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Abstract 
 

Software cost estimation is an important area of 

research in software engineering. Various cost 

estimation model evaluation criteria (such as MMRE, 

MdMRE etc.) have been developed for comparing 

prediction accuracy among cost estimation models. All 

of these metrics capture the residual difference 

between the predicted value and the actual value in the 

dataset, but ignore the importance of the dataset 

quality. What is more, they implicitly assume the 

prediction model to be able to predict with up to 100% 

accuracy at its maximum for a given dataset. Given 

that these prediction models only provide an estimate 

based on observed historical data, absolute accuracy 

cannot be possibly achieved.  

It is therefore important to realize the theoretical 

maximum prediction accuracy (TMPA) for the given 

model with a given dataset. In this paper, we first 

discuss the practical importance of this notion, and 

propose a novel method for the determination of TMPA 

in the application of analogy-based software cost 

estimation. Specifically, we determine the TMPA of 

analogy using a unique dynamic K-NN approach to 

simulate and optimize the prediction system. The 

results of an empirical experiment show that our 

method is practical and important for researchers 

seeking to develop improved prediction models, 

because it offers an alternative for practical 

comparison between different prediction models.   

 

Keywords: Software Metrics and Measurement, 

Software Cost Estimation, Analogy, K-NN, MMRE 

 
 

 

 

 

 

1. Introduction 
 

In software engineering, software effort estimation 

is the prediction of the work effort required to 

complete a software development project. Software 

effort is usually measured in person-month, and it is 

generally the largest and least predictable component 

of software project development costs.  

Estimates are probabilistic in nature. They are 

usually represented as a most likely figure within a 

range of possible values. If estimates are derived from 

regression models for example, the upper and lower 

bounds as an estimate can be calculated based on 

confidence intervals. 

An important research area for predictive software 

cost estimation models is how to determine model 

prediction performance accuracy. This is usually 

achieved by measuring the difference between the 

predicted value and the actual value in the training 

dataset, and is commonly carried out by using the 

Jackknife model validation technique. 

One of the most common misconceptions about 

these prediction models is that they are able to achieve 

up to 100% prediction accuracy. Based on current 

prediction models and technologies, estimates derived 

from these models are unlikely to achieve this zero-

error objective due to a number of factors other than 

the robustness of the prediction model itself.  

Unfortunately, evaluation criteria such as MMRE, 

MdMRE and Pred(25) etc. only measure the absolute 

difference between the predicted value and the actual 

value based on point-estimate between each predicted 

value and its actual value in the training set. Given that 

the dataset quality is one of the important factors 

influencing the prediction outcome, these accuracy 

measures overestimate the error given by the predictive 

cost estimation models, where factors such as dataset 

quality are not being isolated from the measurement of 

prediction accuracy. In fact, the attempt to achieve 

absolute prediction precision is empirical impossible. 
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In this paper, we propose the notion of Theoretical 

Maximum Prediction Accuracy (TMPA) as a metric 

and an alternative evaluation criterion for prediction 

models, where TMPA considers the quality of the 

dataset in the model evaluation. We especially apply 

TMPA to analogy-based software cost estimation, 

where a technique called dynamic K-NN to determine 

TMPA is introduced. 

To emphasize the importance of TMPA, we present 

results from an experiment using the Desharnais 

dataset. Results show that our method solves some of 

the fundamental issues of the evaluation criteria of 

predictive models. Our method can also be used as an 

alternative evaluation criterion to aid the development 

of improved prediction models for software cost 

estimation. 

There are two categories of work that may be 

considered relevant to this study: studies on evaluation 

metrics, and K-NN or Analogy-based studies. Section 

2 presents an overview of related work on evaluation 

metrics used in various software cost estimation 

studies. Section 3 briefly describes the principle of 

analogy-based software cost estimation. Section 4 

introduces TMPA, and in section 5 presents our 

dynamic K-NN approach to determine TMPA in the 

context of analogy. Section 6 provides the datasets and 

the analysis procedure where results are present in 

section 7. Section 8 discusses our findings and section 

9 concludes the paper. 

 

2. Background and Related Work 
 

MMRE (Mean Magnitude of Relative Error) is the 

most widely used evaluation criterion for assessing the 

performance of competing software effort estimation 

models. It calculates the mean of all MRE (Magnitude 

of Relative Error) values derived from each prediction. 

Similarly MdMRE (Median Magnitude of Relative 

Error) calculates the median of all MRE values from 

each prediction. MRE is the metric component in 

MMRE and MdMRE and is defined as follows:  
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where y = actual, ! = prediction. MMRE measures the 

overall averaged error from each individual case within 

the training set. The smaller the MMRE indicates the 

better the prediction performance of the model. 

However it is unrealistic to assume that the MMRE 

would ever be close to zero.  Conte et al. [1] consider 

MMRE ! 0.25 (within 25%) as acceptable for effort 

prediction models. It is a common misconception that 

this barrier threshold value can be applied in every 

single case as it does not consider other important 

influential factors which may also contribute to the 

prediction error.  

For example, a prediction model X may achieve a 

better MMRE of 0.20 using dataset A, but a worse 

MMRE of 0.80 for dataset B. The implication in here is 

that prediction model X performed less favorably on 

dataset B, but its prediction ability does not change. 

What has been really changed is the quality of the 

dataset. In the above example, the change of dataset 

has also changed the maximum possible achievable 

prediction for that dataset, i.e. MMRE does not reflect 

this information.  

In the context of software cost estimation research 

(as opposed to practice), the most commonly applied 

software effort prediction methods are regression [2] 

and data-intensive analogy [3] [4]. Previous empirical 

software cost estimation studies [5] have attempted to 

determine “which method is the best” using various 

evaluation criteria such as MMRE.  

However these studies have produced conflicting 

results. For example, Shepperd & Schofield [3] 

claimed analogy provided better prediction accuracy in 

terms of MMRE and Pred(25). This was supported by 

Angelis & Stamelos [6] who found analogy-based 

systems were far superior to other methods and by the 

more recent work of Mendes, Mosley & Counsell [7] 

and Mendes & Kitchenham [8] on a large 

heterogeneous data set. In contrast, Myrtvelt & 

Stensrud [5] replicated previous studies described by 

Shepperd & Schofield [3], but found analogy was not 

better than regression, and they also suggested that the 

results are sensitive to experimental design. Similarly, 

Briand et al. [9] and Morasca et al. [10] found analogy-

based systems were less robust than other methods, 

particularly when dealing with heterogeneous data sets. 

Later, Jeffery, Ruhe & Wieczorek [11] also concluded 

stepwise regression outperformed analogy-based 

systems with the ISBSG dataset. 

Over the past 15 years, the research team led by 

Martin Shepperd tried to explain why different 

research teams have reported widely different results 

by using analogy technology. Most recently, Mair & 

Shepperd [12] undertook a systematic review to 

investigate these contradictory results. They review 20 

primary studies comparing regression and analogy 

conducted during the past decade, and concluded that 

there was no clear indication that regression was better 

than analogy or vice versa. They concluded that the 

mixed results are due to the characteristic of the dataset 

and the individual data points. Shepperd & Kadoda 

[13] have further studied this issue using simulation 

and concluded similar findings. The implication is that 

the resultant prediction is sensitive to the data quality 

of individual datasets.  



Keung and Kitchenham have attempted to identify 

ways to improve estimation and dataset quality through 

the use of outlier removal techniques and dataset 

preprocessing using the Analogy-X method [14][15]. 

They also used different weights for different project 

features to achieve better prediction accuracy [16].  

All of these aforementioned studies have used 

MMRE and related measures to compare different 

model performance. A high estimation error is 

commonly interpreted as a poor estimation model 

being used. This statement is not entirely a correct 

interpretation. High estimation errors can be due to 

other factors such as increased estimation complexity 

due to the complexity of the system being developed, 

insufficient cost control of the project and more 

importantly the dataset quality or the dataset relevance 

to the prediction problem. Foss et al. in their extensive 

study [17] on various prediction accuracy metrics also 

concluded that current measures of performance (such 

as MMRE) are unreliable and may provide misleading 

information. It is important to provide a realistic and 

accurate measure of these competing prediction 

models, which will not only consider the effect of the 

prediction model itself, but also other factors which 

may influence the overall prediction.  

 

3. The Principle of Analogy (K-NN) 
 

This study focuses only on the analogy-based 

approach for software cost estimation. It is therefore 

important to introduce the principle of analogy, and 

this section provides a brief overview.  

Data-intensive analogy for software effort 

estimation has been proposed as a viable alternative to 

other prediction methods such as linear regression. In 

many cases, researchers found analogy outperformed 

algorithmic methods [3]. Keung et al. [14] defined 

analogy is based on the following premise: 

      “Projects that are similar with respect to a set of 

project features will also be similar with respect to 

effort.” 

Based on this principle, analogy utilized the K-nearest 

neighbour algorithm (K-NN) to search for projects that 

are similar with respect to the target project in terms of 

project features. 

The application of analogy to software effort 

estimation follows a number of steps: 

 

1. When a new estimation problem arises its project 

characteristics such as size and cost factors are first 

codified in terms of the feature vector forming the 

problem description, and becoming the basis for 

retrieving similar project cases from the project 

case repository.  

2. The effectiveness of similarity measures greatly 

depends on the overlap of features found in the case 

repository, because past projects with similar 

project characteristics (usually measured in 

Euclidean distance) are likely to have similar 

project outcomes. The similarity measures between 

the target project and each of the past projects are 

used to rank the closeness of the past projects to the 

target project. 

3. A numeric value K is defined, and only the closest 

K projects are then selected to adapt a prediction 

solution for the target project. This is a typical 

example of K-NN for classifying objects based on 

closest training examples in the feature space. 

4. The prediction performance of the model is then 

evaluated against one of the model evaluation 

criteria such as MRE (Equation 1). The actual effort 

(y value) for each project case in the training 

dataset is usually known, based on actual data 

recorded in the past. The prediction (value !) of 

analogy is derived by adapting a solution from K 

nearest projects that are similar with respect to a set 

of project features, and we assume these K 

analogous projects will also be similar with respect 

to actual effort (value y).  

5. Jackknifing is a commonly used model validation 

approach in software effort estimation. It is also 

known as the Leave-One-Out approach. A 

complete Jackknife testing involves training the 

dataset n times (for a dataset containing n cases), 

for each time the dataset is trained, one case (ith 

case) is withheld from the training set and used 

exclusively to evaluate the performance of the 

dataset using the prediction model. The withheld 

case is returned to the dataset, and the (i + 1)th case 

is then withheld in the following iterations until the 

last iteration (i = n). In this case, a MRE value is 

calculated on each ith case, and subsequently the 

mean MRE values for all n-cases become MMRE.  

 

The overall performance of analogy depends on a 

number of factors. These include the dataset quality, 

the relevance of the project cases to the target project, 

the feature subset selection technique, and the distance 

measures used to assess similarity between the source 

analogues and the target project [2].  

Close examination of the estimation process of 

analogy revealed that the value of K is critically 

important as it determines the number of nearest 

project cases to be used for the solution adaptation. In 

analogy, a fixed value of K is commonly used to find K 

similar projects from n projects. The fixed value K is 

usually determined by experts, or can be optimized 

using simulation [13]. 

 



Figure 1 The K-NN algorithm: An Example  

Figure 1 illustrates an example of the K-NN 

algorithm using a fixed K=4 with 2 project cases in the 

training dataset. The figure shows that Project A has 4 

closely related project cases (A1,A2,A3 and A4) 

resulting in a MRE value of 0.05 (95% accurate 

compared to the actual effort of Project A). In contrast, 

Project B has only two similar project cases (B1 and 

B2) within the same dimensional space. Nevertheless, 

as a fixed value K=4 has been defined to train the 

entire dataset, project B must also consider projects B3 

and B4. Projects B3 and B4 are far distant from target 

project B, resulting in a less favourable MRE value of 

0.45. The combined effect or the overall model 

prediction accuracy based on MMRE is 0.25. It shows 

that the model performance is heavily influenced by 

the fixed K=4 used in the prediction of project B. 

The assumption in here is that if a suitable K value 

for each individual project can be identified, the MRE 

value can be substantially improved. This is largely 

due to the dataset quality and the formation of the data 

points, as these data points are based on actual events, 

therefore they are not evenly distributed across the                       

n-dimensional feature space.  

MRE (see Equation 1) is a measure of “absolute 

difference” between the prediction and actual. As we 

can see in the example above the influence of the 

dataset quality is not included in the metric. Figure 2 

illustrates a simple example of measuring software 

effort prediction accuracy based on MRE for 12 

software projects using analogy. What is missing in 

Figure 2 is a realistic measure of the dataset quality 

margin. This margin represents the maximum possible 

prediction for case i, where the cause of prediction 

error can be effectively isolated between dataset 

quality and the prediction model. The question in here 

is how to determine the value of Ki for each case i so 

that the prediction accuracy can be optimized for 

analogy using the K-NN algorithm.  

 

Figure 2 MRE Values of 12 Projects 

 

4. Theoretical Maximum Prediction 

Accuracy (TMPA) 
 

We define the upper limit of the prediction accuracy 

that can be achieved in the analogy-based framework 

as its TMPA. TMPA is important to researchers as well 

as software engineers. It places a strict barrier that 

cannot be overcome by any means while remaining 

empirically compliant for the modelling approach used.   

The assumption in here is that, if an optimal Ki 

value for each project case i in the dataset is known, 

we are able to optimize the prediction accuracy based 

on MRE for the prediction of case i.  The overall 

MMRE value is also theoretically maximized, which is 

the TMPA of MMRE.  

Figure 3 illustrates the relationships between values 

of Actual, TMPA and Prediction. 

Figure 3 Relationships between values of Actual, 

TMPA and Prediction. 

 



In Figure 3, c is the absolute difference between 

prediction and actual or overall prediction error, a is 

the prediction error due to the dataset characteristic 

measured by the TMPA, and b becomes an effective 

measure of the error due to the prediction model used.   

The theoretical maximized MREMAX is defined as:  

    

       (2) 

where ymax = TMPA, ! = prediction. 

The overall theoretical maximized MMREMAX is 

defined as :          

 

(3) 

where n is the number of cases in the training set.  

 

5. Method to determine TMPA using 

Dynamic K-NN 
 

In Section 3, we have discussed the model 

prediction performance implication of the value K in 

the selection of nearest analogous projects. Let’s 

assume that the value of K is not fixed but it is 

dynamically selected in each case of the Jackknife 

simulation as below:    

The following steps are used to determine the value 

Ki for each case xi dynamically. 

 

Given n project cases {x1,x2,x3,…,xn}in the training set, 

and for each project case xi in turn: 

1. The Euclidean distances between xi and all other 

project cases x-i (all but excluding xi) are computed 

and ranked by their similarity. 

2. The predictions are then simulated with Ki =1,      

Ki =2,…,Ki =n for case xi. We use MRE in this case.  

 

K Prediction Actual MRE 

1   840.000 805.000 0.043 

4 1233.750 805.000 0.533 

3 1463.000 805.000 0.817 

5 1471.400 805.000 0.828 

2 1561.000 805.000 0.939 

7 1609.000 805.000 0.999 

6 1614.667 805.000 1.006 

… … … … 

n 4886.921 805.000 5.071 

Table 1 Simulated K values, an example. 

In the example shown in Table 1, the simulation 

result for project case xi shows that the prediction is 

at its optimal with 1 nearest project (Ki=1 with an 

MREi =0.043). 

3. This completes the simulation for case xi. Repeat 

step 1 to 3 for project case xi+1.  

 

The procedure introduced above is called Dynamic 

K-NN, where an optimal Ki value for each project case 

i is simulated and used in the prediction. The 

aggregated average of all MREi above is the overall 

TMPA, which is denoted as MMREMAX. As a measure 

of prediction robustness of the model and its utilization 

of the dataset, based on MMREMAX we define 

prediction efficiency " of the model as: 

 

  (4) 

 

For example, if MMRE for the prediction model is 0.50 

and its related MMREMAX is 0.20, the prediction model 

is able to provide 30% prediction accuracy given that 

the MMREMAX is 20% towards absolute zero error. This 

20% margin is uncontrollable in an experimental 

environment, primarily due to the quality of the 

dataset. 

 

6. Dataset and Analysis Procedure 
 

The Desharnais dataset is used in this study. It 

comprises 77 completed software project data from a 

Canadian Software house. It was first reported in 

Desharnais [18] and was used in Shepperd and 

Schofield [3] to compare regression models and 

analogy, and in [19] to analyse the impact of project 

feature weights using an extensive search algorithm. 

The Desharnais dataset is one of the most well-known 

and complete datasets publicly available in software 

effort estimation research. The original version of the 

dataset had 81 projects, but four of them had missing 

values and were excluded from our analysis [18]. This 

dataset has 8 independent variables, which are shown 

in Table 2. The response variable is ActualEffort. 

 

Proj. Feature Description Type 

Adj.FPs Adj. Function Points Continuous 

RawFPs Raw Function Points Continuous 

Transactions No. of Transactions Continuous 

Entities No. of Entities Continuous 

Adj.Factor Technology Adj. Factor Continuous 

ExpProjMan Exp. of Proj.Mgmt. Continuous 

ExpEquip Exp. of Equipment Continuous 

Dev.Env Dev. Environment Categorical 

Table 2 Desharnais Dataset Project Features 
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For the purpose of project case retrieval, it is 

important to first identify which features are most 

influential to the prediction outcome or ActualEffort. 

We identified that the continuous variable Adj.FPs is 

the most influential project feature for the 77 

completed software projects based on [3]. It is possible 

to further improve the prediction accuracy by 

homogenising the dataset using the categorical variable 

Dev.Env, on the basis of differentiating development 

environments. In practice, it is unlikely that a company 

would have access to such large volumes of data. In 

addition smaller, more homogenous datasets are more 

useful for effort estimation. This dataset grouping 

approach is similar to the study of Shepperd and 

Schofield [3], where the Desharnais dataset has been 

divided into Desharnais-1(44 cases), Desharnais-2(23 

cases) and Desharnais-3(10 cases).  

In the following experiments, we will demonstrate 

the application of TMPA on the Desharnais dataset, as 

well as on its 3 homogenized subsets. To demonstrate 

what happens when TMPA is applied to datasets that 

show no predictive relationships or whose quality of 

the dataset is suboptimal, we show the effect on two 

randomized datasets.  

The two randomized datasets were generated to 

have similar properties to that of the Desharnais dataset 

in terms of the number of cases and the statistical 

distribution of variables, but were constrained to have 

no relationship between the dependent and the 

independent variables. We generated 10,000 random 

datasets stratified strictly accordingly to Desharnais 

dataset’s mean and variance and selected two, one has 

the largest correlation (DeshRand-0) and the other one 

has the smallest correlation (DeshRand-1). 

 

7. Applying TMPA on Desharnais Dataset 
 

In this section we demonstrate our method on the 

Desharnais dataset and related datasets described in the 

previous section. Our Dynamic K-NN approach will be 

applied to obtain optimized K values for the training 

set and to derive TMPA. To compare our result with 

the conventional approach using MMRE, we simulate 

different fixed values of K on the original Desharnais 

dataset and the results are shown in Figure 4. 

 

7.1 Fixed K-NN 
Figure 4 employs box-plots to illustrate the 

prediction error distribution given by a sequence of 

fixed Ks for nearest neighbour (NN) searches, where a 

sequence of K values between 1 and 10 have been 

selected. The distances of the outlying data points 

become apparent and increasingly large as the size of K 

increases. Nevertheless, observation shows the optimal 

K value exists between 3 and 4 (see highlighted zone in 

Figure 4). The MMRE values are 0.713 for K=3 and 

0.666 for K=4 (see Table 3). The implication in here is 

that the optimal K value exists in this highlighted zone 

where the prediction can be highly optimized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Box-plots of MRE distributions (Using 

Different Fixed K values) 

7.2 Dynamic K-NN 
The Dynamic K-NN procedures described in 

Section 5 has been applied to search for optimal K 

values for each individual case. The measurement error 

frequency distribution of using a sequence of K values 

for Desharnais dataset is illustrated in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Frequency distribution of dynamically 

selected optimal K values (Desharnais Dataset) 



 Cases MMREMAX   MMRE(K=3)         ! (K=3)   MMRE(K=4)         ! (K=4) 

  Desharnais 77 0.260 0.713 0.453 0.666 0.406 

  DeshRand-0 77 0.556 1.474 0.918 1.440 0.885 

  DeshRand-1 77 0.316 1.050 0.733 0.953 0.637 

  Homogenized Subsets:     

  Desh-Dev1 44 0.127 0.361 0.234 0.391 0.264 

  Desh-Dev2 23 0.120 0.388 0.268 0.392 0.272 

  Desh-Dev3 10 0.139 0.252 0.113 0.324 0.186 

Table 3 Summary of results using MMREMAX and ! (Desharnais, DeshRand-0 and DeshRand-1 datasets) 

Based on the Desharnais dataset, and given that the 

Ki values have been optimized using the dynamic K-

NN approach, we obtained a MMREMAX of 0.260 based 

on TMPA, which is significantly improved compared 

to that of using a fixed K value (0.713 and 0.666) (see 

Table 3). The model prediction efficiency " (see 

Equation 4) is 0.453 for K=3 and 0.406 for K=4. This 

also implies that there is room for the development of 

an improved analogy-based prediction approach. 

Based on the two random datasets showing no 

predictable patterns, our TMPA method is able to 

differentiate the error component from the prediction 

accuracy measure. For example, the prediction model 

efficiency " (based on K=3) for DeshRand-0 is 0.918 

and its MMREMAX value due to dataset errors is 0.556, 

this implies that the dataset DeshRand-0 is not suitable 

for the software effort estimation using analogy. 

DeshRand-1 dataset is subject to similar conclusion. 
Using a separate analogy-based approach we 

homogenize the dataset into three subsets. As shown in 

Table 3, we observed significant improvement in terms 

of estimation accuracy. The prediction errors for these 

three subsets are also smaller, as is in their MMREMAX 

values. Their model prediction efficiency " is 

exceptionally good compared to the original dataset 

with 77 cases. Especially for Desh-Dev3, where the 

model prediction efficiency " is 0.113 based on K=3, 

this implies that the prediction model has nearly 

reached its theoretical maximum (TMPA).  

 

8. Discussion 
 

We have successfully employed a novel approach to 

evaluate the true efficiency of model prediction 

accuracy based on TMPA described in the study. 

Our results show that applying TMPA is an effective 

strategy to account for the influence of each project’s 

impact to the overall estimate, precisely the dataset 

quality and its relevance to the target problem under 

investigation. This has been clearly demonstrated using 

the Desharnais dataset. 

In theory the maximum achievable prediction 

accuracy value can be achieved if and only if the 

prediction model itself is sophisticated and accurate 

enough. Even if there is an identical project in terms of 

features and characteristics in the dataset, it is possible 

that the system is unable to find it because of the 

influence of other project cases. The prediction power 

issue is independent to the quality of the dataset in this 

case as our approach effectively isolates the error terms 

introduced by the quality of the dataset. 

The notion of TMPA can be easily adapted to other 

metrics. We are anticipating further experiments to 

apply TMPA to show its effectiveness with other 

software cost estimation approaches and models, 

including regressions models.  

 

9. Conclusion 
 

In this paper we introduced both the notion and the 

application of the theoretical maximum prediction 

accuracy (TMPA) for software cost estimation using 

analogy. The introduced approach is a robust software 

metric in addition to existing model performance 

criteria such as MMRE. TMPA utilizes the Dynamic K-

NN approach to simulate and obtain a maximized 

possible prediction in each dataset training phase using 

Jackknife validation. TMPA captures the influence of 

the dataset quality and its relevance to the target 

problem, and effectively isolates the prediction loss 

due to the dataset quality.  

An error-free prediction in software cost estimation 

remains elusive dream for many, but the truth is, it is 

both empirically and theoretically impossible. The 

TMPA metric is also not empirically achievable with 

existing cost estimation models, but it provides a 

theoretical achievable limit for competing models.  

We evaluated our TMPA approach using the 

Desharnais and two random datasets. Our results show 

that applying TMPA is an effective strategy to account 

for the influence of each project’s impact to the overall 

estimate. And it is proven to provide a measurable and 

realistic target objective for researchers seeking to 

develop improved cost estimation models using the 

TMPA measure rather than using the unrealistic 

absolute zero prediction target. Our method is thus a 

major improvement to the evaluation of software cost 

estimation models.  
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