
Is Evidence Based Software Engineering mature enough for Practice & Policy?

David Budgen
School of Engineering & Computing Sciences

Durham University
Durham, DH1 3LE

U.K.
david.budgen@durham.ac.uk

Barbara Kitchenham & Pearl Brereton
School of Computing & Mathematics

Keele University,
Staffordshire, ST5 5BG

U.K.
{b.a.kitchenham;o.p.brereton}@cs.keele.ac.uk

Abstract

Since their use was first proposed in 2004, evidence-
based practices, and particularly systematic literature re-
views, are becoming widely used in empirical software en-
gineering. We describe the key concepts of evidence-based
software engineering (EBSE) and its use of systematic liter-
ature reviews (SLRs) and mapping studies. We then report
on the extent to which evidence-based studies are changing
our ideas, and the extent to which they have so far addressed
major software engineering themes and topics. We discuss
how far this can already be used to inform policy and prac-
tice, and what further developments could usefully reinforce
this role.

1 Introduction

In 2004, Kitchenham, Dybå and Jørgensen proposed
that software engineering would benefit from adopting the
evidence-based paradigm as a means of enabling research
to inform both practice and policy [22].

The purpose of evidence-based studies is to objectively
and systematically find and aggregate all relevant evidence
about a particular phenomenon. Its origins lie in clinical
medicine where it arose in response to a challenge from
the Epidemiologist, Archie Cochrane, who was concerned
that clinical practice needed a sounder empirical foundation
and the means of resolving what could be large volumes of
potentially conflicting evidence. Clinical medicine has re-
mained at the forefront of this development, as evidenced
by the website of the not-for-profit Cochrane Collabora-
tion1 and by its influence upon both teaching and prac-
tice in clinical medicine. The adoption of evidence-based
medicine (EBM) was also stimulated by a number of early

1www.cochrane.org

evidence-based studies that demonstrated results that over-
turned ‘common knowledge’ and practice.

Because the role of the human in clinical medicine is
essentially one of a recipient of a treatment, it is possi-
ble to undertake Randomised Controlled Trials or RCTs,
which in turn makes it possible to employ statistical meth-
ods when aggregating the results from different trials. How-
ever, since patients with one problem may well have others,
RCTs may not always produce consistent outcomes, and the
application of the outcomes may not always be straightfor-
ward. Despite these factors, the use of the evidence-based
paradigm in clinical medicine still forms a ‘gold standard’
that researchers in other disciplines seek to emulate.

Many healthcare-related disciplines now employ
evidence-based practices. although they often need adap-
tation, not least because when the skills of the practitioner
becomes a factor, it is impractical to conduct fully rigorous
RCTs. We report on how this has been managed in [7].

Evidence-based studies have also been undertaken in the
domains of Education and Social Policy, where the pur-
pose has been to inform policy in particular. (The current
U.K. government has been keen to emphasise the adoption
of evidence-based policies, although the term ‘evidence-
informed’ may often be more appropriate.) There is now
an established journal for this (J. of Evidence & Policy) and
a number of institutions have been funded to disseminate
evidence-based knowledge in such areas as education and
healthcare.

For software engineering, the tradition is still largely one
of reliance upon expert-based reviews, and an associated
reluctance to consider empirical evidence [20]. However,
while this is still relatively early days for the development of
the paradigm in software engineering, quite solid progress
has been made, and there is a growing community of re-
searchers who are working in this area. The aim of this pa-
per is therefore to report on this progress, to identify where
some of the results might conflict with expectation and prac-
tice, and to address the question as to whether it is now



sufficiently established to be able to inform software engi-
neering practices, organisational policies and international
standards—all of which are currently largely formulated on
the basis of expert opinion. We also examine what future
developments might best enable such a paradigm change to
occur.

2 Evidence-Based Software Engineering

In translating the ideas of the evidence-based paradigm
to the software engineering domain, Kitchenham et al.
defined the goal of evidence-based software engineering
(EBSE) as being [22]:

To provide the means by which current best evi-
dence from research can be integrated with prac-
tical experience and human values in the deci-
sion making process regarding the development
and maintenance of software.

2.1 Realising EBSE

In [10], and based upon the analogy with clinical
medicine, the same group of researchers identified a five-
step process for EBSE as being:

1. Converting a relevant problem or information need
into an answerable question.

2. Searching the literature for the best available evidence
to answer the question.

3. Critically appraising the evidence for its validity, im-
pact and applicability.

4. Integrating the appraised evidence with practical ex-
perience and the values and circumstances of the cus-
tomer to make decisions about practice.

5. Evaluating software development performance and
seeking ways to improve it.

This can be viewed as an interpretation of the Systematic
Literature Review (SLR), which has been widely adopted as
the main tool of the evidence-based paradigm [26] and has
subsequently been incorporated into the Guidelines docu-
ment, initially produced by Kitchenham for software engi-
neers in 2004, and later updated in 2007 [21].

2.2 Some limitations of EBSE

While conceptually at least, EBSE has a sound basis and
the potential to deliver sound, unbiased appraisal of soft-
ware engineering processes and products, even from the
start it has been recognised that there are factors that limit

this potential. Some are implicit in the nature of the dis-
cipline, while others arise more from resource limitations.
Limitations include:

• The role of the participant in empirical studies (and
especially experiments). Since this is almost always
skill-based, it is impossible to apply techniques such
as double-blinding (of participants and experimenters)
that are considered an essential feature of medical tri-
als.

• Empirical studies in software engineering make exten-
sive use of laboratory experiments rather than field tri-
als (again, unlike the medical analogy), which makes it
difficult to generalise the outcomes. Many of them also
use students as participants—and determining whether
or not this permits generalisation is a difficult issue.

• For medicine, the evidence is clearly intended for use
by clinicians, who will use the outcomes to aid diag-
nosis and treatment. For education, it is usually the
policy-makers at national or possibly regional levels
who are the end users. This is less clear for EBSE
since in software engineering decisions may be made
at many different levels.

• The digital libraries available for software engineering
researchers do not provide particularly good (or con-
sistent) searching facilities when seeking papers on a
particular topic. In particular, they tend to have quite
different interface structures when it comes to deter-
mining what elements (title, abstract, body) are to be
searched, as well as the forms used for compounding
the search terms. This in turn makes it necessary to
interpret the chosen search strings differently for each
engine.

There are also related issues about the quality and quan-
tity of the ‘primary’ empirical studies used as inputs to sec-
ondary studies such as SLRs.

2.3 Recent progress with EBSE

Much recent progress with EBSE is fairly closely tied
up with the various developments that have occurred with
empirical software engineering.

Researchers such as Basili have done much pioneering
work in empirical software engineering, and there are now
established conferences (such as Empirical Software Engi-
neering & Metrics (ESEM) and Evaluation & Assessment
in Software Engineering (EASE)) as well as a journal (Em-
pirical Software Engineering). However, issues such as re-
porting standards still provide a problem for researchers.

In terms of EBSE itself, there is considerable ongoing
activity (mainly in Europe and Scandanavia) [18]. Two re-
cent developments are:

2



• The institution of a separate section for systematic lit-
erature reviews in the journal Information & Software
Technology, recognising both that this type of study
may need to be treated a little differently from the stan-
dard journal paper, and also the need to build up the
international body of knowledge.

• The creation of a web site2, supported by our own re-
search projects, intended to act as an intenational re-
source for planning and reporting evidence-based stud-
ies (and also primary studies to some degree).

Having discussed some of the processes and mechanisms
involved in EBSE, we now go on to examine the knowledge
about SE that has so far been obtained through these means.

3 Current state of EBSE knowledge

In clinical medicine, adoption of the evidence-based
paradigm in the late 1980s and 90s led to dramatic changes
in both research and practice, as well as demonstrating that
the clinical judgement of experts compared unfavourably
with the results of systematic reviews. For software engi-
neering, as indicated above, the role of the human as partic-
ipant rather than recipient in our primary studies makes it
more difficult to produce strongly definitive outcomes, but
experiences indicate that:

1. Use of the evidence-based paradigm is appropriate and
useful for software engineering and can produce re-
peatable results [24]. However, as discussed above,
there are constraints that are imposed by the nature of
the discipline and the way that our electronic reposi-
tories are organised, that need to be recognised when
undertaking secondary studies [3].

2. Although empirical data, in the form of the results
from different primary studies, is available for many
topics in software engineering (in varying amounts—
and quality), secondary studies (such as systematic lit-
erature reviews or mapping studies) that aggregate the
outcomes from these, have so far only been performed
for a few of the possible topics (see below).

3. As for clinical medicine, if less dramatically, where
secondary studies have been undertaken, a number of
them have demonstrated that a systematic approach
to assembling evidence may well produce results that
contradict current practices and opinions in the re-
search and practitioner communities. Some examples
of these are:

2www.ebse.org.uk

(a) For many years the original Standish CHAOS re-
port has been widely cited as confirming the par-
lous state of software engineering, with the ma-
jority of projects failing and significantly over-
running. As background to a study of Norwegian
projects, Moløkken-Østvold et al. looked at all
empirical studies that reported failure rates and
over-runs [25]. They found that the Standish re-
port was completely out of line with other con-
temporary studies, which indicate that average
overruns are in the region of 30%, a figure which
has not changed much in the last 20 years. The
methodological problems with the original Stan-
dish report (including sampling by explicitly so-
liciting reports of failing projects) were the sub-
ject of another study [16].

(b) Jørgensen investigated the results of studies that
compared algorithmic cost estimation models
with expert opinion estimates [14]. Although
research on cost estimation for the past thirty
years has been premised upon the inferiority of
estimates based upon expert opinion, he found
no compelling evidence that algorithmic models
are more accurate than expert opinion estimates.
In fact, one third of the studies identified algo-
rithmic models as best, one third found expert
opinion-based estimates best, and the remaining
third found no difference. In a later study he
discussed factors that might determine when to
choose between an algorithmic model or expert
opinion [15].

(c) Dybå and Dingsøyr have reviewed holistic em-
pirical studies of agile methods (the results of
applying an integrated set of agile methods) [9],
while Hannay et al. have reviewed empirical
studies of pair programming [12]. Both stud-
ies suggest that we know a lot less about agile
techniques than is popularly thought. Dybå and
Dingsøyr highlight the general lack of trustwor-
thy empirical studies, particularly related to man-
agement methods—they only found one study in-
vestigating SCRUM. Hannay et al. found limited
evidence that agile methods exhibit greater qual-
ity and are faster than conventional methods but
are less productive. However, all of these effects
are small, and detailed meta-analysis casts some
doubts upon their reliability.

(d) Our own study of the TAM (Technology Ac-
ceptance Model), draws upon 73 primary stud-
ies [28]. This has demonstrated that the lack of
objective measures for technology use in many
studies results in studies of the TAM often mea-
suring perceived use rather than actual use and

3



has also demonstrated that some of the key com-
ponents of the TAM are not good predictors of
actual use.

4. A number of mapping studies, sometimes termed scop-
ing reviews [26], a form of secondary study that seeks
to scope our empirical knowledge about a topic, have
been undertaken as part of our own studies. While in
other disciplines these form a useful starting point for
a fuller systematic literature review (SLR), when per-
formed for software engineering they have largely re-
vealed the extent of the gaps in our empirical knowl-
edge. Examples have included the UML [27], object-
oriented design [2] and design patterns [31]. We dis-
cuss some examples from these in more detail in the
next section.

Within software engineering, the SWEBOK [1] has be-
come established as an authoritative reference, drawing
widely upon expert opinion and experience, and providing
an overview of the topics and practices that currently form
the knowledge-base for software engineering research and
practice.

Table 1 shows the current state of evidence-based expe-
rience when mapped on to the structure of the SWEBOK.
We have included papers from our original tertiary study
of secondary studies [18] together with those additionally
identified in the extended-search tertiary study undertaken
as part of the EPIC project [19]; and those that we are aware
of, but have not yet been formally reported, such as those
described in [6]. Also, for this purpose, we have not dis-
tinguished between mapping studies (that essentially iden-
tify how far a topic is addressed by primary studies) and a
full SLR (which aggregates these studies to address a more
focussed issue). We have also omitted studies that report
research trends rather than addressing questions relating to
specific software engineering topics. While the difference
between the totals for the first two columns indicates a task
well beyond any single project, closer inspection indicates
that there is ample scope for selective extension.

4 Informing Practice & Policy

Table 1 shows the coverage of topics against the main
SWEBOK headings (chapters and sections), although since
the chapters are each edited independently, there is some in-
consistency about the structuring at the level of sections that
makes it hard to compare chapters. Also, some sections are
introductory or concerned with context, and so unlikely to
make significant reference to empirical studies. However,
the table does clearly show that so far, we only have limited
coverage. In the next section we will consider the conse-
quences of this, but for this section, we address the question

SWEBOK heading No. of Number of Total
sections sections with No. of

SLR coverage SLRs
2. Software Requirements 28 2 2
3. Software Design 30 2 2
4. Software Construction 14 2 3
5. Software Testing 68 3 3
6. Software Maintenance 28 1 1
7. Software Configuration 28 0 0

Management
8. Software Engineering 24 3 10

Management
9. Software Engineering 20 3 7

Process
10. Software Engineering 13 1 1

Tools & Methods
11. Software Quality 24 2 3
Total 277 19 32

Table 1. Evidence-based cover of the main
SWEBOK topics

of what sort of things are covered by existing studies, illus-
trating them in part from some of our own studies.

4.1 How studies are organised

Although the SWEBOK provides a useful overall struc-
ture, based on chapters, that identifies major areas of soft-
ware engineering, it emerges that the structure becomes less
useful when we go below that. At the level of the individ-
ual section, the SWEBOK tends to discuss individual tech-
niques, either in isolation, or within some framework. As an
example, if we look at software testing, different techniques
are grouped based on strategy, and so for a strategy such as
fault-based techniques, we find two sub-categories of error
guessing and mutation testing. Each of these is discussed as
a separate strategy. (We should add that this is an observa-
tion rather than a criticism, and indeed, most textbooks are
organised in this way.)

However, when we look at the form of primary stud-
ies, these are almost always comparative in nature. So,
for example, if we stay with testing, an experiment might
compare the effectiveness of two techniques, possibly us-
ing different strategies. Again, this is perfectly reasonable,
as most experimental studies (and experiments are generally
the most common form used) compare some treatment with
a ‘control’. If the treatment is some testing technique, then
it is quite reasonable that we might use a different technique
as the ‘control’. In a similar manner, a study of model-
based cost estimation might make comparison with expert
judgement-based estimation.

In each case, the structure commonly adopted is appro-

4



priate to the context, but unfortunately, it makes it harder to
draw the two together. It is also largely a reflection of the
role of the participant in our studies. For clinical medicine
where participants are recipients, the ‘control’ might be that
participants receive no treatment—usually delivered via a
placebo to preserve the double blinding. Where the partic-
ipant performs tasks and uses skill for this, then there is no
real equivalent to a control of no treatment.

Unfortunately, it can potentially lead to a possible com-
binatoric explosion of comparisons if different groups of
experimenters choose different treatments for their compar-
isons. While not a significant effect so far, it does argue
that for secondary studies to be effective, we need to en-
courage more replication studies (and in turn, for journals
and conferences to cope with publication of such studies.)
There are also other factors that might help bridge between
the outcomes from different studies (such as the use of a
common outcome measure such as time).

A related issue to this is the use of case studies. This
term (and also the word ‘experiment’) is often used very
casually in software engineering papers—and is commonly
used to describe what should really be categorised as ex-
perience or observation. However, carefully planned case
studies, as documented by Yin [30], can be used in software
engineering as we have demonstrated in [19]. In particu-
lar, this form can provide a much more rigorous option than
opportunistic observations, especially in situations where it
is impractical to undertake a controlled experiment (which
often applies to ‘field’ studies).

4.2 Example studies

Here we briefly discuss two example studies in order to
illustrate the issues discussed above and to help provide an
idea of scale. We only provide very outline details, as these
are both reported elsewhere.

4.2.1 Design Patterns

Software design patterns are widely promoted as an aid
to design and maintenance, and since its publication in
1995, the book by the Gang of Four (usually abbreviated
to GoF) has provided something of a standard [11]. There
are many other patterns in use, but the 23 patterns discussed
in that book are probably the most well-known and widely
adopted.

When we began a mapping study to investigate how
widely patterns were ‘validated’ empirically, we therefore
expected that these would be the ones that experimenters
would use, and this was very much born out by our experi-
ences [31]. However, what we also found was that:

• Although many papers discussing patterns exist, the
number of papers reporting studies that investigated

the effectiveness of patterns in any way was very small.
We performed a very rigorous search using electronic
databases, manual search and snowballing (following
up references from relevant papers found by the other
techniques). This identified 480 papers, of which 181
were in some way empirical. However, analysis of
these eventually reduced to a set of only 11 papers that
reported on good quality empirical studies about pat-
terns.

• Only three of the patterns in the GoF (Compos-
ite, Observer and Visitor) had been studied very
extensively—without any strong agreement between
studies. Also, only 13 of the 23 patterns had been stud-
ied at all through experiments.

• Many of the studies were performed by two research
groups.

• Where studies were replicated, there were changes to
the experimental procedures that made it difficult to
draw any comparisons with the original studies (possi-
bly, to help ensure that the work got published!).

We also examined what might usefully be termed the ‘ob-
servational’ papers that reported on the use of patterns in
practice (see our previous comments about case studies).
Unfortunately, the quality of reporting in those found led
to only three being of real use—and unfortunately these
tended to report on a different subset of patterns to those
covered by the experiments (there was a small overlap). We
will return to this issue later, as we did identify one very
good example that demonstrated that, even when not for-
mally structured as a case study, such reports could have
real value if well organised [29].

4.2.2 Cost Models

As indicated, this is one area where a number of reviews
have been performed, examining various aspects. However,
for our example here we will briefly examine one published
review that was undertaken by Magne Jørgensen and Martin
Shepperd [17], entitled ”A Systematic Review of Software
Development Cost Estimation Studies”.

In many ways, this is again something of a mapping
study, since it addressed some eight research questions that
were concerned with identifying such issues as how cost
estimation studies were performed, which were most stud-
ied, and where they were published. Their approach was
somewhat different to the study described in the previous
sub-section and that, together with their findings, is outlined
below.

• Rather than use electronic searching, they performed a
manual search of the titles and abstracts in more than

5



100 journals considered likely to be potentially rele-
vant. They found a total of 304 papers in 76 of these
journals (up to the date April 2004). They explicitly
excluded conference papers for this study.

• Unlike the patterns studies, they found relatively few
researchers had longer-term interests in this area, al-
though those researchers did publish across a wide
spectrum of topics.

• The distribution of papers across research topics was
uneven, with 61% of papers addressing the introduc-
tion and evaluation of estimation methods. (Size mea-
sures formed the next largest group with 20% of pa-
pers.)

• They examined the different estimation approaches
studied and found that regression-based approaches
dominated (this includes “most common parametric
estimation models, e.g. the COCOMO model”).

• There was relatively little discussion of expert
judgement-based approaches (only 15% of papers).
The authors suggest that the “relative lack of focus
upon expert judgement-based approaches suggests, we
believe, that most researchers either do not cooperate
closely with the software industry, or that they believe
it is better to focus on replacement, rather than im-
provement, of judgement-based approaches currently
used in industry”.

Not surprisingly, one of the recommendations from this
study was that researchers should conduct more studies on
estimation methods commonly used by the software indus-
try. (A point followed up in [14].)

5 Discussion

For this section we address the following three questions:

1. Is EBSE mature enough to inform practice and policy?

2. If so, what are the barriers to making use of it more
widely?

3. How can such barriers be overcome?

Since this is a workshop paper, we see the discussion of
these questions, informed by the previous sections, as form-
ing our major contribution to the workshop.

5.1 Is EBSE mature enough to inform
practice and policy?

Since 2004 there has been considerable investment of
time and effort in exploring the practicality of EBSE, and
this has been focused on two main aspects.

• The methodological aspects such as adapting the SLR
process to software engineering and identifying how
both primary and secondary studies can best be per-
formed in this domain. Much of our own work has
been in this area, and in an earlier paper we reviewed
progress and suggested that there was no evidence that
it was not appropriate, although still immature in some
ways [4].

• The application of EBSE in the form of mapping
studies and SLRs, with a major contribution coming
from the Simula Laboratory in Norway, although many
other research groups have also contributed studies, in-
cluding ourselves.

The preceding sections have addressed various aspects of
EBSE, including the scale of its adoption so far. We would
argue that there is now ample evidence that methodologi-
cally, EBSE is sufficiently mature enough in its practices
to be able to provide a much more solid basis for decisions
than expert reviews and opinions. However, this does need
to be tempered by the observation that the set of existing
studies is limited in scope, and hence there may only be
limited scope for ‘off the shelf’ use of the existing stud-
ies (probably the main exception has to be cost modelling,
where there is ample usable material).

5.2 What are the barriers?

In [4] we identified some technical issues that we saw as
constraining the acceptance of EBSE for practice and pol-
icy. Some of these are activities that the research commu-
nity needs to address, and indeed, is addressing—including:

• Better abstracts to help analysts decide upon inclusion
and exclusion criteria (and we applaud the recent de-
cision of Information & Software Technology to adopt
the use of structured abstracts [5]).

• Better quality reporting of studies, including observa-
tional studies.

• Refinement of our own methodological framework,
(which is ongoing).

• Better searching facilities in our electronic databases,
an issue which still needs to be addressed by the
providers, who still seem unaware of the need to make
systematic searches.

As indicated, progress has been made with two of these (ab-
stracts and methodological framework). The task of encour-
aging better reporting is an ongoing one—there are some
quite widely adopted suggestions for experiments [23], and
we have also made some tentative suggestions for observa-
tional studies, based on our experiences with using these

6



for the study on design patterns [8]. The outstanding task
remains that of improving searching, which is an inconve-
nience rather than a factor that prevents EBSE in any way.

So, what other barriers do we see at this point? We sug-
gest that the following four are ones that need to be more
fully explored.

• At present, researchers tend to investigate topics that
are either of interest to them, or where they are aware
that there is a body of primary studies that can be used.
The result is that many of the secondary studies that
we have identified are ones that address research is-
sues rather than practical concerns, and there is also a
rather uneven spread of studies across the main areas
of software engineering, using the SWEBOK as our
baseline.

• Papers reporting SLRs and mapping studies rarely pro-
vide any guidelines that can be used directly by prac-
titioners and policy-makers. This is not unique of
course, and in other disciplines there are organisations
that undertake such a role. In the U.K., the Centre for
Research and Dissemination at York is responsible for
disseminating the outcomes of healthcare-related stud-
ies in a form that is usable by medical practitioners
and others, and there is the Evidence for Policy and
Practice Information and Coordinating Centre (EPPI-
Centre) that undertakes this role for social science (in-
cluding education), based in London.

• Empirical studies still tend to make extensive use of
laboratory studies rather than field studies, and (for ob-
vious reasons) students are often used as the partici-
pants in these experiments. Used carefully,the use of
students as surrogates for practitioners can be justified
(for an example, see [13]), but even where this can be
done, there remains a problem of perception from out-
side academia. For EBSE to be widely accepted, we
almost certainly need to find ways of increasing the
proportion and quality of field studies (again, see our
earlier comments about case studies), and also of using
these to validate those studies that do use students.

• Lastly, and complicating the previous points, unlike
domains such as clinical medicine and healthcare,
knowledge about processes in particular, may well be
viewed as being proprietary in software engineering,
since it may help an organisation with maintaining
competitive advantage. So, while this does not im-
peded academic studies, particularly those using stu-
dents, it does make it harder to obtain useful observa-
tional data and to obtain collaboration for field studies
in general.

5.3 How can the barriers be overcome?

For educational studies, government bodies (at least in
the U.K.) do sponsor systematic reviews on questions of in-
terest to policy-makers, and some healthcare reviews are
likewise commissioned by government agencies. There
would clearly be scope for similar practice in software en-
gineering, both from government and also commercial or-
ganisations, although in the latter case, it would of course
raise the question of commercial benefit versus dissemina-
tion. So two very useful topics for discussion at the work-
shop could well be these issues of both:

• who should be commissioning secondary studies in
software engineering and on what topics?

• how researchers can be encouraged to undertake rel-
evant primary studies—including experiments, case
studies and well-reported observations (and how jour-
nals can be persuaded to recognise the importance of
the role of replication studies)?

6 Conclusion

The thesis for this workshop paper is that EBSE is fit for
purpose as the basis for decision-making in software engi-
neering, whether for practice or policy purposes. However,
it is currently limited by the lack of good primary studies,
both in the laboratory and in the field. So for EBSE to be
able to inform opinion effectively, and for its use to move
into the mainstream, we need to find ways both of obtaining
good quality inputs from researchers and practitioners and
then of delivering relevant findings in a form that will be
useful to practitioners and policy-makers.

Acknowledgements

We thank the U.K. Engineering and Physical Sciences
Research Council for providing support for this work via
project EP/E046983/1, Evidence-based Practices Informing
Computing (EPIC).

References

[1] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, edi-
tors. Guide to the Software Engineering Body of Knowledge.
IEEE Computer Society, 2004.

[2] J. Bailey, D. Budgen, M. Turner, B. Kitchenham, P. Brere-
ton, and S. Linkman. Evidence relating to Object-Oriented
software design: A survey. In Proceedings of Empirical
Software Engineering & Measurement, 2007, pages 482–
484. IEEE Computer Society Press, Sept. 2007.

7



[3] O. Brereton, B. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from applying the Systematic Litera-
ture Review process within the Software Engineering do-
main. Journal of Systems & Software, 80(4):571–583, 2007.

[4] D. Budgen, B. Kitchenham, P. Brereton, M. Turner, S. Char-
ters, and S. Linkman. Employing the evidence-based
paradigm for technology-related decision making. Evidence
& Policy, 4(2):149–169, 2008. ISSN: 1744-2648.

[5] D. Budgen, B. A. Kitchenham, S. Charters, M. Turner, P. Br-
ereton, and S. Linkman. Presenting software engineering re-
sults using structured abstracts: A randomised experiment.
Empirical Software Engineering, 13(4):435–468, 2008.

[6] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham. Us-
ing Mapping Studies in Software Engineering. In Proceed-
ings of PPIG 2008, pages 195–204. Lancaster University,
2008.

[7] D. Budgen, M. Turner, S. Charters, J. Bailey, B. Kitchen-
ham, and P. Brereton. Lessons from a Cross-domain Investi-
gation of Empirical Practices. In Proceedings of EASE 2008,
pages 1–12. BCS-eWiC, 2008.

[8] D. Budgen and C. Zhang. Preliminary reporting guidelines
for experience papers. Accepted for EASE 2009, 2009.

[9] T. Dybå and T. Dingsøyr. Empirical studies of agile software
development: A systematic review. Information & Software
Technology, 50:833–859, 2008.

[10] T. Dybå, B. Kitchenham, and M. Jørgensen. Evidence-
based software engineering for practitioners. IEEE Soft-
ware, 22(1):58–65, 2005.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[12] J. Hannay, T. Dybå, E. Arisholm, and D. Sjøberg. The ef-
fectiveness of pair programming. a meta analysis. In press.,
2009.

[13] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects-a comparative study of students and professionals
in lead-time impact assessment. Empirical Software Engi-
neering, 5(3):201–214, 2000.

[14] M. Jørgensen. A review of studies on expert estimation of
software development effort. Journal of Systems & Soft-
ware, 70(1–2):37–60, 2004.

[15] M. Jørgensen. Estimation of software development work
effort: Evidence on expert judgement and formal models.
Int. Journal of Forecasting, 2007. In press.

[16] M. Jørgensen and K. Moløkken-Østvold. How large are soft-
ware cost overruns? a review of the 1994 CHAOS report.
Information & Software Technology, 48:297–301, 2006.

[17] M. Jørgensen and M. Shepperd. A Systematic Review of
Software Development Cost Estimation Studies. IEEE Tran.
on Software Engineering, 33(1):33–53, 2007.

[18] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bai-
ley, and S. Linkman. Systematic literature reviews in soft-
ware engineering — a systematic literature review. Informa-
tion & Software Technology, 51(1):7–15, 2009.

[19] B. Kitchenham, P. Brereton, M. Turner, M. Niazi,
S. Linkman, R. Pretorius, and D. Budgen. The impact of
limited search procedures for systematic literature reviews
– an observer-participant case study. Accepted for ESEM
2009, 2009.

[20] B. Kitchenham, D. Budgen, P. Brereton, M. Turner, S. Char-
ters, and S. Linkman. Large-Scale Software Engineering
Questions–Expert Opinion or Empirical Evidence? IET
Software, 1(5):161–171, 2007.

[21] B. Kitchenham and S. Charters. Guidelines for perform-
ing Systematic Literature Reviews in Software Engineer-
ing. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report, 2007.

[22] B. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based
software engineering. In Proceedings of ICSE 2004, pages
273–281. IEEE Computer Society Press, 2004.

[23] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones,
D. Hoaglin, K. E. Emam, and J.Rosenberg. Preliminary
Guidelines for Empirical Research in Software Engineering.
IEEE Transactions on Software Engineering, 28:721–734,
2002.

[24] S. Macdonell, M. Shepperd, B. Kitchenham, and E. Mendes.
How reliable are systematic reviews in empirical software
engineering? Accepted for publication in IEEE Trans. SE,
2009.

[25] K. Moløkken-Østvold, M. Jørgensen, S. Tanilkan, H. Gal-
lis, A. Lien, and S. Hove. A Survey on Software Estimation
in the Norwegian Industry. In Proceedings 10th Interna-
tional Software Metrics Symposium (Metrics 2004), pages
208–219. IEEE Computer Society Press, 2004.

[26] M. Petticrew and H. Roberts. Systematic Reviews in the So-
cial Sciences: A Practical Guide. Blackwell Publishing,
2006.

[27] R. Pretorius and D. Budgen. A mapping study on empir-
ical evidence related to the models and forms used in the
UML. In Proceedings of 2nd ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measure-
ment, ESEM 2008, pages 342–344. ACM Press, 2008.

[28] M. Turner, B. Kitchenham, P. Brereton, S. Charters, and
D. Budgen. Does the Technology Acceptance Model pre-
dict Actual Use? a systematic literature review. Accepted for
publication in Information & Software Technology, 2009.

[29] P. Wendorff. Assessment of design patterns during soft-
ware reengineering: Lessons learned from a large commer-
cial project. In Proceedings of 5th European Conference
on Software Maintenance and Reengineering (CSMR’01),
pages 77–84. IEEE Computer Society Press, 2001.

[30] R. Yin. Case Study Research: Design & Methods. Sage
Books, 3 edition, 2003.

[31] C. Zhang and D. Budgen. Assessing the claims for software
design patterns. Submitted for publication., 2009.

8


