
Theoretical Maximum Prediction Accuracy for

Analogy-based Software Cost Estimation

Jacky W. Keung

NICTA Ltd. Sydney Australia

CSE, UNSW, Sydney Australia

Jacky.Keung@nicta.com.au

Abstract

Software cost estimation is an important area of

research in software engineering. Various cost

estimation model evaluation criteria (such as MMRE,

MdMRE etc.) have been developed for comparing

prediction accuracy among cost estimation models. All

of these metrics capture the residual difference

between the predicted value and the actual value in the

dataset, but ignore the importance of the dataset

quality. What is more, they implicitly assume the

prediction model to be able to predict with up to 100%

accuracy at its maximum for a given dataset. Given

that these prediction models only provide an estimate

based on observed historical data, absolute accuracy

cannot be possibly achieved.

It is therefore important to realize the theoretical

maximum prediction accuracy (TMPA) for the given

model with a given dataset. In this paper, we first

discuss the practical importance of this notion, and

propose a novel method for the determination of TMPA

in the application of analogy-based software cost

estimation. Specifically, we determine the TMPA of

analogy using a unique dynamic K-NN approach to

simulate and optimize the prediction system. The

results of an empirical experiment show that our

method is practical and important for researchers

seeking to develop improved prediction models,

because it offers an alternative for practical

comparison between different prediction models.

Keywords: Software Metrics and Measurement,

Software Cost Estimation, Analogy, K-NN, MMRE

1. Introduction

In software engineering, software effort estimation

is the prediction of the work effort required to

complete a software development project. Software

effort is usually measured in person-month, and it is

generally the largest and least predictable component

of software project development costs.

Estimates are probabilistic in nature. They are

usually represented as a most likely figure within a

range of possible values. If estimates are derived from

regression models for example, the upper and lower

bounds as an estimate can be calculated based on

confidence intervals.

An important research area for predictive software

cost estimation models is how to determine model

prediction performance accuracy. This is usually

achieved by measuring the difference between the

predicted value and the actual value in the training

dataset, and is commonly carried out by using the

Jackknife model validation technique.

One of the most common misconceptions about

these prediction models is that they are able to achieve

up to 100% prediction accuracy. Based on current

prediction models and technologies, estimates derived

from these models are unlikely to achieve this zero-

error objective due to a number of factors other than

the robustness of the prediction model itself.

Unfortunately, evaluation criteria such as MMRE,

MdMRE and Pred(25) etc. only measure the absolute

difference between the predicted value and the actual

value based on point-estimate between each predicted

value and its actual value in the training set. Given that

the dataset quality is one of the important factors

influencing the prediction outcome, these accuracy

measures overestimate the error given by the predictive

cost estimation models, where factors such as dataset

quality are not being isolated from the measurement of

prediction accuracy. In fact, the attempt to achieve

absolute prediction precision is empirical impossible.

MRE =
∣∣y − ŷ

∣∣
y

In this paper, we propose the notion of Theoretical

Maximum Prediction Accuracy (TMPA) as a metric

and an alternative evaluation criterion for prediction

models, where TMPA considers the quality of the

dataset in the model evaluation. We especially apply

TMPA to analogy-based software cost estimation,

where a technique called dynamic K-NN to determine

TMPA is introduced.

To emphasize the importance of TMPA, we present

results from an experiment using the Desharnais

dataset. Results show that our method solves some of

the fundamental issues of the evaluation criteria of

predictive models. Our method can also be used as an

alternative evaluation criterion to aid the development

of improved prediction models for software cost

estimation.

There are two categories of work that may be

considered relevant to this study: studies on evaluation

metrics, and K-NN or Analogy-based studies. Section

2 presents an overview of related work on evaluation

metrics used in various software cost estimation

studies. Section 3 briefly describes the principle of

analogy-based software cost estimation. Section 4

introduces TMPA, and in section 5 presents our

dynamic K-NN approach to determine TMPA in the

context of analogy. Section 6 provides the datasets and

the analysis procedure where results are present in

section 7. Section 8 discusses our findings and section

9 concludes the paper.

2. Background and Related Work

MMRE (Mean Magnitude of Relative Error) is the

most widely used evaluation criterion for assessing the

performance of competing software effort estimation

models. It calculates the mean of all MRE (Magnitude

of Relative Error) values derived from each prediction.

Similarly MdMRE (Median Magnitude of Relative

Error) calculates the median of all MRE values from

each prediction. MRE is the metric component in

MMRE and MdMRE and is defined as follows:

 (1)

where y = actual, ! = prediction. MMRE measures the

overall averaged error from each individual case within

the training set. The smaller the MMRE indicates the

better the prediction performance of the model.

However it is unrealistic to assume that the MMRE

would ever be close to zero. Conte et al. [1] consider

MMRE ! 0.25 (within 25%) as acceptable for effort

prediction models. It is a common misconception that

this barrier threshold value can be applied in every

single case as it does not consider other important

influential factors which may also contribute to the

prediction error.

For example, a prediction model X may achieve a

better MMRE of 0.20 using dataset A, but a worse

MMRE of 0.80 for dataset B. The implication in here is

that prediction model X performed less favorably on

dataset B, but its prediction ability does not change.

What has been really changed is the quality of the

dataset. In the above example, the change of dataset

has also changed the maximum possible achievable

prediction for that dataset, i.e. MMRE does not reflect

this information.

In the context of software cost estimation research

(as opposed to practice), the most commonly applied

software effort prediction methods are regression [2]

and data-intensive analogy [3] [4]. Previous empirical

software cost estimation studies [5] have attempted to

determine “which method is the best” using various

evaluation criteria such as MMRE.

However these studies have produced conflicting

results. For example, Shepperd & Schofield [3]

claimed analogy provided better prediction accuracy in

terms of MMRE and Pred(25). This was supported by

Angelis & Stamelos [6] who found analogy-based

systems were far superior to other methods and by the

more recent work of Mendes, Mosley & Counsell [7]

and Mendes & Kitchenham [8] on a large

heterogeneous data set. In contrast, Myrtvelt &

Stensrud [5] replicated previous studies described by

Shepperd & Schofield [3], but found analogy was not

better than regression, and they also suggested that the

results are sensitive to experimental design. Similarly,

Briand et al. [9] and Morasca et al. [10] found analogy-

based systems were less robust than other methods,

particularly when dealing with heterogeneous data sets.

Later, Jeffery, Ruhe & Wieczorek [11] also concluded

stepwise regression outperformed analogy-based

systems with the ISBSG dataset.

Over the past 15 years, the research team led by

Martin Shepperd tried to explain why different

research teams have reported widely different results

by using analogy technology. Most recently, Mair &

Shepperd [12] undertook a systematic review to

investigate these contradictory results. They review 20

primary studies comparing regression and analogy

conducted during the past decade, and concluded that

there was no clear indication that regression was better

than analogy or vice versa. They concluded that the

mixed results are due to the characteristic of the dataset

and the individual data points. Shepperd & Kadoda

[13] have further studied this issue using simulation

and concluded similar findings. The implication is that

the resultant prediction is sensitive to the data quality

of individual datasets.

Keung and Kitchenham have attempted to identify

ways to improve estimation and dataset quality through

the use of outlier removal techniques and dataset

preprocessing using the Analogy-X method [14][15].

They also used different weights for different project

features to achieve better prediction accuracy [16].

All of these aforementioned studies have used

MMRE and related measures to compare different

model performance. A high estimation error is

commonly interpreted as a poor estimation model

being used. This statement is not entirely a correct

interpretation. High estimation errors can be due to

other factors such as increased estimation complexity

due to the complexity of the system being developed,

insufficient cost control of the project and more

importantly the dataset quality or the dataset relevance

to the prediction problem. Foss et al. in their extensive

study [17] on various prediction accuracy metrics also

concluded that current measures of performance (such

as MMRE) are unreliable and may provide misleading

information. It is important to provide a realistic and

accurate measure of these competing prediction

models, which will not only consider the effect of the

prediction model itself, but also other factors which

may influence the overall prediction.

3. The Principle of Analogy (K-NN)

This study focuses only on the analogy-based

approach for software cost estimation. It is therefore

important to introduce the principle of analogy, and

this section provides a brief overview.

Data-intensive analogy for software effort

estimation has been proposed as a viable alternative to

other prediction methods such as linear regression. In

many cases, researchers found analogy outperformed

algorithmic methods [3]. Keung et al. [14] defined

analogy is based on the following premise:

 “Projects that are similar with respect to a set of

project features will also be similar with respect to

effort.”

Based on this principle, analogy utilized the K-nearest

neighbour algorithm (K-NN) to search for projects that

are similar with respect to the target project in terms of

project features.

The application of analogy to software effort

estimation follows a number of steps:

1. When a new estimation problem arises its project

characteristics such as size and cost factors are first

codified in terms of the feature vector forming the

problem description, and becoming the basis for

retrieving similar project cases from the project

case repository.

2. The effectiveness of similarity measures greatly

depends on the overlap of features found in the case

repository, because past projects with similar

project characteristics (usually measured in

Euclidean distance) are likely to have similar

project outcomes. The similarity measures between

the target project and each of the past projects are

used to rank the closeness of the past projects to the

target project.

3. A numeric value K is defined, and only the closest

K projects are then selected to adapt a prediction

solution for the target project. This is a typical

example of K-NN for classifying objects based on

closest training examples in the feature space.

4. The prediction performance of the model is then

evaluated against one of the model evaluation

criteria such as MRE (Equation 1). The actual effort

(y value) for each project case in the training

dataset is usually known, based on actual data

recorded in the past. The prediction (value !) of

analogy is derived by adapting a solution from K

nearest projects that are similar with respect to a set

of project features, and we assume these K

analogous projects will also be similar with respect

to actual effort (value y).

5. Jackknifing is a commonly used model validation

approach in software effort estimation. It is also

known as the Leave-One-Out approach. A

complete Jackknife testing involves training the

dataset n times (for a dataset containing n cases),

for each time the dataset is trained, one case (ith

case) is withheld from the training set and used

exclusively to evaluate the performance of the

dataset using the prediction model. The withheld

case is returned to the dataset, and the (i + 1)th case

is then withheld in the following iterations until the

last iteration (i = n). In this case, a MRE value is

calculated on each ith case, and subsequently the

mean MRE values for all n-cases become MMRE.

The overall performance of analogy depends on a

number of factors. These include the dataset quality,

the relevance of the project cases to the target project,

the feature subset selection technique, and the distance

measures used to assess similarity between the source

analogues and the target project [2].

Close examination of the estimation process of

analogy revealed that the value of K is critically

important as it determines the number of nearest

project cases to be used for the solution adaptation. In

analogy, a fixed value of K is commonly used to find K

similar projects from n projects. The fixed value K is

usually determined by experts, or can be optimized

using simulation [13].

Figure 1 The K-NN algorithm: An Example

Figure 1 illustrates an example of the K-NN

algorithm using a fixed K=4 with 2 project cases in the

training dataset. The figure shows that Project A has 4

closely related project cases (A1,A2,A3 and A4)

resulting in a MRE value of 0.05 (95% accurate

compared to the actual effort of Project A). In contrast,

Project B has only two similar project cases (B1 and

B2) within the same dimensional space. Nevertheless,

as a fixed value K=4 has been defined to train the

entire dataset, project B must also consider projects B3

and B4. Projects B3 and B4 are far distant from target

project B, resulting in a less favourable MRE value of

0.45. The combined effect or the overall model

prediction accuracy based on MMRE is 0.25. It shows

that the model performance is heavily influenced by

the fixed K=4 used in the prediction of project B.

The assumption in here is that if a suitable K value

for each individual project can be identified, the MRE

value can be substantially improved. This is largely

due to the dataset quality and the formation of the data

points, as these data points are based on actual events,

therefore they are not evenly distributed across the

n-dimensional feature space.

MRE (see Equation 1) is a measure of “absolute

difference” between the prediction and actual. As we

can see in the example above the influence of the

dataset quality is not included in the metric. Figure 2

illustrates a simple example of measuring software

effort prediction accuracy based on MRE for 12

software projects using analogy. What is missing in

Figure 2 is a realistic measure of the dataset quality

margin. This margin represents the maximum possible

prediction for case i, where the cause of prediction

error can be effectively isolated between dataset

quality and the prediction model. The question in here

is how to determine the value of Ki for each case i so

that the prediction accuracy can be optimized for

analogy using the K-NN algorithm.

Figure 2 MRE Values of 12 Projects

4. Theoretical Maximum Prediction

Accuracy (TMPA)

We define the upper limit of the prediction accuracy

that can be achieved in the analogy-based framework

as its TMPA. TMPA is important to researchers as well

as software engineers. It places a strict barrier that

cannot be overcome by any means while remaining

empirically compliant for the modelling approach used.

The assumption in here is that, if an optimal Ki

value for each project case i in the dataset is known,

we are able to optimize the prediction accuracy based

on MRE for the prediction of case i. The overall

MMRE value is also theoretically maximized, which is

the TMPA of MMRE.

Figure 3 illustrates the relationships between values

of Actual, TMPA and Prediction.

Figure 3 Relationships between values of Actual,

TMPA and Prediction.

In Figure 3, c is the absolute difference between

prediction and actual or overall prediction error, a is

the prediction error due to the dataset characteristic

measured by the TMPA, and b becomes an effective

measure of the error due to the prediction model used.

The theoretical maximized MREMAX is defined as:

 (2)

where ymax = TMPA, ! = prediction.

The overall theoretical maximized MMREMAX is

defined as :

(3)

where n is the number of cases in the training set.

5. Method to determine TMPA using

Dynamic K-NN

In Section 3, we have discussed the model

prediction performance implication of the value K in

the selection of nearest analogous projects. Let’s

assume that the value of K is not fixed but it is

dynamically selected in each case of the Jackknife

simulation as below:

The following steps are used to determine the value

Ki for each case xi dynamically.

Given n project cases {x1,x2,x3,…,xn}in the training set,

and for each project case xi in turn:

1. The Euclidean distances between xi and all other

project cases x-i (all but excluding xi) are computed

and ranked by their similarity.

2. The predictions are then simulated with Ki =1,

Ki =2,…,Ki =n for case xi. We use MRE in this case.

K Prediction Actual MRE

1 840.000 805.000 0.043

4 1233.750 805.000 0.533

3 1463.000 805.000 0.817

5 1471.400 805.000 0.828

2 1561.000 805.000 0.939

7 1609.000 805.000 0.999

6 1614.667 805.000 1.006

… … … …

n 4886.921 805.000 5.071

Table 1 Simulated K values, an example.

In the example shown in Table 1, the simulation

result for project case xi shows that the prediction is

at its optimal with 1 nearest project (Ki=1 with an

MREi =0.043).

3. This completes the simulation for case xi. Repeat

step 1 to 3 for project case xi+1.

The procedure introduced above is called Dynamic

K-NN, where an optimal Ki value for each project case

i is simulated and used in the prediction. The

aggregated average of all MREi above is the overall

TMPA, which is denoted as MMREMAX. As a measure

of prediction robustness of the model and its utilization

of the dataset, based on MMREMAX we define

prediction efficiency " of the model as:

 (4)

For example, if MMRE for the prediction model is 0.50

and its related MMREMAX is 0.20, the prediction model

is able to provide 30% prediction accuracy given that

the MMREMAX is 20% towards absolute zero error. This

20% margin is uncontrollable in an experimental

environment, primarily due to the quality of the

dataset.

6. Dataset and Analysis Procedure

The Desharnais dataset is used in this study. It

comprises 77 completed software project data from a

Canadian Software house. It was first reported in

Desharnais [18] and was used in Shepperd and

Schofield [3] to compare regression models and

analogy, and in [19] to analyse the impact of project

feature weights using an extensive search algorithm.

The Desharnais dataset is one of the most well-known

and complete datasets publicly available in software

effort estimation research. The original version of the

dataset had 81 projects, but four of them had missing

values and were excluded from our analysis [18]. This

dataset has 8 independent variables, which are shown

in Table 2. The response variable is ActualEffort.

Proj. Feature Description Type

Adj.FPs Adj. Function Points Continuous

RawFPs Raw Function Points Continuous

Transactions No. of Transactions Continuous

Entities No. of Entities Continuous

Adj.Factor Technology Adj. Factor Continuous

ExpProjMan Exp. of Proj.Mgmt. Continuous

ExpEquip Exp. of Equipment Continuous

Dev.Env Dev. Environment Categorical

Table 2 Desharnais Dataset Project Features

M
R

E

Box-Plots of different static K values

(MRE Distribution Desharnais n = 77)

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

1 3 5 7 9

Value K

For the purpose of project case retrieval, it is

important to first identify which features are most

influential to the prediction outcome or ActualEffort.

We identified that the continuous variable Adj.FPs is

the most influential project feature for the 77

completed software projects based on [3]. It is possible

to further improve the prediction accuracy by

homogenising the dataset using the categorical variable

Dev.Env, on the basis of differentiating development

environments. In practice, it is unlikely that a company

would have access to such large volumes of data. In

addition smaller, more homogenous datasets are more

useful for effort estimation. This dataset grouping

approach is similar to the study of Shepperd and

Schofield [3], where the Desharnais dataset has been

divided into Desharnais-1(44 cases), Desharnais-2(23

cases) and Desharnais-3(10 cases).

In the following experiments, we will demonstrate

the application of TMPA on the Desharnais dataset, as

well as on its 3 homogenized subsets. To demonstrate

what happens when TMPA is applied to datasets that

show no predictive relationships or whose quality of

the dataset is suboptimal, we show the effect on two

randomized datasets.

The two randomized datasets were generated to

have similar properties to that of the Desharnais dataset

in terms of the number of cases and the statistical

distribution of variables, but were constrained to have

no relationship between the dependent and the

independent variables. We generated 10,000 random

datasets stratified strictly accordingly to Desharnais

dataset’s mean and variance and selected two, one has

the largest correlation (DeshRand-0) and the other one

has the smallest correlation (DeshRand-1).

7. Applying TMPA on Desharnais Dataset

In this section we demonstrate our method on the

Desharnais dataset and related datasets described in the

previous section. Our Dynamic K-NN approach will be

applied to obtain optimized K values for the training

set and to derive TMPA. To compare our result with

the conventional approach using MMRE, we simulate

different fixed values of K on the original Desharnais

dataset and the results are shown in Figure 4.

7.1 Fixed K-NN
Figure 4 employs box-plots to illustrate the

prediction error distribution given by a sequence of

fixed Ks for nearest neighbour (NN) searches, where a

sequence of K values between 1 and 10 have been

selected. The distances of the outlying data points

become apparent and increasingly large as the size of K

increases. Nevertheless, observation shows the optimal

K value exists between 3 and 4 (see highlighted zone in

Figure 4). The MMRE values are 0.713 for K=3 and

0.666 for K=4 (see Table 3). The implication in here is

that the optimal K value exists in this highlighted zone

where the prediction can be highly optimized.

Figure 4 Box-plots of MRE distributions (Using

Different Fixed K values)

7.2 Dynamic K-NN
The Dynamic K-NN procedures described in

Section 5 has been applied to search for optimal K

values for each individual case. The measurement error

frequency distribution of using a sequence of K values

for Desharnais dataset is illustrated in Figure 5.

Figure 5 Frequency distribution of dynamically

selected optimal K values (Desharnais Dataset)

 Cases MMREMAX MMRE(K=3) ! (K=3) MMRE(K=4) ! (K=4)

 Desharnais 77 0.260 0.713 0.453 0.666 0.406

 DeshRand-0 77 0.556 1.474 0.918 1.440 0.885

 DeshRand-1 77 0.316 1.050 0.733 0.953 0.637

 Homogenized Subsets:

 Desh-Dev1 44 0.127 0.361 0.234 0.391 0.264

 Desh-Dev2 23 0.120 0.388 0.268 0.392 0.272

 Desh-Dev3 10 0.139 0.252 0.113 0.324 0.186

Table 3 Summary of results using MMREMAX and ! (Desharnais, DeshRand-0 and DeshRand-1 datasets)

Based on the Desharnais dataset, and given that the

Ki values have been optimized using the dynamic K-

NN approach, we obtained a MMREMAX of 0.260 based

on TMPA, which is significantly improved compared

to that of using a fixed K value (0.713 and 0.666) (see

Table 3). The model prediction efficiency " (see

Equation 4) is 0.453 for K=3 and 0.406 for K=4. This

also implies that there is room for the development of

an improved analogy-based prediction approach.

Based on the two random datasets showing no

predictable patterns, our TMPA method is able to

differentiate the error component from the prediction

accuracy measure. For example, the prediction model

efficiency " (based on K=3) for DeshRand-0 is 0.918

and its MMREMAX value due to dataset errors is 0.556,

this implies that the dataset DeshRand-0 is not suitable

for the software effort estimation using analogy.

DeshRand-1 dataset is subject to similar conclusion.
Using a separate analogy-based approach we

homogenize the dataset into three subsets. As shown in

Table 3, we observed significant improvement in terms

of estimation accuracy. The prediction errors for these

three subsets are also smaller, as is in their MMREMAX

values. Their model prediction efficiency " is

exceptionally good compared to the original dataset

with 77 cases. Especially for Desh-Dev3, where the

model prediction efficiency " is 0.113 based on K=3,

this implies that the prediction model has nearly

reached its theoretical maximum (TMPA).

8. Discussion

We have successfully employed a novel approach to

evaluate the true efficiency of model prediction

accuracy based on TMPA described in the study.

Our results show that applying TMPA is an effective

strategy to account for the influence of each project’s

impact to the overall estimate, precisely the dataset

quality and its relevance to the target problem under

investigation. This has been clearly demonstrated using

the Desharnais dataset.

In theory the maximum achievable prediction

accuracy value can be achieved if and only if the

prediction model itself is sophisticated and accurate

enough. Even if there is an identical project in terms of

features and characteristics in the dataset, it is possible

that the system is unable to find it because of the

influence of other project cases. The prediction power

issue is independent to the quality of the dataset in this

case as our approach effectively isolates the error terms

introduced by the quality of the dataset.

The notion of TMPA can be easily adapted to other

metrics. We are anticipating further experiments to

apply TMPA to show its effectiveness with other

software cost estimation approaches and models,

including regressions models.

9. Conclusion

In this paper we introduced both the notion and the

application of the theoretical maximum prediction

accuracy (TMPA) for software cost estimation using

analogy. The introduced approach is a robust software

metric in addition to existing model performance

criteria such as MMRE. TMPA utilizes the Dynamic K-

NN approach to simulate and obtain a maximized

possible prediction in each dataset training phase using

Jackknife validation. TMPA captures the influence of

the dataset quality and its relevance to the target

problem, and effectively isolates the prediction loss

due to the dataset quality.

An error-free prediction in software cost estimation

remains elusive dream for many, but the truth is, it is

both empirically and theoretically impossible. The

TMPA metric is also not empirically achievable with

existing cost estimation models, but it provides a

theoretical achievable limit for competing models.

We evaluated our TMPA approach using the

Desharnais and two random datasets. Our results show

that applying TMPA is an effective strategy to account

for the influence of each project’s impact to the overall

estimate. And it is proven to provide a measurable and

realistic target objective for researchers seeking to

develop improved cost estimation models using the

TMPA measure rather than using the unrealistic

absolute zero prediction target. Our method is thus a

major improvement to the evaluation of software cost

estimation models.

10. Acknowledgements

NICTA (National ICT Australia Ltd.) is funded

through the Australian Government’s Backing

Australia’s Ability Initiative, in part through the

Australian Research Council.

11. References

[1] S. Conte, H. Dunsmore, and V. Y. Shen, Software

Engineering Metrics and Models. Menlo Park,

Calif: Benjamin/Cummings, 1986.

[2] F. Walkerden and R. Jeffery, "An Empirical

Study of Analogy-based Software Effort

Estimation," Empirical Software Engineering,

vol. 4, pp. 135-158, June 1999.

[3] M. J. Shepperd and C. Schofield, "Estimating

Software Project Effort Using Analogies," IEEE

Transactions on Software Engineering, vol. 23,

pp. 736-743, 1997.

[4] M. J. Shepperd, C. Schofield, and B. Kitchenham,

"Effort estimation using analogy," in 18th Intl.

Conf. on Software Engineering, Berlin, 1996.

[5] I. Myrtvelt and E. Stensrud, "A controlled

experiment to assess the benefits of estimating

with analogy and regression models," IEEE

Transactions on Software Engineering, vol. 25,

pp. 510-525, 1999.

[6] L. Angelis and I. Stamelos, "Reply to comments

by M. Jorgensen, on the paper: ‘A Simulation

Tool for Efficient Analogy Based Cost

Estimation’," Empirical Software Engineering,

vol. 7, pp. 377-381, 2002.

[7] E. Mendes, N. Mosley, and S. Counsell, "A

replicated assessment of the use of adaptation

rules to improve Web cost estimation," in

International Symposium on Empirical Software

Engineering, Rome, Italy, 2003, pp. 100-109.

[8] E. Mendes and B. Kitchenham, "Further

comparison of cross-company and within-

company effort estimation models for Web

applications," in International Symposium on

Software Metrics, Chicago IL, USA, 2004, pp.

348-357.

[9] L. C. Briand, K. E. Eman, and K. D. Maxwell,

"An Assessment and Comparison of Common

Software Cost Estimation Modeling Techniques,"

in International Conference on Software

Engineering, LA, CA, 1999.

[10] S. Morasca, L. C. Briand, V. R. Basili, E. J.

Weyuker, M. V. Zelkowitz, B. Kitchenham, S.

Lawrence Pfleeger, and N. Fenton, "Comments

on "Towards a framework for software

measurement validation"," IEEE Transactions on

Software Engineering, vol. 23, pp. 187-189, 1997.

[11] R. Jeffery, M. Ruhe, and I. Wieczorek, "Using

public domain metrics to estimate software

development effort," in International Symposium

on Software Metrics, London, England, 2001, pp.

16-27.

[12] C. Mair and M. Shepperd, "The consistency of

empirical comparisons of regression and analogy-

based software project cost prediction," in 4th

International Symposium on Empirical Software

Engineering, Noosa Heads, Australia, 2005.

[13] M. Shepperd and G. Kadoda, "Comparing

software prediction techniques using simulation,"

IEEE Transactions on Software Engineering, vol.

27, pp. 1014-1022, 2001.

[14] J. W. Keung, B. Kitchenham, and D. R. Jeffery,

"Analogy-X: Providing Statistical Inferences to

Analogy-based Software Cost Estimation," IEEE

Transactions on Software Engineering, vol.

PrePrint:Online (TSE.2008.34), 15 May 2008.

[15] J. W. Keung and B. A. Kitchenham,

"Experiments with Analogy-X for Software Cost

Estimation," in Australian Software Engineering

Conference Perth, 2008.

[16] J. W. Keung and B. Kitchenham, "Optimizing

Project Feature Weights for Analogy-based

Software Cost Estimation using the Mantel

Correlation," in Asia Pacific Software

Engineering Conference Nagoya, Japan, 2007,

pp. 222-229.

[17] T. Foss, E. Stensrud, B. Kitchenham, and I.

Myrtveit, "A Simulation Study of the Model

Evaluation Criterion MMRE," IEEE Transactions

on Software Engineering, vol. 29, pp. 985-995,

2003.

[18] J. M. Desharnais, "Analyse statistique de la

productivitie des projects informatique a partie de

la technique des point des function," in University

of Montreal. vol. Masters thesis: Univ. of

Montreal, 1989.

[19] M. Auer, A. Trendowicz, B. Graser, E.

Haunschmid, and S. Biffl, "Optimal Project

Feature Weights in Analogy-Based Cost

Estimation: Improvement and Limitations," IEEE

Transactions on Software Engineering, vol. 32,

pp. 83-92, Feb 2006.

