; Shepperd and Kadoda
2001) is a feasible solution to the above difficulties. This approach generates artificial
dataset from predefined distributions and equations. The simulated dataset provides the
researcher with more control over the characteristics of a dataset. Especially, it enables the
researcher to vary one property at a time and thus allows a more systematic exploration of

Table 14 NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in percentages

RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.09 0.02 0.14 0.15 0.06 0.00 0.02 0.02
Improvement on MMRE (%) 11.00 27.00 7.00 20.00 24.00 40.00 48.00 28.00

Table 15 Results of NABE on ISBSG dataset

K value Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

K=1 0.98 0.25 0.60 0.87 0.26 0.55
K=2 0.89 0.33 0.46 0.74 0.31 0.42
K=3 0.97 0.26 0.53 0.89 0.22 0.49
K=4 1.00 0.15 0.63 0.95 0.22 0.58
K=5 1.10 0.10 0.69 1.03 0.23 0.61
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the relationship between dataset characteristics and model accuracies. As a simple but
powerful tool for empirical evaluations, this technique has been frequently implemented by
several recently published studies (Myrtveit et al. 2005; Li et al. 2008a).

Besides the simulation approach, bootstrapping (Efron and Gong 1983) is often used to
produce artificial datasets to study the uncertainties in the predictions (Angelis and
Stamelos 2000). Its principle is to generate several new datasets with the same size as the
original dataset by randomly sampling original data with replacement. Each new dataset
may have some items from the original dataset appearing more than once while some not
appearing at all. However, bootstrapping is not considered for artificial dataset generation in
this study. The reason is that our study mainly emphases on varying dataset properties to
investigate the relationships between dataset properties and model accuracies but
bootstrapping only generates a series of datasets based on original data and offers limited
variability to change the dataset properties. On the other hand, the simulation technique
provides a more explicit control over the dataset properties such as adjusting the
distribution parameters to vary the skewness and kurtosis of the variable distribution.

Table 16 Accuracy comparisons on ISBSG dataset

Methods MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.89 0.74 0.33 0.30 0.46 0.42
RABE 1.16 1.36 0.28 0.28 0.51 0.54
LABE 1.19 1.13 0.29 0.17 0.53 0.58
GABE 1.13 1.09 0.25 0.21 0.54 0.60
SABE 0.91 0.85 0.23 0.18 0.51 0.58
ABE 0.97 0.98 0.16 0.22 0.63 0.59
ANN 0.82 0.96 0.27 0.25 0.49 0.60
CART 1.26 1.07 0.19 0.18 0.73 0.61
SWR 0.77 0.82 0.29 0.19 0.54 0.60
RAND 2.17 2.29 0.13 0.09 0.73 0.70
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Fig. 7 Boxplots of absolute
residuals on ISBSG dataset
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In Section 7.1, we simulate eight artificial datasets to match the eight different
combinations of the three data characteristics. Due to the computational limits, we only
considered two levels for each characteristic: such as Large/Small for the ‘Dataset size’,
Large/Small for the ‘Proportion of categorical features’, and Severe/Moderate for the
‘Non-normality’.

7.1 Artificial Datasets Generation

In this section, we present the procedures of artificial datasets generation. We extend
Pickard’s equation of artificial dataset generation in this work. Other types of simulation
techniques for artificial dataset are also available in the literature. For more details, readers
can refer to Shepperd and Kadoda (2001), Foss et al. (2003), and Myrtveit et al. (2005).

Based on Pickard’s method, we simulate the combinations of characteristics from the
equation (16):

y ¼ 1000þ 6x1sk þ 3x2sk þ 2x3sk þ 5x4sk þ 10x5sk þ x6sk þ e ð16Þ

The independent variables are x1sk, x2sk, x3sk, x4sk, x5sk, and x6sk. Among them, x1sk,
x2sk, and x3sk are continuous variables, and x6sk is categorical variable. The first variable
x1sk is treated as the feature ‘function point’ for the linear adjustment methods. The last
term e in (16) is the normally distributed noise with mean 0 and variance 1. To simulate
different proportions of categorical features (Large/Small), x4sk and x5sk are defined as
categorical variables for the situation of large proportion (50%) while x4sk and x5sk are set
to be continuous to represent the situation of small proportion of categorical features
(16.7%).

The non-normality is represented by skewness and outliers (kurtosis). For the continuous
variables, the skewnesses are generated by five independent Gamma distributed random

Table 17 NABE vs. other methods: p-values of the Wilcoxon tests and the improvements in percentages

RABE LABE GABE SABE ABE ANN CART SWR

p-value 0.02 0.05 0.04 0.05 0.02 0.02 0.01 0.02
Improvement on MMRE (%) 48 31 35 17 29 27 34 14

Table 18 Accuracy comparisons on ISBSG dataset

Methods MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

NABE 0.67 0.57 0.40 0.31 0.50 0.41
RABE 0.55 0.81 0.38 0.20 0.32 0.55
LABE 0.57 0.90 0.38 0.25 0.47 0.54
GABE 0.83 1.00 0.21 0.18 0.54 0.70
SABE 0.91 0.85 0.23 0.18 0.51 0.58
ABE 0.82 0.71 0.16 0.22 0.62 0.58
ANN 0.74 0.75 0.31 0.18 0.51 0.66
CART 0.80 0.87 0.28 0.17 0.41 0.57
SWR 0.67 0.86 0.15 0.15 0.61 0.86
RAND 1.43 2.93 0.12 0.13 0.70 0.95
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variables x1′, x2′, x3′, x4′, and x5′ with scale parameter θ=2 and shape parameter k=3
representing the moderate skewness, and θ=2 and k=1 for the severe skewness. For the
categorical variables, the moderate skewnesses are simulated by the independent discrete
random variables x4′, x5′, and x6′ with the distribution {P(X=1)=0.1; P(X=2)=0.1, P(X=3)=
0.5, P(X=4)=0.2, P(X=5)=0.1} and the severe skewnesses are simulated by the distribution
{P(X=1)=0.7; P(X=2)=0.1, P(X=3)=0.1, P(X=4)=0, P(X=5)=0.1}. To vary the magnitude
of the independent variable, we then multiply x1′ by ten to create variable x1sk, x2′ by three to
create x2sk, x3′ by 20 to create x3sk, x4′ by five to create the variable x4sk, x5′ by two to create
x5sk, and x6′ by one to create x6sk. The outliers are generated by multiplying or dividing the
dependent variable y by a constant. We select 1% of the data points to be the outliers. Half of
the outliers are obtained by multiplying while half of them are obtained by dividing. For the
moderate outliers, we set the constant value as 2, while for the severe outliers, six is chosen to
be the constant.

For dataset sizes, we generate 400 projects to form the large sized dataset and 40 projects
to construct the small sized dataset. Table 20 summarizes the properties of the eight
artificial datasets.

7.2 Comparisons on Modeling Accuracies

The experimental procedures presented in Section 6.1.2 are applied on all artificial datasets.
The comparisons between NABE and other models are presented first, since the relative
performances of NABE to other methods could provide more insights about how to choose
appropriate cost estimation method under a certain condition. Table 21 summarizes the
results of Wilcoxon signed rank tests. These significance tests assess the differences
between the absolute residuals of NABE’s predictions and the absolute residuals of other
methods’ predictions. The confidence limit is set at α=0.05. In Table 21, the entry with ‘Y’

Table 19 Characteristics of the four real world datasets

Dataset Number of
Projects

Number of
Features

Number of
Categorical Features

Avg.
Skewness

Avg.
Kurtosis

Albrecht 24 7 0 2.03 7.27
Desharnais 77 9 1 1.18 5.03
Maxwell 62 26 6 0.97 5.42
ISBSG 118 14 7 1.67 7.42

Table 20 Artificial datasets and properties

Dataset ID Size (number
of projects)

Number of Categorical
features (proportion)

Degree of Non-normality
(Avg. skewness, Avg kurtosis)

#1 Small (40) Small (16.7%) Moderate (0.75, 3.10)
#2 Small (40) Small (16.7%) Severe (2.32, 9.87)
#3 Small (40) Large (50%) Moderate (0.61, 3.37)
#4 Small (40) Large (50%) Severe (2.84, 9.71)
#5 Large (400) Small (16.7%) Moderate (0.93, 3.72)
#6 Large (400) Small (16.7%) Severe (3.21, 13.9)
#7 Large (400) Large (50%) Moderate (0.82, 3.63)
#8 Large (400) Large (50%) Severe (3.32, 10.09)
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indicates that NABE performs significantly better than the method located in this entry’s
corresponding column. The last column summarizes the total number of ‘Y’s in each row
(dataset).

The results in Table 21 show that NABE achieves better performance than all rest
methods on datasets #4 and #8. Both have large proportions of categorical features and
severe non-normality. This observation suggests that NABE might be the best choice
among all methods in our study, when the dataset is highly non-normal and with large
proportion of categorical features. This observation also confirms the findings on ISBSG
dataset which has similar properties to dataset #8. Another interesting observation is that
NABE obtains the equally good predictions to other methods on dataset #1 which has small
size, small number of categorical features and moderate non-normality. Comparing to the
real world datasets, Dataset #1’s properties are closest to those of Desharnais set on which
NABE also performs equally to other methods except LABE and CART.

The analysis above clarifies the conditions under which NABE is preferable to other
methods. To further study the relationship between dataset property and model accuracy, we
analyze the model predictions under single dataset characteristic.

7.3 Analysis on ‘Size’

Table 22 summarizes the testing MMREs of each cost estimation model on the artificial
datasets grouped under different ‘size’. The results show that, NABE achieves the lowest
MMREs on dataset #2, #4, #5, #6, #7, and #8. It is also observed that the dataset size might
largely influence the prediction accuracies. More specifically, almost all the methods obtain
smaller MMRE values on larger datasets.

Table 21 Comparative performance of NABE to other methods

Dataset ID RABE LABE GABE SABE ABE ANN CART SWR Totals

#1 0
#2 Y Y 2
#3 Y Y Y 3
#4 Y Y Y Y Y Y Y Y 8
#5 Y Y 2
#6 Y Y 2
#7 Y Y Y Y 4
#8 Y Y Y Y Y Y Y Y 8

Table 22 Testing MMREs under different dataset size

Dataset Size NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 Small 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17
#2 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44
#3 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15
#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68
#5 Large 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14
#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47
#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12
#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65
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To further investigate the ‘size’ property, we compare the absolute residuals of
predictions using the small datasets and the large datasets. The difference is tested by
using the Mann-Whitney U test setting the confidence limit at α=0.05, since the sample
sizes are not equal (40 data points vs. 400 data points). The results are presented in
Table 23. The entry with ‘Y’ means the difference between the datasets pair in its row is
significant when using the model in its column. Table 23 shows that a larger dataset size
may significantly reduce prediction error measured by absolute residuals. Most approaches
including NABE could benefit from having larger datasets. However, SWR seems to be un-
influenced by the dataset size. This maybe attribute to the fact that SWR constructs a
hyperplane from the data with only a few critical data points. This finding also confirms the
suggestion from Shepperd and Kadoda (2001) that for the machine learning methods large
dataset size could reduce the prediction errors when other properties are fixed.

7.4 Analysis on ‘Proportion of Categorical Features’

This section presents the analysis on the proportion of categorical features. Table 24 is
essentially a re-arrangement of the rows in Table 22. In Table 24, the artificial datasets are
grouped under different ‘proportion of categorical features’. It is observed that large
proportion of categorical features may have negative impacts on the prediction accuracy.
This finding is reflective of the fact that categorical features may have less statistical power
compared with numerical features (Kirsopp et al. 2003).

Table 25 presents the results of Wilcoxon signed rank tests with confidence level at α=
0.05 on the absolute residuals of predictions using the datasets with smaller number of
categorical features and the datasets with larger number of categorical features. In general,
all methods are more or less affected by this property. Among them, NABE, SABE and
SWR are least sensitive to the categorical values. The probable reason is that CATREG
technique is adopted in SWR model, and NABE and SABE both can make use of the
categorical features in their adjustment mechanism.

7.5 Analysis on ‘Degree of Non-Normality’

This section provides the analysis on degree of non-normality. Table 26 is also a re-
arrangement of the rows in Table 22. In Table 26, the artificial datasets are grouped under
different ‘degree of non-normality’. It is noted that most methods obtain larger MMRE
values under severe non-normal conditions. This indicates a trend that the increase of non-
normality may result in a decrease of the prediction accuracy. However, NABE appear least
sensitive to non-normality while SWR seems to be most sensitive to non-normality. This
observation supports our argument in Section 2.2 that ANN could enhance ABE’s
robustness to non-normal data.

Table 23 Mann-Whitney U tests of dataset size influences

Datasets pair NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 vs. #5 Y Y Y
#2 vs. #6 Y Y Y Y Y
#3 vs. #7 Y Y Y Y Y Y
#4 vs. #8 Y Y Y Y Y Y Y
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Table 27 presents the results of Wilcoxon signed rank tests with confidence level at α=
0.05 on the absolute residuals of predictions using moderate non-normal datasets and severe
non-normal datasets. The results confirm the finding from Table 26 that NABE is least
sensitive to non-normality while SWR is most sensitive to the non-normal property.
Table 27 also can partially support Shepperd and Kadoda’s (2001) argument that ABE is
preferred to SWR if the dataset contains large proportion of outliers.

7.6 Summary of Analysis

This section summarizes the findings from the real world datasets and artificial datasets:

& Generally, NABE achieves better MMRE, PRED(0.25), and MdMRE values than most
cost estimation methods on the four real world datasets. Its prediction performances (in
terms of absolute residuals) are significantly better than other methods in 18 out of
totally 32 comparisons (eight methods × four datasets = 32 comparisons). For the
artificial datasets, NABE achieves the lowest MMRE values on six out of eight datasets.
Its performances in terms of absolute residuals are significantly better than other
methods in 29 out of totally 64 comparisons.

& More specifically, NABE outperforms other methods on ISBSG dataset, artificial
dataset #4 and artificial dataset #8. All have large proportion of categorical features and
severe non-normality. This observation indicates that NABE could largely improve
ABE on the dataset with high degree non-normality and large proportion of categorical
features.

& NABE obtains equally good accuracies to most methods on Desharnais dataset and
artificial dataset #1. This indicates that NABE may not be an ideal option on the dataset
of small size, small proportion of categorical features and moderate non-normality
comparing with other linear based adjustment mechanisms. Besides accuracy, simplicity

Table 25 Wilcoxon tests of proportion of categorical features influences

Datasets pair NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 vs. #3 Y Y Y Y Y
#2 vs. #4 Y Y Y Y Y Y Y Y Y
#5 vs. #7 Y
#6 vs. #8 Y Y Y Y Y Y Y Y Y

Table 24 Testing MMREs under different proportions of categorical features

Dataset Proportion of
categorical features

NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 Small 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17
#2 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44
#5 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14
#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47
#3 Large 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15
#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68
#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12
#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65
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is also a critical criterion for model evaluation. Especially, when the models are equally
accurate, the simpler ones become more preferable.

& There are significant relationships between the successes of NABE and dataset
properties. First, the large size can generally improve NABE’s performance. Second,
comparing with linear based adjustments NABE appears to be less sensitive to the
proportion of categorical features and the degree of non-normality.

8 Threats to Validity

This section presents the comments on the validities of our study based on the internal
threats to validity and external threats to validity.

8.1 Internal Validity

The threats to internal validity include the following aspects: to focus on different adjustment
mechanisms, we pre-determined the similarity measure and the retrieved solution function in
ABE system. However, there are many other options. For the similarity measures there are
alternatives based on Manhattan and Minkowski distances (Mendes et al. 2003; Huang and
Chiu 2006; Li and Ruhe 2008), and for the retrieved solutions there are weighted mean and
median (Angelis and Stamelos 2000; Mendes et al. 2003).

Moreover, feature selection (Kirsopp et al. 2003) and project selection (Li et al. 2008a)
are important preprocessing steps of ABE method since there are often many irrelevant
features and noisy projects in the software engineering datasets. The possibility of further
improvement of the NABE systems also lies in the appropriate selection of relevant features
and representative projects.

Table 26 Testing MMREs under different degrees of non-normality

Dataset Non-normality NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 Moderate 0.13 0.13 0.13 0.12 0.10 0.15 0.10 0.13 0.17
#3 0.19 0.28 0.27 0.24 0.18 0.19 0.28 0.24 0.15
#5 0.08 0.15 0.17 0.18 0.08 0.09 0.08 0.09 0.14
#7 0.08 0.23 0.20 0.21 0.13 0.20 0.14 0.12 0.12
#2 Severe 0.14 0.19 0.25 0.14 0.15 0.18 0.14 0.22 0.44
#4 0.28 0.45 0.44 0.48 0.45 0.47 0.41 0.44 0.68
#6 0.10 0.14 0.19 0.13 0.14 0.12 0.12 0.17 0.47
#8 0.24 0.40 0.32 0.35 0.35 0.39 0.34 0.45 0.65

Table 27 Wilcoxon tests of non-normality influences

Datasets pair NABE RABE LABE GABE SABE ABE ANN CART SWR

#1 vs. #2 Y Y
#3 vs. #4 Y Y Y Y Y Y Y Y
#5 vs. #6 Y
#7 vs. #8 Y Y Y Y Y Y Y Y
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Furthermore, missing values often appear in the software engineering datasets. Many
studies (Myrtveit et al. 2001; Strike et al. 2001; Jonsson and Wohlin 2006; Song and
Shepperd 2007) have proposed different data imputation techniques to recover missing data
by estimating replacement values. However, the miss values are excluded from our study.
This might cause some difficulties for practitioners to apply the proposed NABE system to
the datasets with missing values. For example during the ISBSG subset preparation, we
realize that missing values cause the deletion of too many projects.

8.2 External Validity

The external validity represents the possibilities of generalizing the findings of our
comparative studies.

The threats to external validity are as follows. First, the limitations on real world datasets
make some difficulties to generalize our findings. Although the four real world datasets
largely contrast to each other (from the simplest Albrecht to the largest and most complex
ISBSG), additional real world datasets are required for a more comprehensive evaluation of
our method. For the artificial datasets, eight artificial datasets are systematically generated
to match the eight combinations of the three dataset properties in this study. However, other
types of dataset characteristics such as multi-collinearity (Shepperd and Kadoda 2001) and
heteroskedasticity (Pickard et al. 2001) may also influence the performance of NABE.
Further studies on additional dataset characteristics are necessary to increase the external
validity from this aspect.

Moreover, the non-linear adjustment proposed in our study is based on artificial neural
networks; but other types of non-linear approximations such as Radius Basis Functions
(Hardy 1971) and Support Vector Machines (Vapnik 1995) can also be employed as the
non-linear adjustment. They may achieve better performance than ANN does, since they
have fewer parameters than ANN and they have the regularization mechanism to prevent
the over-fitting problem confronted by ANN. The reason to choose ANN in this study is
that it has been widely accepted in cost estimation literature and it has the flexibility to
adapt to complex relationships and the capability to process the categorical inputs.

9 Conclusions and Future Works

Analogy based estimation is one of the most widely studied methods in the software cost
estimation literature. Given a new project, the ABE system retrieves similar projects from
its historical project database and derives the cost prediction from the similar projects. The
adjustment to the retrieved solution is of necessity since the adjustment recognizes the
difference between the new project and historical information, and refines the retrieved
solution into the target solution. However, most published adjustment mechanisms are
based on predetermined linear forms without learning ability to adapt to more complex
situations. In addition, these adjustments techniques often restrict to numeric features
despite that the categorical features contain valuable information to improve the cost
estimation accuracies. Moreover, given the fact that software project datasets often exhibit
non-normal characteristics, it is hard to approximate the relationships among the projects by
linear adjustments.

To improve the adjustments mechanism, this paper proposes a more flexible non-linear
adjustment mechanism with learning ability and incorporating categorical features. The
non-linearity adjusted Analogy Based Estimation (NABE) is implemented by adding a non-
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linear component (Artificial Neural Network) onto the retrieved solution of the ABE
system. The proposed NABE is validated on four real world datasets with the comparisons
against the published linear adjusted ABEs and three well established methods: CART,
ANN and SWR. The results and comparisons show that NABE generally achieves best
MMRE, PRED(0.25) and MdMRE values on the real world datasets.

To answer the question: under what conditions NABE is preferred, we generate eight
artificial datasets to analyze the relationships between model accuracies and dataset
characteristics (non-normality, categorical feature, and dataset size). The analyses show that
NABE performances significantly better than other methods on the artificial datasets with
severe non-normality and large proportion of categorical features.

In the domain of cost estimation, the lessons learnt via this study are as follows:

& The non-linear based adjustment to ABE system is generally an effective approach to
extend ABE’s flexibility on complex datasets and improve the accuracy of ABE.

& NABE is likely to be a more accurate method than other types of ABE methods on the
dataset with high degree of non-normality and large proportion of categorical features.

& On the dataset with a relatively small size, a relatively small proportion of categorical
features and a moderate non-normality, NABE may not be an ideal option, since it is
likely to have equal accuracy to other ABE methods and it has a more complex
structure than other ABE methods.

& There are strong relationships between the successes of NABE and dataset properties
(non-normality, categorical feature, and dataset size). Thus, the practitioners should be
aware of the tradeoffs among datasets properties, model complexity and model
accuracy, when implementing NABE.

There are some limitations of NABE. The similarity measure and retrieved solution
function are pre-determined in this study. Future works can be done to investigate the
sensitivities of these ABE parameters. Moreover, additional real world datasets and
additional dataset characteristics can be explored to enhance the external validity of the
current work. Thirdly, other types of non-linear approximators such as RBF and SVM could
be considered in the future works.
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Appendix

Appendix A Feature definition of Albrecht dataset

Features Full name Type Description

Inpcount Input count Numerical Count of inputs
Outcount Output count Numerical Count of outputs
Quecount Query count Numerical Count of queries
Filcount File count Numerical Count of files
Fp Function points Numerical Number of function points
SLOC Lines of source code Numerical Lines of source code
Effort Development effort Numerical Measured in 1,000 h
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Appendix B Feature definition of Desharnais dataset

Features Full name Type Description

TeamExp Team experience Numerical Measured in years
ManagerExp Manager’s experience Numerical Measured in years
Length Length of project Numerical Year of development
Transactions Transactions Numerical Number of transactions
Entities Entities Numerical Number of entities
PointsAdjust Adjusted function points Numerical Number of adjusted function points
Envergure Development environment Numerical Development environment
Language Programming language Categorical 1 = 1st generation

2 = 2nd generation
3 = 3rd generation

Effort Development effort Numerical Measured in 1,000 h

Appendix C Feature definition in Maxwell dataset

Features Full name Type Description

Time Time Numerical Time = syear−1985 + 1, with levels:
1,2,3,4,5,6,7,8,9..

App Application type Categorical 1 = Information/on-line service (infServ)
2 = Transaction control, logistics, order processing
(TransPro)
3 = Customer service (CustServ)
4 = Production control, logistics, order processing
(ProdCont)
5 = Management information system (MIS)

Har Hardware platform Categorical 1 = Personal computer (PC)
2 = Mainframe (Mainfrm)
3 = Multi-platform (Multi)
4 = Mini computer (Mini)
5 = Networked (Network)

Dba Database Categorical 1 = Relatnl (Relational)
2 = Sequentl (Sequential)
3 = Other (Other)
4 = None (None)

Ifc User interface Categorical 1 = Grafical user interface (GUI)
2 = Text user interface (TextUI)

Source Where developed Categorical 1 = In-house (Inhouse)
2 = Outsourced (Outsrced)

Telonuse Telon use Categorical 0 = No
1 = Yes

Nlan Number of different
development languages
used

Ordinal 1 = one language used
2 = two languages used
3 = three languages used
4 = four languages used

T01 Customer participation Ordinal: 1 = Very low
T02 Development environment

adequacy
2 = Low

T03 Staff availability 3 = Nominal
T04 Standards use 4 = High
T05 Methods use 5 = Very high
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Features Full name Type Description

T06 Tools use
T07 Software’s logical

complexity
T08 Requirements volatility
T09 Quality requirements
T10 Efficiency requirements
T11 Installation requirements
T12 Staff analysis skills
T13 Staff application knowledge
T14 Staff tool skills
T15 Staff team skills
Duration Duration Numerical Duration of project from specification until delivery,

measured in months
Size Application size Numerical Function points measured using the experience

method
Effort Effort Numerical Work carried out by the software supplier from

specification until delivery, measured in hours

Appendix D Feature definition in ISBSG dataset

Features Full name Type Description

DevType Development type Categorical 1 = Enhancement
2 = New development
3 = Re-development

OrgType Organization type Categorical 1 = Banking
2 = Communication
3 = Community services
4 = Computer, Software, ISP
5 = Electricity, Gas, Water;
6 = Financial, Property & Business Services;
7 = Insurance;
8 = Manufacturing;
9 = Government, Public Administration
10 = Transport & Storage;
11 = Wholesale & Retail Trade;
12 = Others.

BusType Business Area
Type

Categorical 1 = Accounting;
2 = Banking;
3 = Engineering;
4 = Financial;
5 = Insurance, Actuarial;
6 = Inventory;
7 = Legal;
8 = Logistics;
9 = Manufacturing
10 = Personnel;
11 = Research & Development;
12 = Sales & Marketing;
13 = Telecommunications;

Appendix C (continued)
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Features Full name Type Description

14 = Others.
AppType Application Type Categorical 1 = Billing;

2 = Office information system, Executive information system,
Decision support system;
3 = Electronic Data Interchange;
4 = Financial;
5 = Management Information System;
6 = Network Management, Communications;
7 = Process control, sensor control, real time;
8 = Transaction/Production System;
9 = Others.

DevPlat Development
Platform

Categorical 1 = Mainframe
2 = Mid-range
3 = Multi;
4 = Personal Computer.

PriProLan Primary
Programming
Language

Categorical 1 = ABAP;
2 = Access;
3 = ASP;
4 = C;
5 = C++;
6 = COBOL;
7 = JAVA;
8 = Lotus Notes;
9 = NATURAL;
10 = ORACLE;
11 = PL/I;
12 = PL/SQL;
13 = PowerBuilder;
14 = SQL;
15 = Visual Basic;
16 = Others.

DevTech Development
Techniques

Categorical 1 = Business area modeling;
2 = Data Modelling;
3 = Event Modelling
4 = Joint Application Development;
5 = Multifunction teams
6 = Object Oriented Analysis;
7 = Object Oriented Design;
8 = Process Modelling;
9 = Prototyping;
10 = Rapid Application Development;
11 = WaterFall;
12 = Others.

InpCont Input Count Numerical The count of inputs
OutCont Output count Numerical: The count of outputs
EnqCont Enquiry count Numerical: The count of enquiries
FileCont File count Numerical: The count of files
IntCont Interface count Numerical: The count of interfaces
AFP Adjusted function

points
Numerical: The adjusted function point-count number

Appendix D (continued)
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Features Full name Type Description

NorEffort Normalized work
effort

Numerical: For project covering less than a full development life cycle, this
value is an estimate of the full development effort in hours.
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